Structure and propermes of nuclear ma3er in compact stars

Size: px
Start display at page:

Download "Structure and propermes of nuclear ma3er in compact stars"

Transcription

1 Structure and propermes of nuclear ma3er in compact stars Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA) Toshitaka Tatsumi (Kyoto Univ.) Low- density nuclear ma3er in the crust of neutron stars or core of supernovae High- density ma3er in the core of neutron stars

2 Low- density nuclear ma3er Inhomogeneous structures. There are two ways of understanding inhomogeneous ma3er. 1. From inhomogeneous to uniform Compression of low- density ma3er. crystal of atoms in degenerate electrons. crystal of nuclei in degenerate neutrons. uniform nuclear ma3er. 2. From uniform to inhomogeneous Instability of uniform ma3er below the saturamon density. phase transimon & mixed phase (clustering).

3 1. From inhomogeneous to uniform Neutron- rich nuclei in electron sea compression Neutron- rich nuclei in neutron sea uniform

4 2. From uniform to inhomogeneous 4

5 RMF + Thomas- Fermi model

6 Choice of parameters ProperMes of nuclei Ma3er propermes Bulk properties of nuclei, such as binding energies, proton fractions, and density profiles, are well reproduced.

7 Pressure of uniform nuclear ma3er Total pressure is positive. Monotonically increases with density and temperature.

8 EOS of mixed phase Single component congruent (e.g. water) Maxwell construction satisfies the Gibbs cond. T I =T II, P I =P II, µ I =µ II. Many components non-congruent (e.g. water+ethanol) Gibbs cond.t I =T II, P ii =P i II, µ ii =µ i II. No Maxwell construction! Many charged components (nuclear matter) Gibbs cond. T I =T II, µ ii =µ i II. No Maxwell construction! No constant pressure!

9 EOS of mixed phase What is necessary? SaMsfying the Gibbs condimons, we have to look for inhomogeneous density distribumon of nucleons and electrons, which minimize the free- energy density.

10 Numerical calculamon of mixed- phase structure WS-cell 10

11 Nuclear pasta structures Baym, Bethe, Pethick, 1971 Nuclei inside- out uniform Ravenhall et al 1983 & Hashimoto et al 1984 Concept of pasta structures. Minimizing free- energy of the inhomogeneous structure, i.e., achieving the balance between surface tension and the Coulomb repulsion nuclear pasta uniform Figure from K. Oyamatsu, NPA561, 431 (1993)

12 Pasta structures in ma3er (case of fixed Y p ) Density profiles in WS cells T=0 Y p =0.5 T=0 Y p =0.1

13 Symmetric matter Y p =0.5 Asymmetric matter Y p =0.3

14 More realismc case for supernova core: Neutrino- trapped ma3er

15 Neutrino degenerate and inhomogeneous ma3er. Preceding studies: Ogasawara & Sato PTP68(1982)222 EffecMve interacmon + Thomas- Fermi, T = 0, Y l = fixed Ogasawara & Sato PTP70(1983)1569 EffecMve interacmon + Thomas- Fermi, T > 0, Y l = fixed Enhancement of inhomogeneous structures (droplet & bubble) Watanabe, Iida, Sato NPA687(2001)512 EffecMve interacmon + flat density, T = 0, Y l = fixed Enhancement of pasta phases. Our present study: RelaMvisMc mean field + Thomas- Fermi, T > 0, Y l = fixed Fully consistent density distribumon.

16 EquaMons to be solved

17

18

19 EOS (pressure) of nuclear ma3er at finite temperature with a fixed proton fracmon Y p =0.3 (below) and a fixed lepton fracmon Y l =0.3 (right panels). The appearance of inhomogeneous structure sonens the EOS for both cases. They show similar dependence on the density. 4 MeV T=0 8 MeV T=5 MeV 3 MeV 0.1 MeV

20 Fully 3 dimensional (3D) calculamon Use of the Wigner- Seitz cell 3D 1D 2D LimitaMon of emerging structures. Complex structures were missing dumbbell Gyroid Crystalline structures could not be discussed. network doublediamond droplet bubble bcc la<ce rod tube Honeycomb

21 Results of our 3D RMF calculamons proton Y p = Z/A = 0.5 electron Droplet [fcc] ρ B = fm -3 Rod [honeycomb] fm -3 Slab 0.05 fm -3 Tube [honeyc omb] 0.08 fm -3 Bubble [fcc] fm -3

22 Y p = Z/A = 0.5 EOS has a similar behavior to that of the convenmonal studies. Novelty: fcc laoce of droplets can be the ground state at some density. Not the Coulomb interacmon among point parmcles but the change of the droplet size is relevant.

23 proton neutron droplet rod [fcc] [simple] -3 ρb = fm fm-3 slab 0.05 fm-3 tube [simple] fm-3 bubble [fcc] fm-3 proton neutron droplet [fcc] ρb=0.020 fm-3 rod [simple] 0.040fm-3 slab 0.05 fm-3 tube bubble [simple] [fcc] fm fm-3

24 Some complex metastable states in our 3D RMF calc. Mixture of Droplet and Rod Mixture of Slab and Tube Dumbbell Network

25 Structure of compact stars TOV equamon Pressure (EOS the input) total mass and radius. Mass radius relagon and the maximum mass is determined by the EOS of ma3er. 25

26 Sonening of EOS by hyperon nucleon }hyperon included Improve the maximum mass by introducing transimon into quark ma3er (?) Schulze et al, PRC73 (2006) [Maieron et al, PRD70 (2004) ]. However, mixed phase may sonen the EOS. A bulk calculamon suggests wide region of mixed phase. [Glendenning, PRD46,1274]. 26

27 Hadron- Quark mixed- phase structure and EOS (T=0) Assume regularity in structure: divide whole space into equivalent neutral cells with a geometrical symmetry (3D: sphere, 2D : cylinder, 1D: plate). Wigner- Seitz approx. Give a sharp boundary between H and Q phases and a geometry (Unif/Dropl/...). Solve the field equagons numerically and get density profiles. OpMmize the cell size and H- Q boundary posimon (choose the energy- minimum). Choose energy- min geometry (Unif H, droplet, rod, slab, tube, bubble, Unif Q). Hadron phase Brueckner Hartree Fock model Quark phase MIT bag model 27

28 EOS of ma3er Full calculamon is close to the Maxwell construcmon (local charge neutral). Far from the bulk Gibbs calculamon (neglects the surface and Coulomb).

29 Mass- radius relamon of a cold neutron star τ surf =40 29

30 Summary RMF + Thomas Fermi calculation for low-density nuclear matter Pasta structure appears and affects on the EOS. For neutrino-trapped matter, pasta structures are enhanced by neutrinos The EOS depends largely on the structure and the existence of neutrinos. Fully 3D calculation Okamoto et al is developing. Hadron-quark mixed phase is important for structure and mass of compact stars. We have developed a method to calculate EOS of mixed phase. But each EOS should be improved to sustain neutron stars Thank you for your a3enmon! END

31

32 Finite- size effects Strong surface tension and weak Coulomb large R extreme case no minimum. (pasta unstable) [Voskresensky et al, PLB541(2002)93; NPA723(2003)291; amorphous PRD(2012)] Dependence of E/A on R. 32

33 TOV equamon Structure of compact stars Pressure (input of TOV eq.) total mass and radius. Bulk Gbbs Full calc τ surf =40 MeV/fm 2 Maxwell const. 33

34 Hadron- Quark mixed- phase structure and EOS (T=0) Assume regularity in structure: divide whole space into equivalent and neutral cells with a geometrical symmetry (3D: sphere, 2D : cylinder, 1D: plate). Wigner- Seitz cell approx. WS-cell Divide a cell into hadron phase and quark phases. Give a geometry (Unif/Dropl/Rod/...) and a baryon density ρ B. Solve the field equamons numerically. OpMmize the cell size and H- Q boundary posimon (choose the energy- minimum). Choose an energy- minimum geometry among 7 cases (Unif H, droplet, rod, slab, tube, bubble, Unif Q). 34

35 2-3 ρ 0 EOS < 1.4M sol >1.5 M sol } (?) [Maieron et al, PRD70 (2004) etc]. Schulze et al, PRC73 (2006) Gibbs [Glendenning, PRD46,1274]. 35

36 Beta- equilibrium case T=0 Beta equil. Only droplet structure appears. The change of EOS due to the non-uniform structure is small.

37 Instability of uniform ma3er at finite T mechanical instability formation of pasta phase coexistence Due to the surface tension and the Coulomb interacmon, the region of inhomogeneous ma3er is limited ( pasta < coexistence ). But Mechanical instability is not crucial for pasta formamon!

38 Y p = Z/A = 0.5 EOS has a similar behavior to that of the convenmonal studies. Novelty: fcc laoce of droplets can be the ground state at some density. Not the Coulomb interacmon among point parmcles but the change of the droplet size is relevant.

39 Kaonic pasta structure

40 ( Gibbs ) ρ th =0.34 fm 3 ρ th =1.15 fm 3 Neutral matter Charged matter 40

41

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Nuclear equation of state with realistic nuclear forces

Nuclear equation of state with realistic nuclear forces Nuclear equation of state with realistic nuclear forces Hajime Togashi (RIKEN) Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, K. Sumiyoshi, H. Suzuki, E. Hiyama 1:Introduction Outline

More information

Calculation of realistic electrostatic potentials in star crusts

Calculation of realistic electrostatic potentials in star crusts Calculation of realistic electrostatic potentials in star crusts Claudio Ebel 1 2 November 3, 212 1 Strong electric fields induced on a sharp stellar boundary I.N.Mishustin, C.Ebel, and W.Greiner, J.Phys.G

More information

Equation of state for supernovae and neutron stars

Equation of state for supernovae and neutron stars Equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹南開大学天津中国 In collaboration with H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College of Technology,

More information

Mixed phases during the phase transitions

Mixed phases during the phase transitions arxiv:117.84v1 [nucl-th] 5 Jul 211 Chapter 9 Mixed phases during the phase transitions Toshitaka Tatsumi 1, Nobutoshi Yasutake 2, and Toshiki Maruyama 3 1 Department of Physics, Kyoto University, Kyoto

More information

Nobutoshi Yasutake ( ) Chiba Institute of Technology

Nobutoshi Yasutake ( ) Chiba Institute of Technology Beijin 21th. Oct. (2014) Nobutoshi Yasutake ( ) Chiba Institute of Technology Phys.Rev.C, (2014), 89, 5803 NY, R. Łastowiecki, D. Blaschke(Wroclow univ.), S. Benic(Zagreb univ.), T. Maruyama(JAEA), T.Tatsumi(Kyoto

More information

Crust-core transitions in neutron stars revisited

Crust-core transitions in neutron stars revisited Crust-core transitions in neutron stars revisited X. Viñas a, C. González-Boquera a, B.K. Sharma a,b M. Centelles a a Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen 申虹 In collaboration with Nankai University, Tianjin, China 南開大学 天津 中国 H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College

More information

Thermodynamic properties of nuclear pasta in neutron star crusts

Thermodynamic properties of nuclear pasta in neutron star crusts Thermodynamic properties of nuclear pasta in neutron star crusts Gentaro Watanabe a, Kei Iida a,b, Katsuhiko Sato a,c a Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033,

More information

The crust-core transition and the stellar matter equation of state

The crust-core transition and the stellar matter equation of state The crust-core transition and the stellar matter equation of state Helena Pais CFisUC, University of Coimbra, Portugal Nuclear Physics, Compact Stars, and Compact Star Mergers YITP, Kyoto, Japan, October

More information

User s Guide for Neutron Star Matter EOS

User s Guide for Neutron Star Matter EOS User s Guide for Neutron Star Matter EOS CQMC model within RHF approximation and Thomas-Fermi model Tsuyoshi Miyatsu (Tokyo Univ. of Sci.) Ken ichiro Nakazato (Kyushu University) May 1 2016 Abstract This

More information

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress W.G.Newton 1, J.R.Stone 1,2 1 University of Oxford, UK 2 Physics Division, ORNL, Oak Ridge, TN Outline Aim Self-consistent EOS

More information

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars

Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars Journal of Physics: Conference Series OPEN ACCESS Influence of phase-transition scenarios on the abrupt changes in the characteristics of compact stars To cite this article: G B Alaverdyan 2014 J. Phys.:

More information

Interplay of kaon condensation and hyperons in dense matter EOS

Interplay of kaon condensation and hyperons in dense matter EOS NPCSM mini-workshop (YITP, Kyoto Univ., Kyoto, October 28(Fri), 2016) Interplay of kaon condensation and hyperons in dense matter EOS Takumi Muto (Chiba Inst. Tech.) collaborators : Toshiki Maruyama (JAEA)

More information

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars Francesca Gulminelli - LPC Caen, France Lecture II: nuclear physics in the neutron star crust and observational consequences

More information

arxiv: v2 [nucl-th] 13 Apr 2012

arxiv: v2 [nucl-th] 13 Apr 2012 Nuclear pasta in supernovae and neutron stars 1 Chapter 1 arxiv:1109.3511v2 [nucl-th] 13 Apr 2012 NUCLEAR PASTA IN SUPERNOVAE AND NEUTRON STARS Gentaro Watanabe 1,2,3 and Toshiki Maruyama 4 1 Asia Pacific

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹 In collaboration with 南開大学 天津 H. Toki RCNP, Osaka University, Japan 中国 K. Sumiyoshi Numazu College

More information

Clusters in Nuclear Matter

Clusters in Nuclear Matter Clusters in Nuclear Matter Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke (Universität Rostock) Thomas

More information

Liquid-Gas Phase Transition of Supernova Matter and Its Relation to Nucleosynthesis

Liquid-Gas Phase Transition of Supernova Matter and Its Relation to Nucleosynthesis Liquid-Gas Phase Transition of Supernova Matter and Its Relation to Nucleosynthesis C. Ishizuka a, A. Ohnishi a and K. Sumiyoshi b a Division of Physics, Graduate School of Science, Hokkaido University,

More information

arxiv: v1 [nucl-th] 17 Dec 2008

arxiv: v1 [nucl-th] 17 Dec 2008 The pasta phase within density dependent hadronic models S. S. Avancini, 1 L. Brito, 2 J.R.Marinelli, 1 D.P.Menezes, 1 M.M.W. de Moraes, 1 C. Providência, 2 and A.M.Santos 2 1 Depto de Física - CFM - Universidade

More information

arxiv: v1 [nucl-th] 19 Feb 2013

arxiv: v1 [nucl-th] 19 Feb 2013 Pasta phases in neutron star studied with extended relativistic mean field models Neha Gupta and P.Arumugam Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand - 247 667, India To

More information

Model dependence of the pasta-structure eects in the quark-hadron mixed phase

Model dependence of the pasta-structure eects in the quark-hadron mixed phase Model dependence of the pasta-structure eects in the quark-hadron mixed phase Konstantin A. Maslov Joint Institute for Nuclear Research (JINR, Dubna, Russia) National Research Nuclear University "MEPhI",

More information

Effect of Λ(1405) on structure of multi-antikaonic nuclei

Effect of Λ(1405) on structure of multi-antikaonic nuclei 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, (May 31-June 4, 2010, College of William and Mary, Williamsburg, Virginia) Session 2B Effect of Λ(1405) on structure

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

arxiv: v1 [nucl-th] 30 Mar 2015

arxiv: v1 [nucl-th] 30 Mar 2015 Compact Stars in the QCD Phase Diagram IV (CSQCD IV) September 26-30, 2014, Prerow, Germany http://www.ift.uni.wroc.pl/~csqcdiv Core-collapse supernova matter: light clusters, pasta phase and phase transitions

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Neutron star structure explored with a family of unified equations of state of neutron star matter

Neutron star structure explored with a family of unified equations of state of neutron star matter Neutron star structure explored with a family of unified equations of state of neutron star matter Department of Human Informatics, ichi Shukutoku University, 2-9 Katahira, Nagakute, 48-1197, Japan E-mail:

More information

Current Status of Equation of State in Nuclear Matter and Neutron Stars

Current Status of Equation of State in Nuclear Matter and Neutron Stars Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone 1,2, J.C. Miller 1,3 and W.G.Newton 1 1 Oxford University,

More information

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel, Nuclear Equation of State for High Density Matter, Basel University NuPECC meeting Basel, 12.06.2015 Equation of State for Compact Stars neutron stars core-collapse supernova explosions MH Liebendörfer

More information

arxiv:astro-ph/ v1 16 Apr 1999

arxiv:astro-ph/ v1 16 Apr 1999 PHASE TRANSITIONS IN NEUTRON STARS AND MAXIMUM MASSES H. HEISELBERG Nordita, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark and arxiv:astro-ph/9904214v1 16 Apr 1999 M. HJORTH-JENSEN Department of Physics,

More information

Quantum simula+ons of nuclear pasta

Quantum simula+ons of nuclear pasta Quantum simula+ons of nuclear pasta William Newton, Sarah Cantu, Mike Gearheart, Farrukh Fa=oyev, Bao-An Li Texas A&M University-Commerce Jirina Rikovska Stone, Helena Pais, Alex Kaltenborn University

More information

Phase Transitions and the Casimir Effect in Neutron Stars

Phase Transitions and the Casimir Effect in Neutron Stars University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2017 Phase Transitions and the Casimir Effect in Neutron Stars William Patrick Moffitt

More information

Equation-of-State of Nuclear Matter with Light Clusters

Equation-of-State of Nuclear Matter with Light Clusters Equation-of-State of Nuclear Matter with Light Clusters rmann Wolter Faculty of Physics, University of Munich, D-878 Garching, Germany E-mail: hermann.wolter@lmu.de The nuclear equation-of-state (EoS)

More information

Estimates of thermal nucleation of quark matter during bounce

Estimates of thermal nucleation of quark matter during bounce Estimates of thermal nucleation of quark matter during bounce Bruno Mintz 1 Eduardo Fraga 1, Giuseppe Pagliara 2 and Jürgen Schaffner Bielich 2 (1) Universidade Federal do Rio de Janeiro (2) Ruprecht Karls

More information

An EOS implementation for astrophyisical simulations

An EOS implementation for astrophyisical simulations Introduction Formalism Neutron Stars CCSN An EOS implementation for astrophyisical simulations A S Schneider 1, L F Roberts 2, C D Ott 1 1 TAPIR, Caltech, Pasadena, CA 2 NSCL, MSU, East Lansing, MI East

More information

Relativistic EOS for Supernova Simulations

Relativistic EOS for Supernova Simulations Relativistic EOS for Supernova Simulations H. Shen Nankai University, Tianjin, China 申虹 In collaboration with H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College of Technology, Japan K. Oyamatsu

More information

Inner edge of neutron-star crust with SLy effective nucleon-nucleon interactions

Inner edge of neutron-star crust with SLy effective nucleon-nucleon interactions Inner edge of neutron-star crust with SLy effective nucleon-nucleon interactions F. Douchin 1, P. Haensel 1,2,3 1 Centre de Recherche Astronomique de Lyon, Ecole Normale Supérieure de Lyon, 46, allée d

More information

Nuclear & Particle Physics of Compact Stars

Nuclear & Particle Physics of Compact Stars Nuclear & Particle Physics of Compact Stars Madappa Prakash Ohio University, Athens, OH National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana 1/30 How Neutron Stars are Formed Lattimer

More information

Author(s) Nakazato, Ken ichiro; Oyamatsu, Kaz. Citation Physical Review Letters (2009), 103.

Author(s) Nakazato, Ken ichiro; Oyamatsu, Kaz. Citation Physical Review Letters (2009), 103. TitleGyroid Phase in Nuclear Pasta Author(s) Nakazato, Ken ichiro; Oyamatsu, Kaz Citation Physical Review Letters (2009), 103 Issue Date 2009-09 URL http://hdl.handle.net/2433/87304 Rightc 2009 The American

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Fermi sea. λ F. (non-interacting particles)

Fermi sea. λ F. (non-interacting particles) Fermi sea λ F F (non-interacting particles) a Fermi sea λf Fermi sea λf a Fermi sea λf a a Fermi sea λf Question: What is the most favorable arrangement of these two spheres? a R=? a Answer: The energy

More information

Finite Range Force models for EOS

Finite Range Force models for EOS 1 / 30 Finite Range Force models for EOS INT 2012-2a Core-collapse supernova Yeunhwan Lim 1 (in collaboration with Prof. James M. Lattimer 1 ) 1 SUNY STONY BROOK, NY 11794 July 11, 2012 2 / 30 Table of

More information

arxiv:nucl-th/ v1 21 Mar 2001

arxiv:nucl-th/ v1 21 Mar 2001 Relativistic Hartree-Bogoliubov Calculation of Specific Heat of the Inner Crust of Neutron Stars arxiv:nucl-th/5v Mar akuya Nakano and Masayuki Matsuzaki Department of Physics, Kyushu University, Fukuoka

More information

Symmetry energy of dilute warm nuclear matter

Symmetry energy of dilute warm nuclear matter Symmetry energy of dilute warm nuclear matter J. B. Natowitz, G. Röpke, 1 S. Typel, 2,3 D. Blaschke, 4, 5 A. Bonasera, 6 K. Hagel, T. Klähn, 4, 7 S. Kowalski, L. Qin, S. Shlomo, R. Wada, and H. H. Wolter

More information

Equation of State of Dense Matter

Equation of State of Dense Matter Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University April 25, 2017 Nuclear Astrophysics James.Lattimer@Stonybrook.edu Zero Temperature Nuclear Matter Expansions Cold, bulk, symmetric

More information

User Note for Relativistic EOS Table

User Note for Relativistic EOS Table User Note for Relativistic EOS Table (EOS3: 2010-version, with nucleons and Λ hyperons) H. Shen a1, H. Toki b2, K. Oyamatsu c3, and K. Sumiyoshi d4 a Department of Physics, Nankai University, Tianjin 300071,

More information

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire 4 November 2010. Master 2 APIM Le problème à N corps nucléaire: structure nucléaire The atomic nucleus is a self-bound quantum many-body (manynucleon) system Rich phenomenology for nuclei Mean field Which

More information

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars A new equation of state with abundances of all nuclei in core collapse simulations of massive stars 1, Kohsuke Sumiyoshi 2, Shoichi Yamada 1,3, Hideyuki Suzuki 4 1 Department of Science and Engineering,

More information

Charge screening effect on hadron-quark mixed phase in compact stars

Charge screening effect on hadron-quark mixed phase in compact stars Charge screening effect on hadron-quark mixed phase in compact stars Department of Physics, Kyoto University, Kyoto 66-852, Japan E-mail: endo@ruby.scphys.kyoto-u.ac.jp Toshiki Maruyama Japan Atomic Energy

More information

Phase transitions in dilute stellar matter. Francesca Gulminelli & Adriana Raduta

Phase transitions in dilute stellar matter. Francesca Gulminelli & Adriana Raduta Phase transitions in dilute stellar matter Francesca Gulminelli & Adriana Raduta LPC Caen, France IFIN Bucharest Supernova remnant and neutron star in Puppis A (ROSAT x-ray) χ 1/2 Τ 10 12 Κ Motivation:

More information

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity

Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Quark and Compact Stars 2017 20-22 Feb. 2017 @ Kyoto Univ. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity Tsuneo NODA ( 野 常雄 ) Kurume Institute of Technology THERMAL HISTORY

More information

Relativistic Feynman-Metropolis-Teller Treatment at Finite Temperatures and its Application to WDs

Relativistic Feynman-Metropolis-Teller Treatment at Finite Temperatures and its Application to WDs Relativistic Feynman-Metropolis-Teller Treatment at Finite Temperatures and its Application to WDs CSQCDIII Sheyse Martins de Carvalho* In collaboration with: J. Rueda and R. Ruffini ICRANet, University

More information

Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi Outline

Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi Outline Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi RIKEN Nishina Center, RIKEN Collaborators: E. Hiyama (RIKEN), M. Takano (Waseda University)

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Symmetry Energy within the Brueckner-Hartree-Fock approximation Symmetry Energy within the Brueckner-Hartree-Fock approximation Isaac Vidaña CFC, University of Coimbra International Symposium on Nuclear Symmetry Energy Smith College, Northampton ( Massachusetts) June

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

Neutrino Mean Free Path in Neutron Stars

Neutrino Mean Free Path in Neutron Stars 1 Neutrino Mean Free Path in Neutron Stars U. Lombardo a, Caiwan Shen a,n.vangiai b,w.zuo c a INFN-LNS,via S.Sofia 44 95129 Catania, Italy b Institut de Physique Nucléaire,F-91406, Orsay France c Institute

More information

arxiv: v1 [nucl-th] 6 Apr 2011

arxiv: v1 [nucl-th] 6 Apr 2011 Nuclear Density Functional Theory and the Equation of State Yeunhwan Lim Department of Physics and Astronomy The State University of New York at Stony Brook, Stony Brook, NY, 11790 Abstract arxiv:1104.1194v1

More information

Superfluid Density of Neutrons in the Inner Crust of Neutron Stars:

Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: PACIFIC 2018 (Feb. 14, 2018) Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models GW & C. J. Pethick, PRL 119, 062701 (2017). Gentaro Watanabe (Zhejiang

More information

NEUTRON STARS WITH A QUARK CORE. I. EQUATIONS OF STATE

NEUTRON STARS WITH A QUARK CORE. I. EQUATIONS OF STATE Astrophysics, Vol. No. 46, 3ASAS, No. 3, pp. 20036-367, 2003 NEUTRON STARS WITH A QUARK CORE. I. EQUATIONS OF STATE ) 2) 3) G. B. Alaverdyan, A. R. Harutyunyan, and Yu. L. Vartanyan UDC: 524.354.6 An extensive

More information

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G.

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. Mathews Symposium on Neutron Stars in the Multimessenger Era Ohio

More information

The maximum mass of neutron star. Ritam Mallick, Institute of Physics

The maximum mass of neutron star. Ritam Mallick, Institute of Physics The maximum mass of neutron star Ritam Mallick, Institute of Physics Introduction The study of phase transition of matter at extreme condition (temperature/density) is important to understand the nature

More information

Strange Stars: Can Their Crust Reach the Neutron Drip Density?

Strange Stars: Can Their Crust Reach the Neutron Drip Density? Chin. J. Astron. Astrophys. Vol. 3 (2003), No. 6, 535 542 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Strange Stars: Can Their Crust Reach the Neutron

More information

Few-particle correlations in nuclear systems

Few-particle correlations in nuclear systems Trento, 9. 4. 2014 Few-particle correlations in nuclear systems Gerd Röpke, Rostock Outline Quantum statistical approach to nuclear systems at subsaturation densities, spectral function Correlations and

More information

Introduction to Dense Matter. C. J. Pethick (U. of Copenhagen and NORDITA)

Introduction to Dense Matter. C. J. Pethick (U. of Copenhagen and NORDITA) Introduction to Dense Matter C. J. Pethick (U. of Copenhagen and NORDITA) Astro-Solids, Dense Matter, and Gravitational Waves INT, Seattle, April 16, 2018 Bottom lines Exciting time for neutron star studies:

More information

Compact star crust: relativistic versus Skyrme nuclear models

Compact star crust: relativistic versus Skyrme nuclear models Problem How do relativistic models, used to build EoS of compact stars, behave at subsaturation densities? EoS at subsaturation densities/crust of compact stars: how do relativistic and Skyrme nuclear

More information

Nuclear phase transition and thermodynamic instabilities in dense nuclear matter

Nuclear phase transition and thermodynamic instabilities in dense nuclear matter Nuclear phase transition and thermodynamic instabilities in dense nuclear matter A. Lavagno a 1 Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy 2 Istituto Nazionale

More information

Minimal Surfaces in Nuclear Pasta with the Time-Dependent Hartree-Fock Approach

Minimal Surfaces in Nuclear Pasta with the Time-Dependent Hartree-Fock Approach Minimal Surfaces in Nuclear Pasta with the Time-Dependent Hartree-Fock Approach Bastian Schuetrumpf Institut für Theoretische Physik, Universität Frankfurt, D-60438 Frankfurt, Germany E-mail: schuetrumpf@th.physik.uni-frankfurt.de

More information

Superfluidity in the inner crust of neutron stars

Superfluidity in the inner crust of neutron stars Superfluidity in the inner crust of neutron stars P. Avogadro S. Baroni P.F.Bortignon R.A.Broglia G. Colo F. Raimondi E. Vigezzi University of Milan, Italy INFN Sez. Milano F. Barranco University of Sevilla,

More information

Pion production in heavy-ion collision by the AMD+JAM approach

Pion production in heavy-ion collision by the AMD+JAM approach Pion production in heavy-ion collision by the AMD+JAM approach Natsumi Ikeno (Tottori University) A. Ono (Tohoku Univ.), Y. Nara (Akita International Univ.), A. Ohnishi (YITP) Physical Review C 93, 044612

More information

Equation of state for hybrid stars with strangeness

Equation of state for hybrid stars with strangeness Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] NFQCD Symposium (Dec. 1, 2013) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Dense Matter and Neutron Star

More information

Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach

Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach Universities Research Journal 2011, Vol. 4, No. 4 Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach Myaing Thi Win 1 and Kouichi Hagino 2 Abstract Self-consistent mean-field theory

More information

A unified equation of state of dense matter and neutron star structure

A unified equation of state of dense matter and neutron star structure A&A 380, 151 167 (2001) DOI: 10.1051/0004-6361:20011402 c ESO 2001 Astronomy & Astrophysics A unified equation of state of dense matter and neutron star structure F. Douchin 1,2 and P. Haensel 3 1 Department

More information

Symmetry energy, masses and T=0 np-pairing

Symmetry energy, masses and T=0 np-pairing Symmetry energy, masses and T=0 np-pairing Can we measure the T=0 pair gap? Do the moments of inertia depend on T=0 pairing? Do masses evolve like T(T+1) or T^2 (N-Z)^2? Origin of the linear term in mean

More information

Clusterized nuclear matter in PNS crust and the E sym

Clusterized nuclear matter in PNS crust and the E sym Clusterized nuclear matter in PNS crust and the E sym Ad. R. Raduta IFIN-HH Bucharest in collaboration with: Francesca Gulminelli (LPC-Caen, France) Francois Aymard (LPC-Caen, France) Clusterized nuclear

More information

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan The strangeness quark mean field theory Jinniu Hu School of Physics, Nankai

More information

Delta ma(er in a parity doublet model

Delta ma(er in a parity doublet model Delta ma(er in a parity doublet model Masayasu Harada (Nagoya University) @JAEA (May 22, 2017) Based on Yusuke Takeda, Youngman Kim, M.Harada, arxiv:1704.04357 See also M. Harada, Y.L. Ma, D. Suenaga,

More information

Neutron Rich Nuclei in Heaven and Earth

Neutron Rich Nuclei in Heaven and Earth First Prev Next Last Go Back Neutron Rich Nuclei in Heaven and Earth Jorge Piekarewicz with Bonnie Todd-Rutel Tallahassee, Florida, USA Page 1 of 15 Cassiopeia A: Chandra 08/23/04 Workshop on Nuclear Incompressibility

More information

Light nuclear systems with an antikaon

Light nuclear systems with an antikaon Light nuclear systems with an antikaon Part 1, Dense kaonic nuclei Revisit the study of kaonic nuclei with AMD+G-matrix+Phen. K bar N potential KEK Theory Center / IPNS Akinobu Doté Part 2, Lambda(1405)

More information

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The core-collapse of a supernova The core of a pre-supernova is made of nuclei in the iron-mass range A ~

More information

Teoria a molti-corpi della materia nucleare

Teoria a molti-corpi della materia nucleare Teoria a molti-corpi della materia nucleare Lezione IV 1. Implicazioni per le stelle di neutroni 2. Cenni sulla fase superfluida 3. Indicazioni sulla EoS da dati osservativi e da collisioni fra ioni pesanti

More information

arxiv:nucl-th/ v2 12 Jan 2005

arxiv:nucl-th/ v2 12 Jan 2005 Neutron stars with isovector scalar correlations B. Liu 1,2, H. Guo 1,3, M. Di Toro 4, V. Greco 4,5 1 Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 73, China

More information

Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra

Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra Landau Fermi liquid theory in nuclear & many-body theory May 22 nd 26 th 2017,

More information

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

Neutron star in the presence of strong magnetic field

Neutron star in the presence of strong magnetic field PRAMANA c Indian Academy of Sciences Vol. 82, No. 5 journal of May 2014 physics pp. 797 807 Neutron star in the presence of strong magnetic field K K MOHANTA 1, R MALLICK 2, N R PANDA 2, L P SINGH 3 and

More information

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Jorge Piekarewicz Florida State University The Neutron Star Crust and Surface (INT - June, 2007) My Collaborators: C.J. Horowitz,

More information

arxiv: v1 [astro-ph] 20 Dec 2008

arxiv: v1 [astro-ph] 20 Dec 2008 Physics of Neutron Star Crusts arxiv:0812.3955v1 [astro-ph] 20 Dec 2008 Nicolas Chamel Institut d Astronomie et d Astrophysique Université Libre de Bruxelles CP226 Boulevard du Triomphe B-1050 Brussels,

More information

Colloids as nucleons

Colloids as nucleons Colloids as nucleons Willem Kegel & Jan Groenewold Van t Hoff Laboratory Utrecht University The Netherlands Finite-size equilibrium structures macroscopic phase separation Equilibrium clusters & periodic

More information

Strange nuclear matter in core-collapse supernovae

Strange nuclear matter in core-collapse supernovae Strange nuclear matter in core-collapse supernovae I. Sagert Michigan State University, East Lansing, Michigan, USA EMMI Workshop on Dense Baryonic Matter in the Cosmos and the Laboratory Tuebingen, Germany

More information

Chapter 7 Neutron Stars

Chapter 7 Neutron Stars Chapter 7 Neutron Stars 7.1 White dwarfs We consider an old star, below the mass necessary for a supernova, that exhausts its fuel and begins to cool and contract. At a sufficiently low temperature the

More information

What did you learn in the last lecture?

What did you learn in the last lecture? What did you learn in the last lecture? Charge density distribution of a nucleus from electron scattering SLAC: 21 GeV e s ; λ ~ 0.1 fm (to first order assume that this is also the matter distribution

More information

Constraining the nuclear EoS by combining nuclear data and GW observations

Constraining the nuclear EoS by combining nuclear data and GW observations Constraining the nuclear EoS by combining nuclear data and GW observations Michael McNeil Forbes Washington State University (Pullman) and University of Washington A Minimal Nuclear Energy Density Functional

More information

Nuclear structure IV: Nuclear physics and Neutron stars

Nuclear structure IV: Nuclear physics and Neutron stars Nuclear structure IV: Nuclear physics and Neutron stars Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29,

More information

New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae

New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae, Basel University Frankfurt, AstroCoffee, 24.11.2015 Motivation: core-collapse supernovae how do massive stars

More information

Effects of color superconductivity on the nucleation of quark matter in neutron stars ABSTRACT. Fermi

Effects of color superconductivity on the nucleation of quark matter in neutron stars ABSTRACT. Fermi A&A 462, 1017 1022 (2007) DOI: 10.1051/0004-6361:20065259 c ESO 2007 Astronomy & Astrophysics Effects of color superconductivity on the nucleation of quark matter in neutron stars I. Bombaci 1, G. Lugones

More information

arxiv:nucl-th/ v1 10 Jul 1996

arxiv:nucl-th/ v1 10 Jul 1996 Microscopic nuclear equation of state with three-body forces and neutron star structure M. Baldo, G.F. Burgio Dipartimento di Fisica, Universitá di Catania and I.N.F.N. Sezione di Catania, c.so Italia

More information