--- H 3. Towards a H --- H H H 2. CR model for transport codes: application to linear plasma devices. D. Reiter, R. K.

Size: px
Start display at page:

Download "--- H 3. Towards a H --- H H H 2. CR model for transport codes: application to linear plasma devices. D. Reiter, R. K."

Transcription

1 Member of the Helmholtz Association Towards a H --- H H H H 3 + CR model for transport codes: application to linear plasma devices D. Reiter, R. K. Janev Forschungszentrum Jülich GmbH, IEF-4, Association EURATOM Jülich, Jülich, Germany 2 nd IAEA RC meeting, Atomic and Molecular Data for State-resolved Moelling of Hydrogen and Helium and their Isotopes in Fusion Plasmas, IAEA, Vienna, July 2013

2 Ratko Janev, Detlev Reiter: H,H2,H3 data compilation. Mostly cross sections, few rate coefficients Today: 471 references, Almost all data fitted. Last report: New edition: summer 2013

3

4 Outline News from FZ Jülich: shutting down TEXTOR in 2013 Motivation: Why use a tokamak divertor edge code for linear plasmas? SONIC, B2-EIRENE (=SOLPS), UEDGE, etc How to use tokamak divertor codes for linear devices? What do we find from simulation of PSI-2 conditions? Summary & Outlook 4

5 TEXTOR: started operation in 1984, will be shut down end of 2013 EIRENE Monte Carlo Code was originally developed for TEXTOR (my phd: ), but quickly then used for many other fusion devices B2-EIRENE was developed originally for TEXTOR (and INTOR) ( ) but quickly then used for many other fusion devices. Now embedded in SOLPS suit of edge codes. 5

6 Detlev Reiter Institute of Energy Research Plasma Physics Association EURATOM FZJ No 6

7 A new laboratory for PFC materials under extreme loads Refurbished Hot Material Laboratory: controlled area, Hot Cells November 22 nd, 2012 Institut für Energie- und Klimaforschung Plasmaphysik, Forschungszentrum Jülich, Nr. 7

8 JULE-PSI Steady state linear plasma generator with target analysis and exchange chamber, inside Hot Cell Loading conditions (deuterium plasmas), with target biasing q = MW m -2, simulation of transients by laser irradiation (120 J / 4 ms) n e = m -3 T e up to 20 ev (T i ~ 0.5 T e ) E ion = ev (biasing) G ion = m -2 s -1 F = m -2 in 4 h D flow channel ~ 6 cm Institut für Energie- und Klimaforschung Plasmaphysik, Forschungszentrum Jülich, Nr. 8

9 EIRENE: Simulations of transport in unstructured 3D configurations 1985: TEXTOR, ALT-II Pumplimiter ~ 100 surfaces 2011: Optimization of Monte Carlo by approaches from image processing 2012: JULE PSI tetrahedrons 2013: Assessment of gas flow : Gas Pressure (Pa) from target recycling JULE-PSI Target recycling

10 Outline News from FZ Jülich: shutting down TEXTOR in 2013 Motivation: Why use a tokamak divertor edge code for linear plasmas? SONIC, B2-EIRENE (=SOLPS), UEDGE, etc How to use tokamak divertor codes for linear devices? What do we find from simulation of PSI-2 conditions? Summary & Outlook 10

11 Relative importance of plasma flow forces over chemistry and PWI I edge region II divertor div(nv )+div(nv )= ionization/recombination/charge exchange I: midplain parallel vs. (turbulent) cross field flow II: target parallel vs. chemistry and PWI driven flow Dominant friction: p + H 2, detachment

12 Divertor conditions (detachment transition) are controlled by gas-plasma interaction (hydrogen plasma chemistry) Relevant species in divertor (tokamak edge) and linear plasma devices Electrons Hyd. Ions: H +, He +, He ++ Neutral atoms (H,D,He) Neutral molecules (H 2, H 2 (v)) H*, H 2 *, He*,.. Molecular Ions (H 2+, H 3+, H - ) 2D fluid flow (Navier Stokes Eqs. for magnetized plasmas: Braginskii ) r, Θ, ignore toroidal Φ dependence 3d3v multi species kinetic transport, Typically formulated as Boltzmann eq., Often solved by Monte Carlo Integration Fast (collisional) relaxation, treated in quasi steady state with other species Minority (?) species, treated in post processing, no effect on others. + Impurities: He, C, W, Be,.,+ their ions and hydride-molecules

13 ITER, B2-EIRENE simulation, fully detached, T e field hotter than 1 Mill deg.

14 Why? A rich hydrogen plasma chemistry is the dominant effect in divertor detachment. Divertor codes (ITER, DEMO, ) have to get this right, at least Use linear plasma devices to focus edge simulations on this issue Hydrogen chemistry model verification? Assess similarity of linear divertor simulators to real tokamak divertors, by applying same simulation code to both. Next: How hard can it be to use an established tokamak divertor code as is for a linear device? (here: B2-EIRENE, vs. solps4.3, ITER)

15 Step 1: consider an up down symmetric double null tokamak. Example: MAST (UK) H atom density H line emission experimental checks. Courtesy: S. Lisgo Plasma temperature in K H atom density, log scale, cm -3

16 Use of B2-EIRENE code for a linear device Midplane Plasma source Direct use of B2- EIRENE (SOLPS) for PSI-2 is possible, but the coordinates have to be adapted in a quite counter-intuitive way linear toroidal Target topol. equiv. Aspect ratio: R/a=0 Pitch: B pol /B tor = radial polar axial radial toroidal poloidal polar (toroidal) coordinates are neglected (symmetry is assumed) Tokamak MAST Target PSI-2 16

17 Upstream: Gas inflow plasma energy source (arc) Plasma generation, different from outer midplane in tokamaks, but can be prescribed (e.g. as boundary condition) Downstream: (1D) parallel multi-species plasma flow in transition regime between kinetic and fluid Pump PMI, sheath, plasma chemistry vs. parallel flow

18 For a 2D tokamak divertor code (e.g. SONIC, B2-EIRENE (SOLPS), UEDGE, etc ) a linear plasma device is just a zero aspect ratio, infinite field pitch, tokamak upstream, symmetry plane, (?) plasma source downstream divertor plasma sink

19 The PSI-2 Jülich device Six coils create a magnetic field B < 0.1 T. Plasma column of approx. 2.5 m length and 5 cm radius Densities and temperatures: m -3 < n < m -3, T e < 30 ev MFP of electrons indicate that fluid approximation is likely to be valid 19

20 B2-EIRENE (SOLPS4.3), for PSI-2, low power, partially recombining plasma (2500 W, 0.03Pa) Electron Temperatur input parameters: H.Kastelewicz... CPP (2004) New runs: SOLPS4.3 New pumping configuration, Gas inlet, reduced, 70sccm Low input power (2500 W)

21 Probe data Spectroscopic data

22 B2-EIRENE (SOLPS4.3), for PSI-2, low power, partially recombining plasma Electron Temperatur Probe data Spectroscopic data

23 PSI-2, 2500 W, 0.03 Pa, 70 sccm, ev Langmuir Probe, T e B2-EIRENE, PSI-2 case 9 PSI-2, electron temperature profile 9.00E E E E+00 Te at probe position Te at spectr. position 5.00E E+00 Pospieszczyk, A. et al., Paper P3-097 PSI-conf. 2012, Aachen JNM and: Reinhart, A. et al., Trans. of Fus. Sci. and Techn. 63 May 2013, p E E E+00 T i, (D + ) temperature 0.00E Minor radius, cm radius (cm) Te at Langmuir probe Te at spectrometer Ti at Langmuir probe Ti at spectrometer B2-EIRENE electron and ion temperatures (ev), radial profiles at probe and spectrometer axial positions, case: 0.03 Pa

24 B2-EIRENE (SOLPS4.3), for PSI-2 case-9 Pump 1: 600 l/s D Pa Experiment: 0.03 Pa Pump 2: 1320 l/s D 2

25 B2-EIRENE (SOLPS4.3), for PSI-2, case 9 ~5e18 m -3 Plasma (electron) density Log scale in Plasma colours density, Probe Log scale Spectrometer M.Reinhart el al.

26 #/cm**3 PSI-2, 2500 W, 0.03 Pa, 70 sccm, Less clear experimental plasma density information: 1) Probe data 2) Balmer line ratio 3) Stark broadening (Paschen) 4) Rotational temperature See: M. Reinhart et al. B2-EIRENE plasma density is roughly consistent with Balmer, Stark and rot. Temp. Measurement and YACORA fitting. Simulations indicate: No strong axial variation in n e (except very near to the target) 7.E+12 6.E+12 5.E+12 4.E+12 3.E+12 2.E+12 1.E+12 B2-EIRENE, PSI-2 case 9 PSI-2, ion density profile ne at probe position 0.E radius (cm) at Langmuir probe ne at spectr. position at spectrometer B2-EIRENE electron densities (cm -3 ), radial profiles at probe and spectrometer axial positions, case: 0.03 Pa

27 For experimentally given gas inlet, arc power, pumping speeds, PSI-2 vacuum vessel configuration,. B2-EIRENE (ITER SOLPS version) finds very close Te, gas pressure and plausible plasma densities. Taking this simulation, try careful first modeling answers to: 1 st : what is the positive charge carrier? H + or H 2 + or H H 3 + is often dominant ion in very low density/temperature plasmas 2 nd : is plasma detachment in PSI-2 similar to tokamak divertor detachment? -- role of H - and of vibrational kinetics of H 2 -- Molecular assisted recombination MAR, etc

28 B2-EIRENE (SOLPS4.3), for PSI-2, case 9 5e18 m -3 Plasma (electron) density Log scale in Plasma colours density, Probe Log scale Spectrometer Log scale, to m -3

29 B2-EIRENE (SOLPS4.3), for PSI-2, case 9 Color code: Log (Density cm-3) H 2 + molecular ion density Scale: X 10 Color code reduced by factor 10 as compared to n e profile. H 3 + and H - still not visible even then (black picture)

30 ratio of minority ion densities to electron density 1.E-01 1.E-02 Ratio D 2+ /D + : 1e-2 1.E-03 1.E-04 1.E-05 Ratio D 3+ /D + : 1e-3 D2+/D+ D3+/D+ D-/D+ 1.E-06 1.E-07 Ratio D - /D + : 1e no. of timesteps B2-EIRENE iteration cycles B2-EIRENE: D 3+, D 2 + and D - stay minority (confirmed even under 10 times lower plasma densities then here, as seen from code density scans).

31 B2-EIRENE (SOLPS4.3), for PSI-2 Color code: Log (Density cm-3) Neutral gas density Atomic comp. Log scale, to m -3

32 B2-EIRENE (SOLPS4.3), for PSI-2 case-9 Color code: Log (Density cm-3) Pump 1 Neutral gas density Molec. Neutral comp. gas H 2 (v=0) density Molecular comp. Pump 2 Log scale, to m -3

33 Color code: Log (Density cm-3) Neutral gas density Molec. comp. H 2 (v=1) Vibr. states v=2,3, are even much less populated Log scale, to m -3

34 Simplifying matters a bit. The density n M of a species M is determined by n 1 n 2 {production of M rate coefficient} =n plasma n M {loss of M rate coefficient} assuming that the M is produced by collisions between species 1 and 2, and destroyed by collisions with plasma (electrons). n M =n 1 n 2 /n plasma x {production of M rate coefficient} {loss of M rate coefficient} Example: M =H 3 +: production: H 2 + H 2 + H H losses: e + H + 3 H 2 +H(n=2) Dissociative recombination, or H+H+H very fast, unless n e very low Caution: Real life is a bit more complicated, non-linearities are involved,. Not yet proven if B2-EIRENE could produce large H + 3 densities, if the conditions would be appropriate for that (never done so far)

35 BUT: Whether a species M has a large effect on plasma or not, depends only on its production rate, not on its loss rate Very minor species can have large effects E.g. p+ H 2 (v=4) H H MAR (with H 2 + precurser) E.g. H 2 + H 2 + H 3 + H 2 + H(n=2) H(n=3) Balmer alpha

36 B2-EIRENE (SOLPS4.3), for PSI-2, case-1 (Berlin) Plasma Pressure In divertors: pressure drop = detachment. Do we have divertor detachment here? Detachment in tokamak divertors: pressure drop by: p+h2 friction, Lyman opacity ne high, 3 body vol.recomb., no MAR

37 B2-EIRENE PSI-2 case 9b, 9 ev arc, double pump 2 Recombination channels, volumetric rates cm -3 s -1, x 2000 Log scale color code: for MAR, for EIR 37

38 #/S/CM2/STERAD (log scale) Post-Processing B2-EIRENE PSI-2 case 9: Line of sight integration of side-on emissivity Ph/s/cm 2 /sterad across full B2-EIRENE solution, at axial spectrometer position H + > H + 2 >H > H 2 >H - >H + 3 H + 2 > H > H 2 >H + >H - >H Balmer_delta E+13 1.E+12 1.E+11 1.E+10 1.E+09 1.E+08 H H+ H2 H2+ H- H3+ total 1.E no. of LOS central r=0.5cm at Te-peak r=2.3 cm boundary r=3.5 cm Big surprises in side-on emissivity contributions. Very low density species can have dominant contribution. Highly case-dependent, unpredictable without transport codes 38

39 ..recent correction in our H,H2,H3.. Database (1 5 scaled from 1 4 Crosses: CCC (Bray, Ralchenko) Dashed: 1993 NF supplement, IAEA Solid lines: new fits Dotted: Johnson

40 Last RCM: see talk by D. Wuenderlich/U Fantz: Problems matching data between R matrix and Johnson semi-empirical formula. The unphysical bump near n=5 disappears, if CCC cross sections are used for excitation to lower n states, rather than the 1993 IAEA data collection. CCC: Bray et al Johnson, semi-empirical) 2002 R Matrix calculations: cross sections lost, only rate coefficients kept (ADAS)

41 Summary Divertor codes can be used as is directly for linear devices, by regarding the latter as :zero-aspect ratio infinite-pitch torus (full mathematical analogy of transport equations and B-field configuration) 2D PSI-2 numerical model was developed for the current ITER divertor design code B2-EIRENE (version: SOLPS4.3). Low power partially recombining PSI-2 plasma conditions are well replicated by the code: -- positive charge carrier is D +, not D 2 + nor D 3 + (same as in tokamaks) -- minority ions D 2 + and D - are dominant players for plasma recombination (MAR) (distinct from tokamaks) plasma detachment in tokamak divertors and in linear devices are fundamentally different processes (at least for low n e, as in PSI-2) -- sensitivity to surface vibrational kinetics (Eley Rideal process) Outlook: (distinct from tokamaks) Classical drifts and currents are currently introduced. Direct comparison to spectroscopic data is underway simulations of PSI-2 plasmas with synthetic fluctuating backgrounds (blobby transport) to practice for far scrape off layer tokamak modeling 41

42

43 3d drift fluid Turbulence simulation CCD camera

44 K: orginal PSI-2 discharge conditions, see Kastelevizcz, Salamagne

45

46

47 Density x 5, compare spectroscopy with and without fluctuations.

48

49 Line ratios ok, but total line emissivity is affected by fluctuations (1D,t) CR Models? Our HYDKIN online CR model is either 1D or t-dep)

50 Thank you for your attention! 50

51 Boundary conditions, grid and used model parameters Boundary conditions: Walls perpendicular to the field lines: Sheath conditions Axis of the cylinder: vanishing gradients in T e,t I and n Vacuum-boundary and anode: 1cm decay length in T e,t I and n Parameters: Pumping rate: 3500l/s Neutral influx(d 2 ): 6.32 x s -1 Anomalous diffusion: D in = 3.0m 2 /s; D out = 0.2 m 2 /s Perpendicular heat conduction: κ e,in = 5.0 m 2 /s; κ e,out = 11.0 m 2 /s Source next to anode at given temperature (T e = 15 ev; T I = 5 ev) [1] Kastelewicz, H., & Fussmann, G. (2004). Contributions to Plasma Physics, 44(4),

52 Edge/divertor code simulation of PSI-2 Summary of previous results: [1] Kastelewicz, H., & Fussmann, G. (2004). Contributions to Plasma Physics, 44(4), [2] Vervecken, L. (2010). Extended Plasma Modeling for the PSI-2 Device. Master thesis. KU Leuven [3] Salmagne et al., Report JUEL-4340, April 2012 (ISSN ) 2 nd PMIF, (2011), Juelich, C. Salmagne et al Reproduction of previous numerical and experimental results [2] Dependency on kinetic flux limiter need plasma diagnostic at least at two axial positions to constrain the code model [3] Ambipolarity constraint (j=0) relaxed to j r =0, div(j )=0, target biassing simulations enabled [3] 52

53 Numerical tool for the edge plasma transport: B2-EIRENE code package version: SOLPS4.3: ITER.org (Cadarache) FZ Juelich jointly developed and applied: since about 15 years Self-consistent description of the magnetized plasma, and neutral particles produced due to surface and volume recombination and sputtering see B2: a 2D multi species (e, H +, He +,++, C , ) plasma fluid code Plasma flow Parameters CR codes: HYDKIN A&M data Computational Grid Source terms (Particle, Momentum, Energy) EIRENE: a 3d3v Monte-Carlo multi-species kinetic transport code, incl. radiation transfer. (H,H*,H 2,H 2 (v),h 2 *,H -,H 2+, ) (anything that moves on straight lines between collisions)

54 Governing equations Continuity equation: Parallel momentum equation: Radial momentum equation: 54

55 Governing equations Electron and ion energy equations: 55

56 Outline Motivation: Why use a tokamak divertor edge code for linear plasmas? SONIC, B2-EIRENE (=SOLPS), UEDGE, etc How to use tokamak divertor codes for linear devices? What do we find from simulation of PSI-2 conditions? Summary & Outlook 56

57 Potential Energy (ev) H 2 molecule, status in present ITER divertor code E [ev] 16 compiled 1997 H 2 + More complete models available, still need to be integrated 35 compiled since E,F B C 13.6 ev a Resonance b! Singlet v=14 v=3 v=2 v=1 v=0 H 2 c n=3 n=2 Triplet system Courtesy: K. Sawada, for He, He + : T. Fujimoto, M. Goto H 2 + H 2 X 2 g + 1 b 3 u + X 1 g + a 3 g + B 1 u + 2 c 3 u C 1 u E,F 1 + g Internuclear Distance (A) 3 H + + H H*+H n=4 n=3 H + H 4

58 Achieved so far: (L. Vervecken, 2010, Chr. Salmagne 2011) Magnetic grid generation for linear devices re-developed Modelling results from Berlin SOLPS4 (version 1997) reproduced with current ITER SOLPS version (comparison to experiment: H.K., loc.cit.) Some more refined physics activated now in SOLPS4.3 (version 2009 from ITER design review) parallel electr. currents, electr. biasing ( redistribution of power found, 45% increase of target power) first MAR studies (molecular kinetics), neutral-neutral interaction, ( only marginally important in PSI-2, apparently) First experiments in H plasmas for code benchmark: June 2011 (planned) Next, depending on experimental results and availability of students: Drifts and currents (incremental approach) kinetic ions? kinetic electrons (eedf)? More complex chemistry, (hydrogen, hydrocarbons,.) Radiation transport

59 B2-EIRENE modelling for PSI-2 linear plasma device H. Kastelewicz, D. Reiter et al., 23 rd EPS (Kiev), p II-803 (1996) and 24 th EPS (Berchtesgaden), p IV-1805 (1997), reports, conf. proceeding,. Summary of all this: H. Kastelewicz, G. Fussmann Plasma Modelling for the PSI Linear Plasma Device Contrib. Plasma Physics 44 No.4, (2004), then stopped due to retirement of H.K. (2005- ) B2-EIRENE modelling activities at FOM, for Pilot-PSI, and Magnum PSI M. Baeva et al, (PSI 2006 Hefei, Plasma Sci. and Tech., 10, No.2 April 2008), R. Wieggers et al. (see EPS 2008, Hersonissos, and PSI 2010, San Diego) PSI-2 modelling revived in 2010 (joint master student program in TEC) L. Vervecken, M. Baelmans, D. Reiter Extended Plasma Modelling for the PSI-2 Device, (until June 2010), Chr. Salmagne, D. Reiter, M. Baelmans, W. Dekeyer (until Sept. 2011) D. Allerts, M. Baelmans, D. Reiter (until Sept. 2012) Mainly: Edge code training purposes

60 Strong, intermittend fluctuations in PSI-2 (see D. Reiser talk) Do these affect recycling, impurity transport, or can we just use averaged values? No answer today, but 1 st steps to quantify this (Thesis: Samad Mekkaoui, now guest scientist at IEK-4, planned: EFDA fellowship ) Next three slides: Samad s thesis defense, March 2012, Univ. Marseille

61

62 Construct from experim. observations (or from Dirk s ATTEMPT simulations) a synthetic stochastic fluctuation model for EIRENE: multivariate Gamma PDF

63 (here: strongly idealized slab model, for which analytic solution exists) Note from Detlev: This agreement is not a surprise, because EIRENE solves the same analytic equation. But it is a verification of both the code and the analytic solution.

64 Note for myself Turb. free = stationary background, no fluctuations in time, but in space maybe a profile, e.g. from B2. This is original eirene background. a=0, with fluctuations, i.e.: this is a case WITH turbulence, But: correl. Length is very small relative to mfp, So: densities in neighboring cells are essentially independent, and averaging then (using ergodic theorem) gives the same solution as in truly turbulence free case. Non trivial conclusion that this is the same, but it is. A=inf: essentially homogeneous plasma (relative to mfp), but entire plasma (spatially const) is fluctuating in time. Strongest effect. Applicable if mfp very short relative to size of turb. structure., e.g. H2

65 PSI-2, standard case 70 sccm at gas inlet, no gas puff high density

66

67

68

69 #/cm**3 PSI-2, 70 sccm at gas inlet, no gas puff, Te=15eV, Ti=5eV in arc, ni via Eirene 1.E+13 1.E+12 1.E+11 1.E+10 1.E+09 1.E+08 1.E+07 1.E+06 1.E+05 1.E+04 1.E+03 1.E no. of timesteps D D+ D2(v=0) D2+ D3+ D-

70 #/cm**3 PSI-2, 70 sccm at gas inlet, no gas puff, Te=15eV, Ti=5eV in arc, ni via Eirene 1.E+13 1.E+12 1.E+11 1.E+10 1.E+09 D D+ D2(v=0) D2+ D3+ 1.E no. of timesteps

II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas. D. Reiter

II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas. D. Reiter II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas D. Reiter Institut für Plasmaphysik, FZ-Jülich, Trilateral Euregio Cluster Atomic and Molecular Data for Fusion Energy

More information

Estimating the plasma flow in a recombining plasma from

Estimating the plasma flow in a recombining plasma from Paper P3-38 Estimating the plasma flow in a recombining plasma from the H α emission U. Wenzel a, M. Goto b a Max-Planck-Institut für Plasmaphysik (IPP) b National Institute for Fusion Science, Toki 509-5292,

More information

Effect of ExB Driven Transport on the Deposition of Carbon in the Outer Divertor of. ASDEX Upgrade

Effect of ExB Driven Transport on the Deposition of Carbon in the Outer Divertor of. ASDEX Upgrade Association Euratom-Tekes ASDEX Upgrade Effect of ExB Driven Transport on the Deposition of Carbon in the Outer Divertor of ASDEX Upgrade L. Aho-Mantila 1,2, M. Wischmeier 3, K. Krieger 3, V. Rohde 3,

More information

Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell

Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell J.M. Canik, L.W. Owen, Y.K.M. Peng, J. Rapp, R.H. Goulding Oak Ridge National Laboratory ORNL is developing a helicon-based

More information

Modelling of JT-60U Detached Divertor Plasma using SONIC code

Modelling of JT-60U Detached Divertor Plasma using SONIC code J. Plasma Fusion Res. SERIES, Vol. 9 (2010) Modelling of JT-60U Detached Divertor Plasma using SONIC code Kazuo HOSHINO, Katsuhiro SHIMIZU, Tomonori TAKIZUKA, Nobuyuki ASAKURA and Tomohide NAKANO Japan

More information

The EIRENE.DE online database for surface and A+M data in fusion edge modelling

The EIRENE.DE online database for surface and A+M data in fusion edge modelling Member of the Helmholtz Association The EIRENE.DE online database for surface and A+M data in fusion edge modelling Detlev Reiter Institute of Energy Research Plasma Physics IAEA meeting on Technical Aspects

More information

DIVIMP simulation of W transport in the SOL of JET H-mode plasmas

DIVIMP simulation of W transport in the SOL of JET H-mode plasmas DIVIMP simulation of W transport in the SOL of JET H-mode plasmas A. Järvinen a, C. Giroud b, M. Groth a, K. Krieger c, D. Moulton d, S. Wiesen e, S. Brezinsek e and JET- EFDA contributors¹ JET-EFDA, Culham

More information

Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-60U

Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-60U EX/D-3 Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-6U N. Asakura ), H. Takenaga ), S. Sakurai ), G.D. Porter ), T.D. Rognlien ), M.E. Rensink ), O. Naito ), K. Shimizu

More information

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer N. Smick, B. LaBombard MIT Plasma Science and Fusion Center PSI-19 San Diego, CA May 25, 2010 Boundary flows

More information

Neutral particle behavior in divertor simulator MAP-II

Neutral particle behavior in divertor simulator MAP-II cpp header will be provided by the publisher Neutral particle behavior in divertor simulator MAP-II H. Matsuura 1, S. Kado 2, and Y. Kuwahara 3 1 Graduate School of Engineering, Osaka Prefecture University,

More information

Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields

Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields H. Frerichs, O. Schmitz, I. Waters, G. P. Canal, T. E. Evans, Y. Feng and V. Soukhanovskii

More information

L-mode radiative plasma edge studies for model validation in ASDEX Upgrade and JET

L-mode radiative plasma edge studies for model validation in ASDEX Upgrade and JET L-mode radiative plasma edge studies for model validation in ASDEX Upgrade and JET P1-3 L. Aho-Mantila a *, M. Bernert b, J.W. Coenen c, R. Fischer b, M. Lehnen c, C. Lowry d, S. Marsen e, K. McCormick

More information

Experimental results and modelling of ASDEX Upgrade partial detachment

Experimental results and modelling of ASDEX Upgrade partial detachment Experimental results and modelling of ASDEX Upgrade partial detachment M. Wischmeier 1 With thanks to X. Bonnin 2, P. Börner 3, A. Chankin 1, D. P. Coster 1, M. Groth 4, A. Kallenbach 1, V. Kotov 3, H.

More information

ITER A/M/PMI Data Requirements and Management Strategy

ITER A/M/PMI Data Requirements and Management Strategy ITER A/M/PMI Data Requirements and Management Strategy Steven Lisgo, R. Barnsley, D. Campbell, A. Kukushkin, M. Hosokawa, R. A. Pitts, M. Shimada, J. Snipes, A. Winter ITER Organisation with contributions

More information

Impact of neutral atoms on plasma turbulence in the tokamak edge region

Impact of neutral atoms on plasma turbulence in the tokamak edge region Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International

More information

3D analysis of impurity transport and radiation for ITER limiter start-up configurations

3D analysis of impurity transport and radiation for ITER limiter start-up configurations 3D analysis of impurity transport and radiation for ITER limiter start-up configurations P2-74 X. Zha a*, F. Sardei a, Y. Feng a, M. Kobayashi b, A. Loarte c, G. Federici c a Max-Planck-Institut für Plasmaphysik,

More information

GA A26119 MEASUREMENTS AND SIMULATIONS OF SCRAPE-OFF LAYER FLOWS IN THE DIII-D TOKAMAK

GA A26119 MEASUREMENTS AND SIMULATIONS OF SCRAPE-OFF LAYER FLOWS IN THE DIII-D TOKAMAK GA A26119 MEASUREMENTS AND SIMULATIONS OF SCRAPE-OFF LAYER FLOWS IN THE DIII-D TOKAMAK by M. GROTH, G.D. PORTER, J.A. BOEDO, N.H. BROOKS, R.C. ISLER, W.P. WEST, B.D. BRAY, M.E. FENSTERMACHER, R.J. GROEBNER,

More information

Particle Transport Measurements in the LHD Stochastic Magnetic Boundary Plasma using Mach Probes and Ion Sensitive Probe

Particle Transport Measurements in the LHD Stochastic Magnetic Boundary Plasma using Mach Probes and Ion Sensitive Probe Particle Transport Measurements in the LHD Stochastic Magnetic Boundary Plasma using Mach Probes and Ion Sensitive Probe N. Ezumi a*, K. Todoroki a, T. Kobayashi b, K. Sawada c, N. Ohno b, M. Kobayashi

More information

Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors

Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors S. Wiesen, T. Eich, M. Bernert, S. Brezinsek, C. Giroud, E. Joffrin, A. Kallenbach, C. Lowry,

More information

ONION-SKIN METHOD (OSM) ANALYSIS OF DIII D EDGE MEASUREMENTS

ONION-SKIN METHOD (OSM) ANALYSIS OF DIII D EDGE MEASUREMENTS GA A2342 ONION-SKIN METHOD (OSM) ANALYSIS OF DIII D EDGE MEASUREMENTS by P.C. STANGEBY, J.G. WATKINS, G.D. PORTER, J.D. ELDER, S. LISGO, D. REITER, W.P. WEST, and D.G. WHYTE JULY 2 DISCLAIMER This report

More information

Neutral gas modelling

Neutral gas modelling Neutral gas modelling Ben Dudson 1 1 York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK BOUT++ Workshop 16 th September 2014 Ben Dudson, University of York

More information

On the locality of parallel transport of heat carrying electrons in the SOL

On the locality of parallel transport of heat carrying electrons in the SOL P1-068 On the locality of parallel transport of heat carrying electrons in the SOL A.V. Chankin* and D.P. Coster Max-Planck-Institut für Pasmaphysik, 85748 Garching, Germany Abstract A continuum Vlasov-Fokker-Planck

More information

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011 Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor

More information

Fusion Development Facility (FDF) Divertor Plans and Research Options

Fusion Development Facility (FDF) Divertor Plans and Research Options Fusion Development Facility (FDF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, M. Wade, V. Chan, R. Stambaugh (General Atomics) J. Canik (Oak Ridge National Laboratory) P. Stangeby

More information

Effect ofe B driven transport on the deposition of carbon in the outer divertor of ASDEX Upgrade

Effect ofe B driven transport on the deposition of carbon in the outer divertor of ASDEX Upgrade Effect ofe B driven transport on the deposition of carbon in the outer divertor of ASDEX Upgrade 0-29 L. Aho-Mantila a,b *, M. Wischmeier c, K. Krieger c, V. Rohde c, H.W. Müller c, D.P. Coster c, M. Groth

More information

1 EX/P6-5 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation

1 EX/P6-5 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation 1 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation Y. Nakashima1), Y. Higashizono1), H. Kawano1), H. Takenaga2), N. Asakura2), N. Oyama2),

More information

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, V. Chan, R. Stambaugh (General Atomics) J. Canik, A. Sontag, M. Cole (Oak Ridge National Laboratory)

More information

Simulation of ASDEX Upgrade Ohmic Plasmas for SOLPS Code Validation

Simulation of ASDEX Upgrade Ohmic Plasmas for SOLPS Code Validation Simulation of ASDEX Upgrade Ohmic Plasmas for SOLPS Code Validation A.V.Chankin, D.P.Coster, R.Dux, Ch.Fuchs, G.Haas, A.Herrmann, L.D.Horton, A.Kallenbach, B.Kurzan, H.W.Müller, R.Pugno, M.Wischmeier,

More information

Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact

Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact Peter Stangeby 4 September 2003 1. Fig. 1 shows an example of a suitable magnetic configuration for application

More information

Spectroscopy A Powerful Diagnostic Tool in Source Development

Spectroscopy A Powerful Diagnostic Tool in Source Development IAEA-TM on NBI NI 1 Spectroscopy A Powerful Diagnostic Tool in Source Development U. Fantz*, H. Falter, P. Franzen, S. Christ, B. Heinemann, A. Lorenz, W. Kraus, P. McNeely, R. Riedl, E. Speth, D. Wünderlich

More information

Divertor Detachment on TCV

Divertor Detachment on TCV Divertor Detachment on TCV R. A. Pitts, Association EURATOM-Confédération Suisse,, CH- LAUSANNE, Switzerland thanks to A. Loarte a, B. P. Duval, J.-M. Moret, J. A. Boedo b, L. Chousal b, D. Coster c, G.

More information

Modelling radiative power exhaust in view of DEMO relevant scenarios

Modelling radiative power exhaust in view of DEMO relevant scenarios Modelling radiative power exhaust in view of DEMO relevant scenarios 2 nd IAEA Technical Meeting November 14th 2017 S. Wiesen, M. Wischmeier, M. Bernert, M. Groth, A. Kallenbach, R. Wenninger, S. Brezinsek,

More information

Physics of the detached radiative divertor regime in DIII-D

Physics of the detached radiative divertor regime in DIII-D Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S741-3335(99)97299-8 Physics of the detached radiative divertor regime in DIII-D M E Fenstermacher, J Boedo, R C Isler, A W Leonard,

More information

Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer

Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer PHYSICS OF PLASMAS VOLUME 7, NUMBER 11 NOVEMBER 2000 Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer R. Nachtrieb a) Lutron Electronics Co.,

More information

Plasma shielding during ITER disruptions

Plasma shielding during ITER disruptions Plasma shielding during ITER disruptions Sergey Pestchanyi and Richard Pitts 1 Integrated tokamak code TOKES is a workshop with various tools objects Radiation bremsstrahlung recombination s line s cyclotron

More information

Simulation of Plasma Flow in the DIII-D Tokamak

Simulation of Plasma Flow in the DIII-D Tokamak UCRL-JC-129497 Preprint Simulation of Plasma Flow in the DIII-D Tokamak G.D Porter, T D. Rognlien, N. Wolf, J Boedo, R.C Isler This paper was prepared for submittal to 1998 International Congress on Plasma

More information

Overview Impact of 3D fields (RMP) on edge turbulence and turbulent transport

Overview Impact of 3D fields (RMP) on edge turbulence and turbulent transport Trilateral Euregio Cluster Overview Impact of 3D fields (RMP) on edge turbulence and turbulent transport TEC Yuhong Xu Laboratory for Plasma Physics, Ecole Royale Militaire - Koninklijke Militaire School,

More information

Mitglied der Helmholtz-Gemeinschaft. Application of rarefied gas dynamics for design of the ITER optical diagnostics

Mitglied der Helmholtz-Gemeinschaft. Application of rarefied gas dynamics for design of the ITER optical diagnostics Mitglied der Helmholtz-Gemeinschaft Application of rarefied gas dynamics for design of the ITER optical diagnostics 64th IUVSTA Workshop, May 16-19th 2011 V. Kotov, D. Reiter, IEK-4 - Plasma Physics Mirrors

More information

ITER Divertor Plasma Modelling with Consistent Core-Edge Parameters

ITER Divertor Plasma Modelling with Consistent Core-Edge Parameters CT/P-7 ITER Divertor Plasma Modelling with Consistent Core-Edge Parameters A. S. Kukushkin ), H. D. Pacher ), G. W. Pacher 3), G. Janeschitz ), D. Coster 5), A. Loarte 6), D. Reiter 7) ) ITER IT, Boltzmannstr.,

More information

My view on the vapor shielding issues

My view on the vapor shielding issues My view on the vapor shielding issues Sergei Krasheninnikov University of California San Diego, USA Consultancy Meeting on Atomic Data for Vapour Shielding in Fusion Devices IAEA, Vienna, Austria, 19-20

More information

Deuterium Balmer/Stark spectroscopy and impurity profiles: first results from mirror-link divertor spectroscopy system on the JET ITER-like wall

Deuterium Balmer/Stark spectroscopy and impurity profiles: first results from mirror-link divertor spectroscopy system on the JET ITER-like wall CCFE-PR(13)35 A.G. Meigs, S. Brezinsek, M. Clever, A. Huber, S. Marsen, C. Nicholas, M.Stamp, K-D Zastrow, and JET EFDA Contributors Deuterium Balmer/Stark spectroscopy and impurity profiles: first results

More information

Plasma Chamber. Fortgeschrittenes Praktikum I. Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot. Abstract

Plasma Chamber. Fortgeschrittenes Praktikum I. Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot. Abstract Plasma Chamber Fortgeschrittenes Praktikum I Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot Abstract The aims of this experiment are to be familiar with a vacuum chamber, to understand what

More information

Triggering Mechanisms for Transport Barriers

Triggering Mechanisms for Transport Barriers Triggering Mechanisms for Transport Barriers O. Dumbrajs, J. Heikkinen 1, S. Karttunen 1, T. Kiviniemi, T. Kurki-Suonio, M. Mantsinen, K. Rantamäki 1, S. Saarelma, R. Salomaa, S. Sipilä, T. Tala 1 Euratom-TEKES

More information

Benchmarking Tokamak Edge Modelling Codes

Benchmarking Tokamak Edge Modelling Codes EFDA JET CP(7)3/1 D.P. Coster, X. Bonnin, A. Chankin, G. Corrigan, W. Fundamenski, L. Owen, T. Rognlien, S. Wiesen, R. Zagórski and JET EFDA contributors Benchmarking Tokamak Edge Modelling Codes This

More information

Modelling of prompt deposition of tungsten under fusion relevant conditions

Modelling of prompt deposition of tungsten under fusion relevant conditions EUROFUSION WPPFC-CP(16) 1532 A Kirschner et al. Modelling of prompt deposition of tungsten under fusion relevant conditions Preprint of Paper to be submitted for publication in Proceedings of 26th IAEA

More information

Berichte des Forschungszentrums Jülich 457

Berichte des Forschungszentrums Jülich 457 Forschungszentrum Jülich in der Helmholtz-Gemeinschaft Institute of Energy Research (IEF) Plasma Physics (IEF-4) Numerical study of the ITER divertor plasma with the B-EIRENE code package Vladislav Kotov,

More information

TARGET PLATE CONDITIONS DURING STOCHASTIC BOUNDARY OPERATION ON DIII D

TARGET PLATE CONDITIONS DURING STOCHASTIC BOUNDARY OPERATION ON DIII D GA A25445 TARGET PLATE CONDITIONS DURING STOCHASTIC BOUNDARY OPERATION ON DIII D by J.G. WATKINS, T.E. EVANS, C.J. LASNIER, R.A. MOYER, and D.L. RUDAKOV JUNE 2006 QTYUIOP DISCLAIMER This report was prepared

More information

Plasma Spectroscopy Inferences from Line Emission

Plasma Spectroscopy Inferences from Line Emission Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often

More information

ARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS

ARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS ARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS A. LOARTE, R.D. MONK, J.R. MARTÍN-SOLÍSa,D.J.CAMPBELL, A.V. CHANKIN b, S. CLEMENT, S.J. DAVIES, J. EHRENBERG, S.K. ERENTS c,h.y.guo, P.J. HARBOUR,

More information

TH/P4-9. T. Takizuka 1), K. Shimizu 1), N. Hayashi 1), M. Hosokawa 2), M. Yagi 3)

TH/P4-9. T. Takizuka 1), K. Shimizu 1), N. Hayashi 1), M. Hosokawa 2), M. Yagi 3) 1 Two-dimensional Full Particle Simulation of the Flow Patterns in the Scrape-off-layer Plasma for Upper- and Lower- Null Point Divertor Configurations in Tokamaks T. Takizuka 1), K. Shimizu 1), N. Hayashi

More information

Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion

Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion C. Wimmer a, U. Fantz a,b and the NNBI-Team a a Max-Planck-Institut für Plasmaphysik, EURATOM

More information

Scaling of divertor heat flux profile widths in DIII-D

Scaling of divertor heat flux profile widths in DIII-D 1 Scaling of divertor heat flux profile widths in DIII-D C.J. Lasnier 1, M.A. Makowski 1, J.A. Boedo 2, N.H. Brooks 3, D.N. Hill 1, A.W. Leonard 3, and J.G. Watkins 4 e-mail:lasnier@llnl.gov 1 Lawrence

More information

Transport of neutrals in turbulent scrape-off layer plasmas

Transport of neutrals in turbulent scrape-off layer plasmas 1 THD/P3-02 Transport of neutrals in turbulent scrape-off layer plasmas Y. Marandet 1, A. Mekkaoui 1, D. Reiter 2, P. Börner 2, P. Genesio 1, F. Catoire 1, J. Rosato 1, H. Capes 1, L. Godbert-Mouret 1,

More information

Progress of Confinement Physics Study in Compact Helical System

Progress of Confinement Physics Study in Compact Helical System 1st IAEA Fusion Energy Conference Chengdu, China, 16-1 October, 6 IAEA-CN-149/ EX/5-5Rb Progress of Confinement Physics Study in Compact Helical System S. Okamura et al. NIFS-839 Oct. 6 1 EX/5-5Rb Progress

More information

X-ray Spectroscopy on Fusion Plasmas

X-ray Spectroscopy on Fusion Plasmas X-ray Spectroscopy on s An ongoing discussion between the two Manfreds Manfred von Hellermann for CXRS Manfred Bitter for x-ray spectroscopy G. Bertschinger for many contributers (Bitter, Kunze, Weinheimer,

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Power Exhaust on JET: An Overview of Dedicated Experiments

Power Exhaust on JET: An Overview of Dedicated Experiments Power Exhaust on JET: An Overview of Dedicated Experiments W.Fundamenski, P.Andrew, T.Eich 1, G.F.Matthews, R.A.Pitts 2, V.Riccardo, W.Sailer 3, S.Sipila 4 and JET EFDA contributors 5 Euratom/UKAEA Fusion

More information

Estimation of the contribution of gaps to tritium retention in the divertor of ITER

Estimation of the contribution of gaps to tritium retention in the divertor of ITER Estimation of contribution of gaps to tritium retention in the divertor of ITER 1 Estimation of the contribution of gaps to tritium retention in the divertor of ITER 1. Introduction D. Matveev 1,2, A.

More information

Total Flow Vector in the C-Mod SOL

Total Flow Vector in the C-Mod SOL Total Flow Vector in the SOL N. Smick, B. LaBombard MIT Plasma Science and Fusion Center APS-DPP Annual Meeting Atlanta, GA November 3, 2009 Motivation and Goals Measurements have revealed high parallel

More information

AN UPDATE ON DIVERTOR HEAT LOAD ANALYSIS

AN UPDATE ON DIVERTOR HEAT LOAD ANALYSIS AN UPDATE ON DIVERTOR HEAT LOAD ANALYSIS T.K. Mau, A. Grossman, A.R. Raffray UC-San Diego H. McGuinness RPI ARIES-CS Project Meeting June 4-5, 5 University of Wisconsin, Madison OUTLINE Divertor design

More information

Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection

Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection 1 ITR/P1-37 Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection J.P. Boeuf a, G. Fubiani a, G. Hagelaar a, N. Kohen a, L. Pitchford a, P. Sarrailh a, and A. Simonin

More information

GA A26123 PARTICLE, HEAT, AND SHEATH POWER TRANSMISSION FACTOR PROFILES DURING ELM SUPPRESSION EXPERIMENTS ON DIII-D

GA A26123 PARTICLE, HEAT, AND SHEATH POWER TRANSMISSION FACTOR PROFILES DURING ELM SUPPRESSION EXPERIMENTS ON DIII-D GA A26123 PARTICLE, HEAT, AND SHEATH POWER TRANSMISSION FACTOR PROFILES DURING ELM SUPPRESSION EXPERIMENTS ON DIII-D by J.G. WATKINS, T.E. EVANS, I. JOSEPH, C.J. LASNIER, R.A. MOYER, D.L. RUDAKOV, O. SCHMITZ,

More information

Flow measurements in the Scrape-Off Layer of Alcator C-Mod using Impurity Plumes

Flow measurements in the Scrape-Off Layer of Alcator C-Mod using Impurity Plumes Flow measurements in the Scrape-Off Layer of Alcator C-Mod using Impurity Plumes S. Gangadhara,. Laombard M.I.T. Plasma Science and Fusion Center, 175 Albany St., Cambridge, MA 2139 USA Abstract Accurate

More information

Predicting the Rotation Profile in ITER

Predicting the Rotation Profile in ITER Predicting the Rotation Profile in ITER by C. Chrystal1 in collaboration with B. A. Grierson2, S. R. Haskey2, A. C. Sontag3, M. W. Shafer3, F. M. Poli2, and J. S. degrassie1 1General Atomics 2Princeton

More information

Diagnostic set-up and modelling for investigation of synergy between 3D edge physics and plasma-wall interactions on Wendelstein 7-X

Diagnostic set-up and modelling for investigation of synergy between 3D edge physics and plasma-wall interactions on Wendelstein 7-X Diagnostic set-up and modelling for investigation of synergy between 3D edge physics and plasma-wall interactions on Wendelstein 7-X Y. Liang 1,a, O. Neubauer 1, R. König 2, M Krychowiak 2, B. Schweer

More information

Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor

Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT, July 8-10, 2009 CMOD Mo tile divertor erosion/redeposition

More information

Divertor Plasma Detachment

Divertor Plasma Detachment Divertor Plasma Detachment S. I. Krasheninnikov 1, A. S. Kukushkin 2,3 and A. A. Pshenov 2,3 1 University California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA 2 National Research Nuclear

More information

Improved EDGE2D-EIRENE Simulations of JET ITER-like Wall L-mode Discharges Utilising Poloidal VUV/visible Spectral Emission Profiles

Improved EDGE2D-EIRENE Simulations of JET ITER-like Wall L-mode Discharges Utilising Poloidal VUV/visible Spectral Emission Profiles CCFE-PR(15)26 K.D. Lawson, M. Groth, P. Belo, S. Brezinsek, G. Corrigan, A. Czarnecka, E. Delabie, P. Drewelow, D. Harting, I. KsiąŜek, C.F. Maggi, C. Marchetto, A.G. Meigs, S. Menmuir, M.F. Stamp, S.

More information

Beams and magnetized plasmas

Beams and magnetized plasmas Beams and magnetized plasmas 1 Jean-Pierre BOEUF LAboratoire PLAsma et Conversion d Energie LAPLACE/ CNRS, Université Paul SABATIER, TOULOUSE Beams and magnetized plasmas 2 Outline Ion acceleration and

More information

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK ITER operation Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 14 th March 2014 Ben Dudson Magnetic Confinement Fusion (1 of 18) ITER Some key statistics for ITER are:

More information

Quantification of the contribution of processes in the ADAS beam model

Quantification of the contribution of processes in the ADAS beam model Quantification of the contribution of processes in the ADAS beam model Martin O Mullane Hugh Summers, Stuart Henderson, Ephrem Delabie, Manfred Von Hellermann and many ADAS contributors Motivation and

More information

Erosion and Confinement of Tungsten in ASDEX Upgrade

Erosion and Confinement of Tungsten in ASDEX Upgrade ASDEX Upgrade Max-Planck-Institut für Plasmaphysik Erosion and Confinement of Tungsten in ASDEX Upgrade R. Dux, T.Pütterich, A. Janzer, and ASDEX Upgrade Team 3rd IAEA-FEC-Conference, 4.., Daejeon, Rep.

More information

A neoclassical model for toroidal rotation and the radial electric field in the edge pedestal. W. M. Stacey

A neoclassical model for toroidal rotation and the radial electric field in the edge pedestal. W. M. Stacey A neoclassical model for toroidal rotation and the radial electric field in the edge pedestal W. M. Stacey Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332, USA October, 2003 ABSTRACT

More information

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP - EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak

More information

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U 1 EX/P4-25 Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-6U T. Nakano, H. Kubo, N. Asakura, K. Shimizu and S. Higashijima Japan Atomic Energy Agency, Naka,

More information

ao&p- 96 / O f Models and Applications of the UEDGE Code M.E. Rensink, D.A. Knoll, G.D. Porter, T.D. Rognlien, G.R. Smith, and F.

ao&p- 96 / O f Models and Applications of the UEDGE Code M.E. Rensink, D.A. Knoll, G.D. Porter, T.D. Rognlien, G.R. Smith, and F. ao&p- 96 / O 3 4 - f UCRL-JC-12576 Preprint Models and Applications of the UEDGE Code ME Rensink DA Knoll GD Porter TD Rognlien GR Smith and F Wising This paper was prepared for submittal to AEA Technical

More information

Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET

Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET Journal of Nuclear Materials 363 365 (2007) 989 993 www.elsevier.com/locate/jnucmat Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET T. Eich a, *, A.

More information

Developing Steady State ELM-absent H-Mode scenarios with Advanced Divertor Configuration in EAST tokamak

Developing Steady State ELM-absent H-Mode scenarios with Advanced Divertor Configuration in EAST tokamak Developing Steady State ELM-absent H-Mode scenarios with Advanced Divertor Configuration in EAST tokamak G. Calabrò, B.J. Xiao, J.G. Li, Z.P. Luo, Q.P. Yuan, L. Wang, K. Wu, R. Albanese, R. Ambrosino,

More information

ArbiTER studies of filamentary structures in the SOL of spherical tokamaks

ArbiTER studies of filamentary structures in the SOL of spherical tokamaks ArbiTER studies of filamentary structures in the SOL of spherical tokamaks D. A. Baver, J. R. Myra, Research Corporation F. Scotti, Lawrence Livermore National Laboratory S. J. Zweben, Princeton Plasma

More information

PISCES W fuzz experiments: A summary of work up to now.

PISCES W fuzz experiments: A summary of work up to now. FNST/PFC/MASCO meeting, UCLA Aug. 2-6, 2010 W fuzz experiments: A summary of work up to now. M.J. Baldwin, R.P. Doerner, D. Nishijima University of California, San Diego, USA Why do we care about fuzz?

More information

Modelling of plasma edge turbulence with neutrals

Modelling of plasma edge turbulence with neutrals Modelling of plasma edge turbulence with neutrals Ben Dudson 1 1 York Plasma Institute, Department of Physics, University of York, Heslington, York YO1 5DD, UK 7 th IAEA TM on Plasma Instabilities 4-6

More information

History of PARASOL! T. Takizuka! Graduate School of Engineering, Osaka University!! PARASOL was developed at Japan Atomic Energy Agency!

History of PARASOL! T. Takizuka! Graduate School of Engineering, Osaka University!! PARASOL was developed at Japan Atomic Energy Agency! History of PARASOL! T. Takizuka!!! Graduate School of Engineering, Osaka University!! PARASOL was developed at Japan Atomic Energy Agency! OSAKA UNIVERSITY! 20th NEXT Meeting, Kyoto Terrsa, Kyoto, 13-14

More information

Nuclear Fusion Energy Research at AUB Ghassan Antar. Physics Department American University of Beirut

Nuclear Fusion Energy Research at AUB Ghassan Antar. Physics Department American University of Beirut Nuclear Fusion Energy Research at AUB Ghassan Antar Physics Department American University of Beirut Laboratory for Plasma and Fluid Dynamics [LPFD) Students: - R. Hajjar [Physics] - L. Moubarak [Physics]

More information

Divertor Heat Flux Reduction and Detachment in NSTX

Divertor Heat Flux Reduction and Detachment in NSTX 1 EX/P4-28 Divertor Heat Flux Reduction and Detachment in NSTX V. A. Soukhanovskii 1), R. Maingi 2), R. Raman 3), R. E. Bell 4), C. Bush 2), R. Kaita 4), H. W. Kugel 4), C. J. Lasnier 1), B. P. LeBlanc

More information

Self-consistent plasma-neutral modeling in tokamak plasmas with a large-area toroidal belt limiter

Self-consistent plasma-neutral modeling in tokamak plasmas with a large-area toroidal belt limiter PHYSICS OF PLASMAS VOLUME 6, NUMBER 7 JULY 1999 Self-consistent plasma-neutral modeling in tokamak plasmas with a large-area toroidal belt limiter D. S. Gray, M. Baelmans, a), b) J. A. Boedo, D. Reiter,

More information

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads Mitglied der Helmholtz-Gemeinschaft Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads J. Linke, J. Du, N. Lemahieu, Th. Loewenhoff, G. Pintsuk, B. Spilker, T. Weber,

More information

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France Exhaust scenarios Alberto Loarte Plasma Operation Directorate ITER Organization Route de Vinon sur Verdon, 13067 St Paul lez Durance, France Acknowledgements: Members of ITER Organization (especially R.

More information

Temporal Evolution of Temperature and Argon Impurity Density Profiles Observed by X-ray Imaging Spectrometer Measurements at Wendelstein 7-X

Temporal Evolution of Temperature and Argon Impurity Density Profiles Observed by X-ray Imaging Spectrometer Measurements at Wendelstein 7-X EUROFUSION WPS1-PR(16) 15653 A. Langenberg et al. Temporal Evolution of Temperature and Argon Impurity Density Profiles Observed by X-ray Imaging Spectrometer Measurements at Wendelstein 7-X Preprint of

More information

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5.

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5. 1. Motivation power exhaust in JT-60SA tokamak 2. Tool COREDIV code 3. Operational scenarios of JT-60SA 4. Results 5. Conclusions K. Gałązka Efficient power exhaust in JT-60SA by COREDIV Page 2 The Institute

More information

GA A23411 COMPARISON OF LANGMUIR PROBE AND THOMSON SCATTERING MEASUREMENTS IN DIII D

GA A23411 COMPARISON OF LANGMUIR PROBE AND THOMSON SCATTERING MEASUREMENTS IN DIII D GA A23411 COMPARISON OF LANGMUIR PROBE AND THOMSON SCATTERING by J.G. WATKINS, P.C. STANGEBY, J.A. BOEDO, T.N. CARLSTROM, C.J. LASNIER, R.A. MOYER, D.L. RUDAKOV, D.G. WHYTE JULY 2000 DISCLAIMER This report

More information

3 ECR discharge modeling

3 ECR discharge modeling 3.1 Motivation Low-temperature methane plasmas have been intensively studied already for several decades. The interest in such plasmas was mainly due to their wide application in various fields of plasma-surface

More information

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Max-Planck-Institut für Plasmaphysik Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Robert Wolf robert.wolf@ipp.mpg.de www.ipp.mpg.de Contents Magnetic confinement The stellarator

More information

Ongoing and pending data base FZ Jülich

Ongoing and pending data base FZ Jülich Member of the Helmholtz Association IAEA Technical Meeting on Technical Aspects of Atomic and Molecular Data Processing and Exchange (23 rd Meeting of the A+M Data Centres), Vienna, Nov. 2-4 th 2015 Ongoing

More information

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Physics of fusion power. Lecture 14: Anomalous transport / ITER Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities

More information

Alcator C-Mod. Particle Transport in the Alcator C-Mod Scrape-off Layer

Alcator C-Mod. Particle Transport in the Alcator C-Mod Scrape-off Layer Alcator C-Mod Particle Transport in the Alcator C-Mod Scrape-off Layer B. LaBombard, R.L. Boivin, B. Carreras, M. Greenwald, J. Hughes, B. Lipschultz, D. Mossessian, C.S. Pitcher, J.L. Terry, S.J. Zweben,

More information

The Spherical Tokamak as a Compact Fusion Reactor Concept

The Spherical Tokamak as a Compact Fusion Reactor Concept The Spherical Tokamak as a Compact Fusion Reactor Concept R. Kaita Princeton Plasma Physics Laboratory ENN Symposium on Compact Fusion Technologies April 19 20, 2018 *This work supported by US DOE Contract

More information

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U Abstract STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-6U A. SAKASAI, H. TAKENAGA, N. HOSOGANE, H. KUBO, S. SAKURAI, N. AKINO, T. FUJITA, S. HIGASHIJIMA, H. TAMAI, N. ASAKURA, K. ITAMI,

More information

Blob sizes and velocities in the Alcator C-Mod scrapeoff

Blob sizes and velocities in the Alcator C-Mod scrapeoff P1-59 Blob sizes and velocities in the Alcator C-Mod scrapeoff layer R. Kube a,b,*, O. E. Garcia a,b, B. LaBombard b, J. L. Terry b, S. J. Zweben c a Department of Physics and Technology, University of

More information

1.0. T (ev) 0.5. z [m] y [m] x [m]

1.0. T (ev) 0.5. z [m] y [m] x [m] W7-X edge modelling with the 3D SOL fluid code BoRiS M. Borchardt, J. Riemann, R. Schneider, X. Bonnin Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald EURATOM Association, D 17491 Greifswald,

More information