A kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva


 Dominick McDonald
 1 years ago
 Views:
Transcription
1 A kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP  EPFL SPS Annual Meeting CRPP
2 The tokamak scrapeoff layer (SOL) Open field lines Heat exhaust Confinement Impurities Fusion ashes removal Fueling the plasma (recycling) Three regimes Convection limited Conduction limited Detached Christoph Wersal  CRPP Neutral particles and SOL turbulence 2 / 14
3 Convection limited regime Christoph Wersal  CRPP Neutral particles and SOL turbulence 3 / 14
4 Convection limited regime Christoph Wersal  CRPP Neutral particles and SOL turbulence 3 / 14
5 Convection limited regime Christoph Wersal  CRPP Neutral particles and SOL turbulence 3 / 14
6 Convection limited regime Low plasma density Long λ mfp for neutrals Neutrals Christoph Wersal  CRPP Neutral particles and SOL turbulence 3 / 14
7 Convection limited regime Low plasma density Long λ mfp for neutrals Ionization in the core Ionization Neutrals Christoph Wersal  CRPP Neutral particles and SOL turbulence 3 / 14
8 Convection limited regime Low plasma density Long λ mfp for neutrals Ionization in the core Heat particle source Ionization Neutrals Christoph Wersal  CRPP Neutral particles and SOL turbulence 3 / 14
9 Convection limited regime Low plasma density Long λ mfp for neutrals Ionization in the core Heat particle source Ionization Q is mainly convective Neutrals Christoph Wersal  CRPP Neutral particles and SOL turbulence 3 / 14
10 Conduction limited regime High plasma density Christoph Wersal  CRPP Neutral particles and SOL turbulence 4 / 14
11 Conduction limited regime High plasma density Short λ mfp Neutrals Christoph Wersal  CRPP Neutral particles and SOL turbulence 4 / 14
12 Conduction limited regime High plasma density Short λ mfp Ionization close to targets Ionization Neutrals Christoph Wersal  CRPP Neutral particles and SOL turbulence 4 / 14
13 Conduction limited regime High plasma density Short λ mfp Ionization close to targets Temperature gradients form Q is mainly conductive Neutrals Ionization Christoph Wersal  CRPP Neutral particles and SOL turbulence 4 / 14
14 The GBS code, a tool to simulate SOL turbulence Driftreduced Braginskii equations d/dt ω ci,k 2 k 2 Evolves scalar fields in 3D geometry n,ω,v e,v,i,t e,t i Fluxdriven, no separation between equilibrium and fluctuations Power balance between plasma outflow from the core, turbulent transport, and sheath losses [Ricci et al., PPCF, 2012] No divertor geometry No neutral physics Christoph Wersal  CRPP Neutral particles and SOL turbulence 5 / 14
15 The model Introduction The neutrals model Conclusions Kinetic model for the neutral atoms with Krook operators f n t + v f n x = ν ionf n ν cx (f n n n Φ i ) + ν rec n i Φ i (1) ν ion = n e v e σ ion (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Boundary conditions Φ i = f i /n i (v in respect to the surface; θ between v and normal vector to the surface) dv v f n ( x w, v) + u i n i = 0 (2) f n ( x w, v) cos(θ)e mv 2 /2T w for v > 0 Christoph Wersal  CRPP Neutral particles and SOL turbulence 6 / 14
16 The model Introduction The neutrals model Conclusions Kinetic model for the neutral atoms with Krook operators f n t + v f n x = ν ionf n ν cx (f n n n Φ i ) + ν rec n i Φ i (1) ν ion = n e v e σ ion (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Boundary conditions Φ i = f i /n i (v in respect to the surface; θ between v and normal vector to the surface) dv v f n ( x w, v) + u i n i = 0 (2) f n ( x w, v) cos(θ)e mv 2 /2T w for v > 0 Christoph Wersal  CRPP Neutral particles and SOL turbulence 6 / 14
17 The model Introduction The neutrals model Conclusions Kinetic model for the neutral atoms with Krook operators f n t + v f n x = ν ionf n ν cx (f n n n Φ i ) + ν rec n i Φ i (1) ν ion = n e v e σ ion (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Boundary conditions Φ i = f i /n i (v in respect to the surface; θ between v and normal vector to the surface) dv v f n ( x w, v) + u i n i = 0 (2) f n ( x w, v) cos(θ)e mv 2 /2T w for v > 0 Christoph Wersal  CRPP Neutral particles and SOL turbulence 6 / 14
18 The model Introduction The neutrals model Conclusions Kinetic model for the neutral atoms with Krook operators f n t + v f n x = ν ionf n ν cx (f n n n Φ i ) + ν rec n i Φ i (1) ν ion = n e v e σ ion (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Boundary conditions Φ i = f i /n i (v in respect to the surface; θ between v and normal vector to the surface) dv v f n ( x w, v) + u i n i = 0 (2) f n ( x w, v) cos(θ)e mv 2 /2T w for v > 0 Christoph Wersal  CRPP Neutral particles and SOL turbulence 6 / 14
19 The model Introduction The neutrals model Conclusions Kinetic model for the neutral atoms with Krook operators f n t + v f n x = ν ionf n ν cx (f n n n Φ i ) + ν rec n i Φ i (1) ν ion = n e v e σ ion (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Boundary conditions Φ i = f i /n i (v in respect to the surface; θ between v and normal vector to the surface) dv v f n ( x w, v) + u i n i = 0 (2) f n ( x w, v) cos(θ)e mv 2 /2T w for v > 0 Christoph Wersal  CRPP Neutral particles and SOL turbulence 6 / 14
20 The model in steady state Steady state, f n t = 0, first approach Valid if τ neutral losses < τ turbulence e.g. T e = 20eV, n 0 = m 3 τ loss ν 1 eff s τ turbulence R 0 L p /c s s Otherwise: time dependent model Christoph Wersal  CRPP Neutral particles and SOL turbulence 7 / 14
21 The method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v 0 x Christoph Wersal  CRPP Neutral particles and SOL turbulence 8 / 14
22 The method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v 0 x f n (x,v) (3) Christoph Wersal  CRPP Neutral particles and SOL turbulence 8 / 14
23 The method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v 0 x f n (x,v) = x 0 dx (3) Christoph Wersal  CRPP Neutral particles and SOL turbulence 8 / 14
24 The method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) v (3) Christoph Wersal  CRPP Neutral particles and SOL turbulence 8 / 14
25 The method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) e 1 x v x dx (ν cx (x )+ν ion (x )) v (3) Christoph Wersal  CRPP Neutral particles and SOL turbulence 8 / 14
26 The method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) e 1 x v x dx (ν cx (x )+ν ion (x )) v (3) + f w (v)e 1 v x0 dx (ν cx (x )+ν ion (x )) Christoph Wersal  CRPP Neutral particles and SOL turbulence 8 / 14
27 The method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) e 1 x v x dx (ν cx (x )+ν ion (x )) v (3) + f w (v)e 1 v x0 dx (ν cx (x )+ν ion (x )) Christoph Wersal  CRPP Neutral particles and SOL turbulence 8 / 14
28 An equation for the density distribution By imposing dv f n = n n n n (x) = x dx n n (x ) contribution by v < 0 + n w (x) dv ν cx(x )Φ i (x,v) v e ν eff (x x ) v (4) we get an integral equation for n n (x). Christoph Wersal  CRPP Neutral particles and SOL turbulence 9 / 14
29 Discretized equations Discretize the spatial direction in x x i and n n (x i ) n i n nn i = nn j j i 0 dv ν cx(x j )Φ i (x j,v) e ν eff (x i x j ) v (5) v + contribution by v < 0 + n w (x i ) System of linear equations, solved with standard methods Christoph Wersal  CRPP Neutral particles and SOL turbulence 10 / 14
30 Selfconsistent simulation with GBS and neutrals model Plasma: snapshot of density, parallel ion velocity and electron temperature from GBS Christoph Wersal  CRPP Neutral particles and SOL turbulence 11 / 14
31 Selfconsistent simulation with GBS and neutrals model Neutral density distribution and ionization rate (n n n e v e σ ion ) from the simple neutral model, n 0 = m 3, T 0 = 10eV Christoph Wersal  CRPP Neutral particles and SOL turbulence 12 / 14
32 Conclusions Developement of a neutral model for GBS Kinetic equation with Krook operators for ion, rec and cx 2D evaluation of the neutral density shows its proximity to the limiter Christoph Wersal  CRPP Neutral particles and SOL turbulence 13 / 14
33 Outlook Find the transition from convection to conduction limited regime Relax the steady state assumption Adding density source, drag force, and temperature source/sink to the equations in GBS Move towards detachment Divertor geometry Radiative detachment in limited geometry Mimic the geometry of one divertor leg Christoph Wersal  CRPP Neutral particles and SOL turbulence 14 / 14
Impact of neutral atoms on plasma turbulence in the tokamak edge region
Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint VarennaLausanne International
More informationVerification & Validation: application to the TORPEX basic plasma physics experiment
Verification & Validation: application to the TORPEX basic plasma physics experiment Paolo Ricci F. Avino, A. Bovet, A. Fasoli, I. Furno, S. Jolliet, F. Halpern, J. Loizu, A. Mosetto, F. Riva, C. Theiler,
More informationPlasmaneutrals transport modeling of the ORNL plasmamaterials test stand target cell
Plasmaneutrals transport modeling of the ORNL plasmamaterials test stand target cell J.M. Canik, L.W. Owen, Y.K.M. Peng, J. Rapp, R.H. Goulding Oak Ridge National Laboratory ORNL is developing a heliconbased
More informationDriftDriven and TransportDriven Plasma Flow Components in the Alcator CMod Boundary Layer
DriftDriven and TransportDriven Plasma Flow Components in the Alcator CMod Boundary Layer N. Smick, B. LaBombard MIT Plasma Science and Fusion Center PSI19 San Diego, CA May 25, 2010 Boundary flows
More informationModelling of JT60U Detached Divertor Plasma using SONIC code
J. Plasma Fusion Res. SERIES, Vol. 9 (2010) Modelling of JT60U Detached Divertor Plasma using SONIC code Kazuo HOSHINO, Katsuhiro SHIMIZU, Tomonori TAKIZUKA, Nobuyuki ASAKURA and Tomohide NAKANO Japan
More informationLH transitions driven by ion heating in scrapeoff layer turbulence (SOLT) model simulations
LH transitions driven by ion heating in scrapeoff layer turbulence (SOLT) model simulations D.A. Russell, D.A. D Ippolito and J.R. Myra Research Corporation, Boulder, CO, USA Presented at the 015 Joint
More informationAlcator CMod. Particle Transport in the Alcator CMod Scrapeoff Layer
Alcator CMod Particle Transport in the Alcator CMod Scrapeoff Layer B. LaBombard, R.L. Boivin, B. Carreras, M. Greenwald, J. Hughes, B. Lipschultz, D. Mossessian, C.S. Pitcher, J.L. Terry, S.J. Zweben,
More informationA neoclassical model for toroidal rotation and the radial electric field in the edge pedestal. W. M. Stacey
A neoclassical model for toroidal rotation and the radial electric field in the edge pedestal W. M. Stacey Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332, USA October, 2003 ABSTRACT
More informationTokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011
Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor
More informationAlcator CMod. Particle Transport in the Scrapeoff Layer and Relationship to Discharge Density Limit in Alcator CMod
Alcator CMod Particle Transport in the Scrapeoff Layer and Relationship to Discharge Density Limit in Alcator CMod B. LaBombard, R.L. Boivin, M. Greenwald, J. Hughes, B. Lipschultz, D. Mossessian, C.S.
More informationModelling of plasma edge turbulence with neutrals
Modelling of plasma edge turbulence with neutrals Ben Dudson 1 1 York Plasma Institute, Department of Physics, University of York, Heslington, York YO1 5DD, UK 7 th IAEA TM on Plasma Instabilities 46
More informationDynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit
Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit Transport Physics of the Density Limit R. Hajjar, P. H. Diamond, M. Malkov This research was supported by the U.S. Department of Energy,
More informationA comparison between a refined twopoint model for the limited tokamak SOL and selfconsistent plasma turbulence simulations
EUROFUSION WP15ERPR(16) 16618 C. Wersal et al. A comparison between a refined twopoint model for the limited tokamak SOL and selfconsistent plasma turbulence simulations Preprint of Paper to be submitted
More informationA firstprinciples selfconsistent model of plasma turbulence and kinetic neutral dynamics in the tokamak scrapeoff layer
A firstprinciples selfconsistent model of plasma turbulence and kinetic neutral dynamics in the tokamak scrapeoff layer C Wersal and P Ricci Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma
More informationNeutral gas modelling
Neutral gas modelling Ben Dudson 1 1 York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK BOUT++ Workshop 16 th September 2014 Ben Dudson, University of York
More informationBlob motion and control. simple magnetized plasmas
Blob motion and control in simple magnetized plasmas Christian Theiler A. Fasoli, I. Furno, D. Iraji, B. Labit, P. Ricci, M. Spolaore 1, N. Vianello 1 Centre de Recherches en Physique des Plasmas (CRPP)
More informationITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK
ITER operation Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 14 th March 2014 Ben Dudson Magnetic Confinement Fusion (1 of 18) ITER Some key statistics for ITER are:
More informationFusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options
Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, V. Chan, R. Stambaugh (General Atomics) J. Canik, A. Sontag, M. Cole (Oak Ridge National Laboratory)
More informationExhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France
Exhaust scenarios Alberto Loarte Plasma Operation Directorate ITER Organization Route de Vinon sur Verdon, 13067 St Paul lez Durance, France Acknowledgements: Members of ITER Organization (especially R.
More informationOverview of edge modeling efforts for advanced divertor configurations in NSTXU with magnetic perturbation fields
Overview of edge modeling efforts for advanced divertor configurations in NSTXU with magnetic perturbation fields H. Frerichs, O. Schmitz, I. Waters, G. P. Canal, T. E. Evans, Y. Feng and V. Soukhanovskii
More informationThe Levitated Dipole Experiment: Towards Fusion Without Tritium
The Levitated Dipole Experiment: Towards Fusion Without Tritium Jay Kesner MIT M.S. Davis, J.E. Ellsworth, D.T. Garnier, M.E. Mauel, P.C. Michael, P.P. Woskov MCP I3.110 Presented at the EPS Meeting, Dublin,
More informationUEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIIID on Divertor Performance
UEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIIID on Divertor Performance N.S. Wolf, G.D. Porter, M.E. Rensink, T.D. Rognlien Lawrence Livermore National Lab, And the DIIID team
More informationDivertor Heat Flux Reduction and Detachment in NSTX
1 EX/P428 Divertor Heat Flux Reduction and Detachment in NSTX V. A. Soukhanovskii 1), R. Maingi 2), R. Raman 3), R. E. Bell 4), C. Bush 2), R. Kaita 4), H. W. Kugel 4), C. J. Lasnier 1), B. P. LeBlanc
More informationDivertor Heat Flux Reduction and Detachment in NSTX
1 EX/P428 Divertor Heat Flux Reduction and Detachment in NSTX V. A. Soukhanovskii 1), R. Maingi 2), R. Raman 3), R. E. Bell 4), C. Bush 2), R. Kaita 4), H. W. Kugel 4), C. J. Lasnier 1), B. P. LeBlanc
More informationPhysics of the detached radiative divertor regime in DIIID
Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S7413335(99)972998 Physics of the detached radiative divertor regime in DIIID M E Fenstermacher, J Boedo, R C Isler, A W Leonard,
More informationDivertor Requirements and Performance in ITER
Divertor Requirements and Performance in ITER M. Sugihara ITER International Team 1 th International Toki Conference Dec. 1114, 001 Contents Overview of requirement and prediction for divertor performance
More informationReduction of Turbulence and Transport in the Alcator CMod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection
Reduction of Turbulence and Transport in the Alcator CMod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection M. Porkolab, P. C. Ennever, S. G. Baek, E. M. Edlund, J. Hughes, J. E.
More informationModeling neutralplasma interactions in scrapeoff layer (SOLT) simulations*
Modeling neutralplasma interactions in scrapeoff layer (SOLT) simulations* D. A. Russell and J. R. Myra Research Corporation Boulder CO USA Presented at the US Transport Task Force Workshop Williamsburg
More informationTotal Flow Vector in the CMod SOL
Total Flow Vector in the SOL N. Smick, B. LaBombard MIT Plasma Science and Fusion Center APSDPP Annual Meeting Atlanta, GA November 3, 2009 Motivation and Goals Measurements have revealed high parallel
More informationDivertor Plasma Detachment
Divertor Plasma Detachment S. I. Krasheninnikov 1, A. S. Kukushkin 2,3 and A. A. Pshenov 2,3 1 University California San Diego, 9500 Gilman Drive, La Jolla, CA 920930411, USA 2 National Research Nuclear
More informationEffect of Neutrals on ScrapeOffLayer and Divertor Stability in Tokamaks
Effect of Neutrals on ScrapeOffLayer and Divertor Stability in Tokamaks D. A. D Ippolito and J. R. Myra Lodestar Research Corporation, 2400 Central Avenue, Boulder, Colorado 80301 Abstract The influence
More informationArbiTER studies of filamentary structures in the SOL of spherical tokamaks
ArbiTER studies of filamentary structures in the SOL of spherical tokamaks D. A. Baver, J. R. Myra, Research Corporation F. Scotti, Lawrence Livermore National Laboratory S. J. Zweben, Princeton Plasma
More informationImpact of High Field & High Confinement on LmodeEdge Negative Triangularity Tokamak (NTT) Reactor
Impact of High Field & High Confinement on LmodeEdge Negative Triangularity Tokamak (NTT) Reactor M. Kikuchi, T. Takizuka, S. Medvedev, T. Ando, D. Chen, J.X. Li, M. Austin, O. Sauter, L. Villard, A.
More informationThe physics of the heat flux narrow decay length in the TCV scrapeoff layer: experiments and simulations
EUROFUSION WPMST1CP(16) 15302 B Labit et al. The physics of the heat flux narrow decay length in the TCV scrapeoff layer: experiments and simulations Preprint of Paper to be submitted for publication
More informationOn the locality of parallel transport of heat carrying electrons in the SOL
P1068 On the locality of parallel transport of heat carrying electrons in the SOL A.V. Chankin* and D.P. Coster MaxPlanckInstitut für Pasmaphysik, 85748 Garching, Germany Abstract A continuum VlasovFokkerPlanck
More information1. Motivation power exhaust in JT60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT60SA. 4. Results. 5.
1. Motivation power exhaust in JT60SA tokamak 2. Tool COREDIV code 3. Operational scenarios of JT60SA 4. Results 5. Conclusions K. Gałązka Efficient power exhaust in JT60SA by COREDIV Page 2 The Institute
More informationImpurity expulsion in an RFP plasma and the role of temperature screening
Impurity expulsion in an RFP plasma and the role of temperature screening S. T. A. Kumar, D. J. Den Hartog, R. M. Magee, G. Fiksel, D. Craig Department of Physics, University of WisconsinMadison, Madison,Wisconsin,
More informationImpact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma
1 Impact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma D. Galassi, P. Tamain, H. Bufferand, C. Baudoin, G. Ciraolo, N. Fedorczak, Ph.
More informationNeoclassical transport
Neoclassical transport Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 28 th January 2013 Dr Ben Dudson Magnetic Confinement Fusion (1 of 19) Last time Toroidal devices
More informationDriving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT60U
EX/D3 Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT6U N. Asakura ), H. Takenaga ), S. Sakurai ), G.D. Porter ), T.D. Rognlien ), M.E. Rensink ), O. Naito ), K. Shimizu
More informationOn the Physics of Intrinsic Flow in Plasmas Without Magnetic Shear
On the Physics of Intrinsic Flow in Plasmas Without Magnetic Shear J. C. Li, R. Hong, P. H. Diamond, G. R. Tynan, S. C. Thakur, X. Q. Xu Acknowledgment: This material is based upon work supported by the
More informationDIVIMP simulation of W transport in the SOL of JET Hmode plasmas
DIVIMP simulation of W transport in the SOL of JET Hmode plasmas A. Järvinen a, C. Giroud b, M. Groth a, K. Krieger c, D. Moulton d, S. Wiesen e, S. Brezinsek e and JET EFDA contributors¹ JETEFDA, Culham
More informationModelling radiative power exhaust in view of DEMO relevant scenarios
Modelling radiative power exhaust in view of DEMO relevant scenarios 2 nd IAEA Technical Meeting November 14th 2017 S. Wiesen, M. Wischmeier, M. Bernert, M. Groth, A. Kallenbach, R. Wenninger, S. Brezinsek,
More informationHartmann Flow Physics at PlasmaInsulator Boundary in the Maryland Centrifugal Experiment (MCX)
Hartmann Flow Physics at PlasmaInsulator Boundary in the Maryland Centrifugal Experiment (MCX) SheungWah Ng, A. B. Hassam IREAP, University of Maryland, College Park ICC 2006, Austin, TX Maryland Centrifugal
More informationFluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD
Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD 1 Summary Type of problem: kinetic or fluid neutral transport Physics or algorithm stressed: thermal force
More informationEffect of divertor nitrogen seeding on the power exhaust channel width in Alcator CMod
Effect of divertor nitrogen seeding on the power exhaust channel width in Alcator CMod B. LaBombard, D. Brunner, A.Q. Kuang, W. McCarthy, J.L. Terry and the Alcator Team Presented at the International
More informationErosion and Confinement of Tungsten in ASDEX Upgrade
ASDEX Upgrade MaxPlanckInstitut für Plasmaphysik Erosion and Confinement of Tungsten in ASDEX Upgrade R. Dux, T.Pütterich, A. Janzer, and ASDEX Upgrade Team 3rd IAEAFECConference, 4.., Daejeon, Rep.
More informationPhysics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors
Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors S. Wiesen, T. Eich, M. Bernert, S. Brezinsek, C. Giroud, E. Joffrin, A. Kallenbach, C. Lowry,
More informationParallel transport and profile of boundary plasma with a low recycling wall
1 TH/P416 Parallel transport and profile of boundary plasma with a low recycling wall XianZhu Tang 1 and Zehua Guo 1 1 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
More informationARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS
ARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS A. LOARTE, R.D. MONK, J.R. MARTÍNSOLÍSa,D.J.CAMPBELL, A.V. CHANKIN b, S. CLEMENT, S.J. DAVIES, J. EHRENBERG, S.K. ERENTS c,h.y.guo, P.J. HARBOUR,
More informationEdge Momentum Transport by Neutrals
1 TH/P318 Edge Momentum Transport by Neutrals J.T. Omotani 1, S.L. Newton 1,2, I. Pusztai 1 and T. Fülöp 1 1 Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 CCFE,
More informationSimulation of Plasma Blobs in Realistic Tokamak Geometry
Simulation of Plasma Blobs in Realistic Tokamak Geometry Rogério Jorge rogerio.jorge@tecnico.ulisboa.pt Instituto Superior Técnico, Lisboa, Portugal October 4 Abstract Understanding Scrapeoff Layer (SOL)
More informationHistory of PARASOL! T. Takizuka! Graduate School of Engineering, Osaka University!! PARASOL was developed at Japan Atomic Energy Agency!
History of PARASOL! T. Takizuka!!! Graduate School of Engineering, Osaka University!! PARASOL was developed at Japan Atomic Energy Agency! OSAKA UNIVERSITY! 20th NEXT Meeting, Kyoto Terrsa, Kyoto, 1314
More informationHelium3 transport experiments in the scrapeoff layer with the Alcator CMod omegatron ion mass spectrometer
PHYSICS OF PLASMAS VOLUME 7, NUMBER 11 NOVEMBER 2000 Helium3 transport experiments in the scrapeoff layer with the Alcator CMod omegatron ion mass spectrometer R. Nachtrieb a) Lutron Electronics Co.,
More informationGA A26119 MEASUREMENTS AND SIMULATIONS OF SCRAPEOFF LAYER FLOWS IN THE DIIID TOKAMAK
GA A26119 MEASUREMENTS AND SIMULATIONS OF SCRAPEOFF LAYER FLOWS IN THE DIIID TOKAMAK by M. GROTH, G.D. PORTER, J.A. BOEDO, N.H. BROOKS, R.C. ISLER, W.P. WEST, B.D. BRAY, M.E. FENSTERMACHER, R.J. GROEBNER,
More informationTHE ADVANCED TOKAMAK DIVERTOR
I Department of Engineering Physics THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and the team 14th PSI QTYUIOP MA D S O N UCLAUCLA UCLA UNIVERSITY OF WISCONSIN THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and
More informationA Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Selfconsistent Zonal Flows *
A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Selfconsistent Zonal Flows * Bruce I. Cohen, Maxim V. Umansky, Ilon Joseph Lawrence Livermore National Laboratory
More informationPredicting the Rotation Profile in ITER
Predicting the Rotation Profile in ITER by C. Chrystal1 in collaboration with B. A. Grierson2, S. R. Haskey2, A. C. Sontag3, M. W. Shafer3, F. M. Poli2, and J. S. degrassie1 1General Atomics 2Princeton
More informationFundamentals of Plasma Physics Transport in weakly ionized plasmas
Fundamentals of Plasma Physics Transport in weakly ionized plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Luís L Alves (based on Vasco Guerra s original slides) 1 As perguntas
More informationNonSolenoidal Plasma Startup in
NonSolenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APSDPP, Nov. 2, 28 1 PointSource DC Helicity Injection Provides Viable NonSolenoidal Startup Technique
More informationRecent Theoretical Progress in Understanding Coherent Structures in Edge and SOL Turbulence
Recent Theoretical Progress in Understanding Coherent Structures in Edge and SOL Turbulence S. I. Krasheninnikov University of California, San Diego, California D. A. D Ippolito and J. R. Myra Lodestar
More informationTurbulence and Transport The Secrets of Magnetic Confinement
Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS
More informationCrossField Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator CMod
CrossField Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator CMod B. LaBombard, M. Umansky, R.L. Boivin, J.A. Goetz, J. Hughes, B. Lipschultz, D. Mossessian, C.S. Pitcher, J.L.Terry,
More informationD.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin  Madison 1500 Engineering Drive Madison, WI 53706
D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin  Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current
More informationElectron temperature barriers in the RFXmod experiment
Electron temperature barriers in the RFXmod experiment A. Scaggion Consorzio RFX, Padova, Italy Tuesday 5 th October 2010 ADVANCED PHYSICS LESSONS 27/09/2010 07/10/2010 IPP GARCHING JOINT EUROPEAN RESEARCH
More informationITER Divertor Plasma Modelling with Consistent CoreEdge Parameters
CT/P7 ITER Divertor Plasma Modelling with Consistent CoreEdge Parameters A. S. Kukushkin ), H. D. Pacher ), G. W. Pacher 3), G. Janeschitz ), D. Coster 5), A. Loarte 6), D. Reiter 7) ) ITER IT, Boltzmannstr.,
More informationSTEADYSTATE EXHAUST OF HELIUM ASH IN THE WSHAPED DIVERTOR OF JT60U
Abstract STEADYSTATE EXHAUST OF HELIUM ASH IN THE WSHAPED DIVERTOR OF JT6U A. SAKASAI, H. TAKENAGA, N. HOSOGANE, H. KUBO, S. SAKURAI, N. AKINO, T. FUJITA, S. HIGASHIJIMA, H. TAMAI, N. ASAKURA, K. ITAMI,
More informationKinetic theory of ions in the magnetic presheath
Kinetic theory of ions in the magnetic presheath Alessandro Geraldini 1,2, Felix I. Parra 1,2, Fulvio Militello 2 1. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, Oxford
More informationPlasma shielding during ITER disruptions
Plasma shielding during ITER disruptions Sergey Pestchanyi and Richard Pitts 1 Integrated tokamak code TOKES is a workshop with various tools objects Radiation bremsstrahlung recombination s line s cyclotron
More informationDissipation Scales & Small Scale Structure
Dissipation Scales & Small Scale Structure Ellen Zweibel zweibel@astro.wisc.edu Departments of Astronomy & Physics University of Wisconsin, Madison and Center for Magnetic SelfOrganization in Laboratory
More informationHmode performance and pedestal studies with enhanced particle control on Alcator CMod
Hmode performance and pedestal studies with enhanced particle control on Alcator CMod J.W. Hughes, B. LaBombard, M. Greenwald, A. Hubbard, B. Lipschultz, K. Marr, R. McDermott, M. Reinke, J.L. Terry
More informationThis is a repository copy of Simulation of the interaction between plasma turbulence and neutrals in linear devices.
This is a repository copy of Simulation of the interaction between plasma turbulence and neutrals in linear devices. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/100/ Version:
More informationBounceaveraged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas
Bounceaveraged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Lei Qi a, Jaemin Kwon a, T. S. Hahm a,b and Sumin Yi a a National Fusion Research Institute (NFRI), Daejeon,
More informationPROGRESS IN STEADYSTATE SCENARIO DEVELOPMENT IN THE DIIID TOKAMAK
PROGRESS IN STEADYSTATE SCENARIO DEVELOPMENT IN THE DIIID TOKAMAK by T.C. LUCE, J.R. FERRON, C.T. HOLCOMB, F. TURCO, P.A. POLITZER, and T.W. PETRIE GA A26981 JANUARY 2011 DISCLAIMER This report was prepared
More informationFlow measurements in the ScrapeOff Layer of Alcator CMod using Impurity Plumes
Flow measurements in the ScrapeOff Layer of Alcator CMod using Impurity Plumes S. Gangadhara,. Laombard M.I.T. Plasma Science and Fusion Center, 175 Albany St., Cambridge, MA 2139 USA Abstract Accurate
More informationDensity Peaking At Low Collisionality on Alcator CMod
Density Peaking At Low Collisionality on Alcator CMod APSDPP Meeting Philadelphia, 10/31/2006 M. Greenwald, D. Ernst, A. Hubbard, J.W. Hughes, Y. Lin, J. Terry, S. Wukitch, K. Zhurovich, Alcator Group
More informationInteraction between plasma and neutrals near the divertor : the effect of particle and energy reflection
Eindhoven University of Technology MASTER Interaction between plasma and neutrals near the divertor : the effect of particle and energy reflection Minea, T. Award date: 23 Link to publication Disclaimer
More informationSensitivity of Tokamak Transport Modeling to Atomic Physics Data: Some Examples
Sensitivity of Tokamak Transport Modeling to Atomic Physics Data: Some Examples, S. Baek, J. D. Elder, M. L. Reinke, F. Scotti, J. L. Terry, S. J. Zweben IAEA Technical Meeting on Uncertainty Assessment
More informationIntroduction to Fusion Physics
Introduction to Fusion Physics Hartmut Zohm MaxPlanckInstitut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction
More informationFlow Measurements in the Divertor Region of DIIID and Plasma Characterization using a Reciprocating Probe
Flow Measurements in the DIIID Divertor Flow Measurements in the Divertor Region of DIIID and Plasma Characterization using a Reciprocating Probe J. Boedo, R. Lehmer, R. Moyer, J. Watkins, D. Hill, T.
More informationPhysics and Engineering Studies of the Advanced Divertor for a Fusion Reactor
1 FIP/34Ra Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor N. Asakura 1, K. Hoshino 1, H. Utoh 1, K. Shinya 2, K. Shimizu 3, S. Tokunaga 1, Y.Someya 1, K. Tobita 1, N. Ohno
More informationCharacteristics of the Hmode H and Extrapolation to ITER
Characteristics of the Hmode H Pedestal and Extrapolation to ITER The Hmode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference
More informationGyrokinetic Theory and Dynamics of the Tokamak Edge
ASDEX Upgrade Gyrokinetic Theory and Dynamics of the Tokamak Edge B. Scott Max Planck Institut für Plasmaphysik D85748 Garching, Germany PET15, Sep 2015 these slides: basic processes in the dynamics
More informationThe GDTbased fusion neutron source as a driver of subcritical nuclear fuel systems
The GDTbased fusion neutron source as a driver of subcritical nuclear fuel systems Presented by A.A.Ivanov Budker Institute, FZD Rossendorf, Joint Institute for Nuclear,, VNIITF, Snejinsk Layout of the
More informationGA A23411 COMPARISON OF LANGMUIR PROBE AND THOMSON SCATTERING MEASUREMENTS IN DIII D
GA A23411 COMPARISON OF LANGMUIR PROBE AND THOMSON SCATTERING by J.G. WATKINS, P.C. STANGEBY, J.A. BOEDO, T.N. CARLSTROM, C.J. LASNIER, R.A. MOYER, D.L. RUDAKOV, D.G. WHYTE JULY 2000 DISCLAIMER This report
More informationSimulation of Plasma Flow in the DIIID Tokamak
UCRLJC129497 Preprint Simulation of Plasma Flow in the DIIID Tokamak G.D Porter, T D. Rognlien, N. Wolf, J Boedo, R.C Isler This paper was prepared for submittal to 1998 International Congress on Plasma
More informationDrive of parallel flows by turbulence and largescale E B transverse transport in divertor geometry
Drive of parallel flows by turbulence and largescale E B transverse transport in divertor geometry D Galassi, Patrick Tamain, Hugo Bufferand, G Ciraolo, Philippe Ghendrih, C Baudoin, C Colin, Nicolas
More informationThis is a repository copy of Influence of plasma background including neutrals on scrapeoff layer filaments using 3D simulations.
This is a repository copy of Influence of plasma background including neutrals on scrapeoff layer filaments using 3D simulations. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/116241/
More informationII: The role of hydrogen chemistry in present experiments and in ITER edge plasmas. D. Reiter
II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas D. Reiter Institut für Plasmaphysik, FZJülich, Trilateral Euregio Cluster Atomic and Molecular Data for Fusion Energy
More informationFundamentals of Plasma Physics
Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)
More informationITER A/M/PMI Data Requirements and Management Strategy
ITER A/M/PMI Data Requirements and Management Strategy Steven Lisgo, R. Barnsley, D. Campbell, A. Kukushkin, M. Hosokawa, R. A. Pitts, M. Shimada, J. Snipes, A. Winter ITER Organisation with contributions
More informationPower Exhaust on JET: An Overview of Dedicated Experiments
Power Exhaust on JET: An Overview of Dedicated Experiments W.Fundamenski, P.Andrew, T.Eich 1, G.F.Matthews, R.A.Pitts 2, V.Riccardo, W.Sailer 3, S.Sipila 4 and JET EFDA contributors 5 Euratom/UKAEA Fusion
More informationOverview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations
Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Lecture by: P.H. Diamond Notes by: C.J. Lee March 19, 2014 Abstract Toroidal rotation is a key part of the design of ITER
More informationAMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code
AMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code George Wilkie (gwilkie@umd.edu) Supervisor: William Dorland (bdorland@umd.edu) October 11, 2011 Abstract Simulations of turbulent plasma in
More informationInvestigation of causes for the discrepancy between the measured and modeled helium emissions using a gas puff imaging diagnostic
Investigation of causes for the discrepancy between the measured and modeled helium emissions using a gas puff imaging diagnostic S. Baek, J. Terry, D. P. Stotler*, D. Brunner, B. LaBombard MIT Plasma
More informationGA A22863 PLASMA PRESSURE AND FLOWS DURING DIVERTOR DETACHMENT
GA A22863 PLASMA PRESSURE AND FLOWS DURING DIVERTOR DETACHMENT by M.J. SCHAFFER, J.A. BOEDO, N.H. BROOKS, R.C. ISLER, and R.A. MOYER AUGUST 1998 DISCLAIMER This report was prepared as an account of work
More informationOn Dust Particle Dynamics in Tokamak Edge Plasma
On Dust Particle Dynamics in Tokamak Edge Plasma Sergei Krasheninnikov University of California, San Diego, USA With contributions from Y. Tomita 1, R. D. Smirnov, and R. K. Janev 1 1 National Institute
More informationEnhanced Energy Confinement Discharges with Lmodelike Edge Particle Transport*
Enhanced Energy Confinement Discharges with Lmodelike Edge Particle Transport* E. Marmar, B. Lipschultz, A. Dominguez, M. Greenwald, N. Howard, A. Hubbard, J. Hughes, B. LaBombard, R. McDermott, M. Reinke,
More informationBurn Stabilization of a Tokamak Power Plant with OnLine Estimations of Energy and Particle Confinement Times
Burn Stabilization of a Tokamak Power Plant with OnLine Estimations of Energy and Particle Confinement Times Javier E. Vitela vitela@nucleares.unam.mx Instituto de Ciencias Nucleares Universidad Nacional
More informationEvidence for electromagnetic fluid drift turbulence controlling the edge plasma state in the Alcator CMod tokamak
PSFC/JA054 Evidence for electromagnetic fluid drift turbulence controlling the edge plasma state in the Alcator CMod tokamak B. LaBombard, J.W. Hughes, D. Mossessian, M. Greenwald, B. Lipschultz, J.L.
More information