Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields

Size: px
Start display at page:

Download "Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields"

Transcription

1 Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields H. Frerichs, O. Schmitz, I. Waters, G. P. Canal, T. E. Evans, Y. Feng and V. Soukhanovskii University of Wisconsin - Madison ISTW - November 3-6, 2015 H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U

2 Motivation: control of divertor head loads Control of divertor heat loads (both steady state and transient) remains one of the key challenges for a fusion based reactor and for a compact fusion nuclear science development facility (FSNF) Resonant magnetic perturbations (RMPs) are a promising method for ELM control breaking of axisymmetry Advanced divertors (specialized divertor geometry): Snowflake, X-divertor) for steady state heat flux reduction Likely, both concepts will have to work together, and NSTX-U is a well suited device to study this: What is the impact on neutral fueling and exhaust (density control), and how does this affect high recycling and transition to detachment? H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 1

3 1 Introduction to magnetic perturbations 2 The snowflake divertor configuration 3 Edge transport modeling Introduction to EMC3-EIRENE First simulation results H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 2

4 Perturbation of the magnetic separatrix lobes The separatrix associated with X has 2 branches (set of field line trajectories): W + = W = { } p lim F p (l) X l { } p lim F p(l) X l W W + X point F p (l): field line through p Both branches overlap in the unperturbed configuration (arrows indicate field direction) H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 3

5 Perturbation of the magnetic separatrix lobes The separatrix associated with X has 2 branches (set of field line trajectories): W + = W = { } p lim F p (l) X l { } p lim F p(l) X l + W W (arrows indicate field direction) F p (l): field line through p Both branches overlap in the unperturbed configuration Magnetic perturbations result in a splitting, and both branches may intersect each other transversely This opens up a connection between the plasma interior and the divertor targets H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 3

6 Lobe density increases with lower aspect ratio n = n = 3 Vertical position [cm] A = 1.7 NSTX U Vertical position [cm] A = 2.8 DIII D Major radius [cm] Major radius [cm] Lobes become smaller and more frequent towards the X-point lobe density: 1 L n B tor 2π R B pol n B 0 2π R 0 B pol ( 1 δ ) 2 X A Higher density may facilitate heat flux spreading between lobes Radial extension of lobes depends on perturbation strength H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 4

7 Radial size of lobes defines poloidal extend of the magnetic footprint, lobe density not affected by I c NSTX U: ISP I c [ka] = Vertical Position [cm] Toroidal Angle [deg] H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 5

8 1 Introduction to magnetic perturbations 2 The snowflake divertor configuration 3 Edge transport modeling Introduction to EMC3-EIRENE First simulation results H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 6

9 The snowflake divertor configuration Second order null of the poloidal magnetic field the separatrix acquires a characteristic hexagonal form This results in a flux expansion near the null-point, and while B (snowflake) pol r 2 (standard divertor) B pol r: distance from the null-point r SF facilitates longer connection lengths and two additional strike points Generalization: two first order nulls in (close) proximity D. Ryutov et al, Phys. Plasmas 15, (2008) H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 7

10 The snowflake configuration allows for a variety of magnetic topologies at NSTX-U Nearly exact Snowflake (SF0) Normalized poloidal flux Nearly exact snowflake : approximation to classical snowflake H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 8

11 The snowflake configuration allows for a variety of magnetic topologies at NSTX-U Nearly exact Snowflake (SF0) Normalized poloidal flux Nearly exact snowflake : approximation to classical snowflake Here SF0 is actually snowflake minus, which is topologically equivalent to connected double null (CDN) H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 8

12 The snowflake configuration allows for a variety of magnetic topologies at NSTX-U Nearly exact Snowflake (SF0) Tilted Snowflake Minus (SF ) Snowflake Plus (SF+) Njw_ NfHz0+Qf NfHz0+Qg Normalized poloidal flux Nearly exact snowflake : approximation to classical snowflake Here SF0 is actually snowflake minus, which is topologically equivalent to connected double null (CDN) The secondary X-points in the (tilted) SF- and SF+ configurations here are outside the divertor targets topology is lower single null (LSN) H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 8

13 SF0 has increased connection length, but flux compression on target (with respect to SD) Connection Length [ m] PFR Outer Strike Point SOL SD SF- SF+ SF0 Distance from OSP [cm] Flux surface connection SD SF- SF+ SF Distance from Separatrix [cm] Distance from Separatrix (LFS midplane) [cm] Both SF0 and SF- feature longer connection lengths then SD at the outer strike point: may result in lower divertor temperatures SF0 features flux compression while SF- features flux expansion with respect to standard divertor (SD) configuration: can impact heat flux spreading H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 9

14 SF0 has increased connection length, but flux compression on target (with respect to SD) Connection Length [ m] PFR Outer Strike Point SOL SD SF- SF+ SF0 SF0 (div. adjust) Distance from OSP [cm] Flux surface connection SD SF- SF+ SF0 SF0 (div. adjust) Distance from Separatrix [cm] Distance from Separatrix (LFS midplane) [cm] Both SF0 and SF- feature longer connection lengths then SD at the outer strike point: may result in lower divertor temperatures SF0 features flux compression while SF- features flux expansion with respect to standard divertor (SD) configuration: can impact heat flux spreading H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 9

15 Lobe size and extension depends on equilibrium Vertical Position [cm] BT = 1T -160 IP = 2 MA SD Vertical Position [cm] BT = 1T IP = 1 MA Major Radius [cm] Major Radius [cm] SF0 Lobe density is much higher in SF0, i.e. lobe size is smaller (I p = 1 MA) Lobe size scales with r 2 near the X-point 4 3 in SF0, because B pol does 2 very small change in size between 1 neighboring lobes 0 Lobe spacing [cm] SD SF- SF+ SF Distance from X-point along separatrix [cm] H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 10

16 1 Introduction to magnetic perturbations 2 The snowflake divertor configuration 3 Edge transport modeling Introduction to EMC3-EIRENE First simulation results H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 11

17 A 3D steady state transport model for the edge plasma Field lines are reconstructed from a 3D block-structured grid which can be adapted to the topology at hand H. Frerichs et al., Comp. Phys. Commun. 181 (2010) 61 Classical transport (Braginskii) along field lines Self-consistent solution by iterative application Magnetic field structure FLARE: 3D field line grid Plasma Transport EMC3: Fluid model Monte Carlo method Plasma Background n, u, Te, Ti Sources/Sinks Sp, Sm, See, Sei Transport coefficients Neutral Gas Transport EIRENE: Kinetic Model Monte Carlo method The following simulations are based on: Particle in-flux Γ in = s 1 (50 A) Recycling coefficient c rec = 0.99 Edge input power P in = 2 MW Anomalous cross-field transport: (particles) D = 0.3 m 2 s 1 (energy) χ e = χ i = 2.0 m 2 s 1 Impurity transport and radiation is neglected at this point H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 12

18 No RMPs: SF0 operates at higher divertor density H. Frerichs 3D edge modeling for NTSX-U 13

19 RMPs: Lobes at the LFS, diffusion to strong at HFS H. Frerichs 3D edge modeling for NTSX-U 14

20 Heat load analysis favours SF- configuration Target Heat Load [MW m -2 ] Heat load in axisymmetric configuration Distance from Separatrix [cm] SD SF- SF+ SF0 Small reduction of peak heat load in SF+ Moderate reduction of peak heat load in SF-, peak is found at cm distance from the separatrix Significant increase of peak heat load in SF0 due to compression of flux surfaces at the divertor target. H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 15

21 Heat load analysis favours SF- configuration Target Heat Load [MW m -2 ] Heat load in axisymmetric configuration Distance from Separatrix [cm] SD SF- SF+ SF0 Target Heat Load [MW m -2 ] Heat load in RMP configuration Distance from Separatrix [cm] SD SF- SF+ SF0 Small reduction of peak heat load in SF+ Moderate reduction of peak heat load in SF-, peak is found at cm distance from the separatrix Significant increase of peak heat load in SF0 due to compression of flux surfaces at the divertor target. No significant impact of RMPs on toroidally averaged heat loads H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 15

22 Summary and conclusions Application of RMPs results in the formation of helical lobes which have a higher frequency at lower aspect ratio The snowflake family of divertor configurations allows a variety of magnetic topologies ranging from flux compression to flux expansion at the divertor targets First transport simulations favour the SF- configuration for heat load reduction Outlook: How do RMPs and advanced divertor configurations impact neutral fueling and exhaust, and how does this affect high recycling and transition to detachment? What is the impact of plasma response effects (use NIMROD, M3D-C1) H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 16

23 2w h R 0 w aspect ratio: A = R 0 /w elongation: κ = h/w triangularity: δ = /w 2h X H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 17

24 Radial lobe size depends on perturbation strength in relation to equilibrium field Vertical Position [cm] Vertical Position [cm] SD -125 SF Ψ = B T = 1T B T = 1T IP = 2 MA Ψ = IP = 2 MA Major Radius [cm] Major Radius [cm] SF SF Ψ = Ψ = Ψ = B -155 T = 1T B T = 1T -155 I P = 2 MA IP = 1 MA Major Radius [cm] Vertical Position [cm] Vertical Position [cm] Major Radius [cm] H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 18

25 Field lines can connect through the lobes from inside the separatrix to the divertor targets H. Frerichs 3D edge modeling for NTSX-U 19

26 Moiré pattern caused by small, similar sized lobes Lobe frequency is much higher in SF0, i.e. lobe size is smaller (I p = 1 MA) Lobe size scales with r 2 near the X-point 4 3 in SF0, because B pol does 2 very small change in size between 1 neighboring lobes 0 Lobe spacing [cm] SD SF- SF+ SF Distance from X-point along separatrix [cm] H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 20

27 A 3D steady state fluid model for the edge plasma Particle balance (n: plasma density) [nu e D e e n ] = S p D : anomalous cross-field diffusion, S p: ionization of neutral particles Momentum balance (u : fluid velocity parallel to magnetic field lines) [ m i nu 2 e η e e u D e e ( m i nu ) ] = e n (T e + T i ) + S m η T 5/2 i : parallel viscosity, η = m i nd : cross-field viscosity, S m: interaction (CX) with neutral particles Energy balance (T e, T i : electron and ion temperature) [ 5 ( 2 Te nu e D e e n ) ( ] ) κ ee e + χ en e e Te [ 5 2 T ( i nu e D e e n ) ( ] ) κ i e e + χ i n e e Ti = +k (T i T e) + S ee = k (T i T e) + S ei κ e,i T 5/2 e,i : classical parallel heat conductivity, χ e, χ i : anomalous cross-field transport, k n 2 T 3/2 e : energy exchange between el. and ions, S ee, S ei : interaction with neutral particles and impurities (radiation) H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 21

28 Field lines are reconstructed from a finite flux-tube grid The 3D grid is generated by field lines tracing starting from 2D base grids Grid nodes Pre calculated field lines > 3D finite flux tube grid Reconstructed field line ϕ base EMC3: bilinear interpolation within flux-tubes (4 pre-calculated field lines) Separatrix LCFS LSN 0 DDN 0 CDN Inner sepx. Outer sepx. LCFS Separatrix LCFS Discretization in the cross-field direction can be adapted to the magnetic configuration at hand. Unlike grids for 2D transport modeling, the actual information about the magnetic configuration is not stored in the 2D base grid(s) but in the 3D grid. H. Frerichs (hfrerichs@wisc.edu) 3D edge modeling for NTSX-U 22

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, V. Chan, R. Stambaugh (General Atomics) J. Canik, A. Sontag, M. Cole (Oak Ridge National Laboratory)

More information

Fusion Development Facility (FDF) Divertor Plans and Research Options

Fusion Development Facility (FDF) Divertor Plans and Research Options Fusion Development Facility (FDF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, M. Wade, V. Chan, R. Stambaugh (General Atomics) J. Canik (Oak Ridge National Laboratory) P. Stangeby

More information

Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment.

Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment. Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment E. Kolemen a, S.L. Allen b, B.D. Bray c, M.E. Fenstermacher b, D.A. Humphreys c, A.W. Hyatt c, C.J. Lasnier b,

More information

Divertor Heat Flux Reduction and Detachment in NSTX

Divertor Heat Flux Reduction and Detachment in NSTX 1 EX/P4-28 Divertor Heat Flux Reduction and Detachment in NSTX V. A. Soukhanovskii 1), R. Maingi 2), R. Raman 3), R. E. Bell 4), C. Bush 2), R. Kaita 4), H. W. Kugel 4), C. J. Lasnier 1), B. P. LeBlanc

More information

Results From Initial Snowflake Divertor Physics Studies on DIII-D

Results From Initial Snowflake Divertor Physics Studies on DIII-D Results From Initial Snowflake Divertor Physics Studies on DIII-D S. L. Allen, V. A. Soukhanovskii, T.H. Osborne, E. Kolemen, J. Boedo, N. Brooks, M. Fenstermacher, R. Groebner, D. N. Hill, A. Hyatt, C.

More information

Modelling of JT-60U Detached Divertor Plasma using SONIC code

Modelling of JT-60U Detached Divertor Plasma using SONIC code J. Plasma Fusion Res. SERIES, Vol. 9 (2010) Modelling of JT-60U Detached Divertor Plasma using SONIC code Kazuo HOSHINO, Katsuhiro SHIMIZU, Tomonori TAKIZUKA, Nobuyuki ASAKURA and Tomohide NAKANO Japan

More information

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor 1 FIP/3-4Ra Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor N. Asakura 1, K. Hoshino 1, H. Utoh 1, K. Shinya 2, K. Shimizu 3, S. Tokunaga 1, Y.Someya 1, K. Tobita 1, N. Ohno

More information

Comparison of Divertor Heat Flux Splitting by 3D Fields with Field Line Tracing Simulation in KSTAR

Comparison of Divertor Heat Flux Splitting by 3D Fields with Field Line Tracing Simulation in KSTAR 1 Comparison of Divertor Heat Flux Splitting by 3D Fields with Field Line Tracing Simulation in KSTAR W. Choe 1,2*, K. Kim 1,2, J.-W. Ahn 3, H.H. Lee 4, C.S. Kang 4, J.-K. Park 5, Y. In 4, J.G. Kwak 4,

More information

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011 Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor

More information

Effect of non-axisymmetric magnetic perturbations on divertor heat and particle flux profiles

Effect of non-axisymmetric magnetic perturbations on divertor heat and particle flux profiles 1 EXD/P3-01 Effect of non-axisymmetric magnetic perturbations on divertor heat and particle flux profiles J-W. Ahn 1, J.M. Canik 1, R. Maingi 1, T.K. Gray 1, J.D. Lore 1, A.G. McLean 1, J.-K. Park 2, A.L.

More information

Hydrogen and Helium Edge-Plasmas

Hydrogen and Helium Edge-Plasmas Hydrogen and Helium Edge-Plasmas Comparison of high and low recycling T.D. Rognlien and M.E. Rensink Lawrence Livermore National Lab Presented at the ALPS/APEX Meeting Argonne National Lab May 8-12, 2

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current

More information

Attainment of a stable, fully detached plasma state in innovative divertor configurations

Attainment of a stable, fully detached plasma state in innovative divertor configurations Attainment of a stable, fully detached plasma state in innovative divertor configurations M.V. Umansky, Lawrence, Livermore National Laboratory, Livermore, CA 94550, USA O. Izacard, M.E. Rensink, T.D.

More information

EXD/P3-13. Dependences of the divertor and midplane heat flux widths in NSTX

EXD/P3-13. Dependences of the divertor and midplane heat flux widths in NSTX 1 Dependences of the ertor and plane heat flux widths in NSTX T.K. Gray1,2), R. Maingi 2), A.G. McLean 2), V.A. Soukhanovskii 3) and J-W. Ahn 2) 1) Oak Ridge Institute for Science and Education (ORISE),

More information

Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-60U

Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-60U EX/D-3 Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-6U N. Asakura ), H. Takenaga ), S. Sakurai ), G.D. Porter ), T.D. Rognlien ), M.E. Rensink ), O. Naito ), K. Shimizu

More information

GA A26123 PARTICLE, HEAT, AND SHEATH POWER TRANSMISSION FACTOR PROFILES DURING ELM SUPPRESSION EXPERIMENTS ON DIII-D

GA A26123 PARTICLE, HEAT, AND SHEATH POWER TRANSMISSION FACTOR PROFILES DURING ELM SUPPRESSION EXPERIMENTS ON DIII-D GA A26123 PARTICLE, HEAT, AND SHEATH POWER TRANSMISSION FACTOR PROFILES DURING ELM SUPPRESSION EXPERIMENTS ON DIII-D by J.G. WATKINS, T.E. EVANS, I. JOSEPH, C.J. LASNIER, R.A. MOYER, D.L. RUDAKOV, O. SCHMITZ,

More information

Scaling of divertor heat flux profile widths in DIII-D

Scaling of divertor heat flux profile widths in DIII-D LLNL-PROC-432803 Scaling of divertor heat flux profile widths in DIII-D C. J. Lasnier, M. A Makowski, J. A. Boedo, S. L. Allen, N. H. Brooks, D. N. Hill, A. W. Leonard, J. G. Watkins, W. P. West May 20,

More information

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OVERVIEW OF THE ALCATOR C-MOD PROGRAM IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE C-Mod is compact, high field, high density, high power

More information

Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell

Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell J.M. Canik, L.W. Owen, Y.K.M. Peng, J. Rapp, R.H. Goulding Oak Ridge National Laboratory ORNL is developing a helicon-based

More information

UEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIII-D on Divertor Performance

UEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIII-D on Divertor Performance UEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIII-D on Divertor Performance N.S. Wolf, G.D. Porter, M.E. Rensink, T.D. Rognlien Lawrence Livermore National Lab, And the DIII-D team

More information

GA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIII-D

GA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIII-D GA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIII-D by A. WINGEN, N.M. FERRARO, M.W. SHAFER, E.A. UNTERBERG, T.E. EVANS, D.L. HILLIS, and P.B. SNYDER JULY 2014 DISCLAIMER This report was

More information

GA A26136 THREE DIMENSIONAL TRANSPORT ANALYSIS FOR ELM CONTROL EXPERIMENTS IN ITER SIMILAR SHAPE PLASMAS AT LOW COLLISIONALITY IN DIII-D

GA A26136 THREE DIMENSIONAL TRANSPORT ANALYSIS FOR ELM CONTROL EXPERIMENTS IN ITER SIMILAR SHAPE PLASMAS AT LOW COLLISIONALITY IN DIII-D GA A26136 THREE DIMENSIONAL TRANSPORT ANALYSIS FOR ELM CONTROL EXPERIMENTS IN ITER SIMILAR SHAPE PLASMAS AT LOW COLLISIONALITY IN DIII-D by O. SCHMITZ, T.E. EVANS, M.E. FENSTERMACHER, H. FRERICHS, M.W.

More information

Physics of the detached radiative divertor regime in DIII-D

Physics of the detached radiative divertor regime in DIII-D Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S741-3335(99)97299-8 Physics of the detached radiative divertor regime in DIII-D M E Fenstermacher, J Boedo, R C Isler, A W Leonard,

More information

Non-Solenoidal Plasma Startup in

Non-Solenoidal Plasma Startup in Non-Solenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APS-DPP, Nov. 2, 28 1 Point-Source DC Helicity Injection Provides Viable Non-Solenoidal Startup Technique

More information

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5.

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5. 1. Motivation power exhaust in JT-60SA tokamak 2. Tool COREDIV code 3. Operational scenarios of JT-60SA 4. Results 5. Conclusions K. Gałązka Efficient power exhaust in JT-60SA by COREDIV Page 2 The Institute

More information

Scaling of divertor plasma effectiveness for reducing target-plate heat flux

Scaling of divertor plasma effectiveness for reducing target-plate heat flux Scaling of divertor plasma effectiveness for reducing target-plate heat flux T.D. Rognlien, I. Joseph, G.D. Porter, M.E. Rensink, M.V. Umansky, LLNL S.I. Krasheninnikov & A.Yu. Pigarov, UCSD; M. Groth,

More information

Impact of neutral atoms on plasma turbulence in the tokamak edge region

Impact of neutral atoms on plasma turbulence in the tokamak edge region Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International

More information

Highlights from (3D) Modeling of Tokamak Disruptions

Highlights from (3D) Modeling of Tokamak Disruptions Highlights from (3D) Modeling of Tokamak Disruptions Presented by V.A. Izzo With major contributions from S.E. Kruger, H.R. Strauss, R. Paccagnella, MHD Control Workshop 2010 Madison, WI ..onset of rapidly

More information

GA A26778 THE INFLUENCE OF THREE-DIMENSIONAL STOCHASTIC MAGNETIC BOUNDARIES ON PLASMA EDGE TRANSPORT AND THE RESULTING PLASMA WALL INTERACTION

GA A26778 THE INFLUENCE OF THREE-DIMENSIONAL STOCHASTIC MAGNETIC BOUNDARIES ON PLASMA EDGE TRANSPORT AND THE RESULTING PLASMA WALL INTERACTION GA A26778 THE INFLUENCE OF THREE-DIMENSIONAL STOCHASTIC MAGNETIC BOUNDARIES ON PLASMA EDGE TRANSPORT AND THE RESULTING PLASMA WALL INTERACTION by O. SCHMITZ, T.E. EVANS, J. BOEDO, M.E. FENSTERMACHER, M.

More information

Resonant magnetic perturbation experiments on MAST using external and internal coils for ELM control

Resonant magnetic perturbation experiments on MAST using external and internal coils for ELM control 11/5/09 Resonant magnetic perturbation experiments on MAST using external and internal coils for ELM control A. Kirk, E. Nardon, R. Akers, M. Bécoulet a, G. De Temmerman, B. Dudson b, B. Hnat c, Y.Q. Liu,

More information

3D analysis of impurity transport and radiation for ITER limiter start-up configurations

3D analysis of impurity transport and radiation for ITER limiter start-up configurations 3D analysis of impurity transport and radiation for ITER limiter start-up configurations P2-74 X. Zha a*, F. Sardei a, Y. Feng a, M. Kobayashi b, A. Loarte c, G. Federici c a Max-Planck-Institut für Plasmaphysik,

More information

Developing Steady State ELM-absent H-Mode scenarios with Advanced Divertor Configuration in EAST tokamak

Developing Steady State ELM-absent H-Mode scenarios with Advanced Divertor Configuration in EAST tokamak Developing Steady State ELM-absent H-Mode scenarios with Advanced Divertor Configuration in EAST tokamak G. Calabrò, B.J. Xiao, J.G. Li, Z.P. Luo, Q.P. Yuan, L. Wang, K. Wu, R. Albanese, R. Ambrosino,

More information

Evaluation of First Wall Heat Fluxes Due to Magnetic Perturbations for a Range of ITER Scenarios

Evaluation of First Wall Heat Fluxes Due to Magnetic Perturbations for a Range of ITER Scenarios EUROFUSION WP14ER PR(14)04 P. Cahyna et al. Evaluation of First Wall Heat Fluxes Due to Magnetic Perturbations for a Range of ITER Scenarios Preprint of Paper to be submitted for publication in Journal

More information

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport 1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193 Japan

More information

Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor

Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT, July 8-10, 2009 CMOD Mo tile divertor erosion/redeposition

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Non-solenoidal startup using point-source DC helicity injectors

More information

Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact

Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact Peter Stangeby 4 September 2003 1. Fig. 1 shows an example of a suitable magnetic configuration for application

More information

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor FIP/3-4Rb FIP/3-4Ra DEMO Concept Development and Assessment of Relevant Technologies Y. Sakamoto, K. Tobita, Y. Someya, H. Utoh, N. Asakura, K. Hoshino, M. Nakamura, S. Tokunaga and the DEMO Design Team

More information

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer N. Smick, B. LaBombard MIT Plasma Science and Fusion Center PSI-19 San Diego, CA May 25, 2010 Boundary flows

More information

ArbiTER studies of filamentary structures in the SOL of spherical tokamaks

ArbiTER studies of filamentary structures in the SOL of spherical tokamaks ArbiTER studies of filamentary structures in the SOL of spherical tokamaks D. A. Baver, J. R. Myra, Research Corporation F. Scotti, Lawrence Livermore National Laboratory S. J. Zweben, Princeton Plasma

More information

Scaling of divertor heat flux profile widths in DIII-D

Scaling of divertor heat flux profile widths in DIII-D 1 Scaling of divertor heat flux profile widths in DIII-D C.J. Lasnier 1, M.A. Makowski 1, J.A. Boedo 2, N.H. Brooks 3, D.N. Hill 1, A.W. Leonard 3, and J.G. Watkins 4 e-mail:lasnier@llnl.gov 1 Lawrence

More information

Total Flow Vector in the C-Mod SOL

Total Flow Vector in the C-Mod SOL Total Flow Vector in the SOL N. Smick, B. LaBombard MIT Plasma Science and Fusion Center APS-DPP Annual Meeting Atlanta, GA November 3, 2009 Motivation and Goals Measurements have revealed high parallel

More information

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D Studies of H Mode Plasmas Produced Directly by Pellet Injection in by P. Gohil in collaboration with L.R. Baylor,* K.H. Burrell, T.C. Jernigan,* G.R. McKee, *Oak Ridge National Laboratory University of

More information

AN UPDATE ON DIVERTOR HEAT LOAD ANALYSIS

AN UPDATE ON DIVERTOR HEAT LOAD ANALYSIS AN UPDATE ON DIVERTOR HEAT LOAD ANALYSIS T.K. Mau, A. Grossman, A.R. Raffray UC-San Diego H. McGuinness RPI ARIES-CS Project Meeting June 4-5, 5 University of Wisconsin, Madison OUTLINE Divertor design

More information

A neoclassical model for toroidal rotation and the radial electric field in the edge pedestal. W. M. Stacey

A neoclassical model for toroidal rotation and the radial electric field in the edge pedestal. W. M. Stacey A neoclassical model for toroidal rotation and the radial electric field in the edge pedestal W. M. Stacey Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332, USA October, 2003 ABSTRACT

More information

Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas

Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas Yang Chen and Scott E. Parker University of Colorado at Boulder Gregory Rewoldt Princeton Plasma Physics Laboratory

More information

TARGET PLATE CONDITIONS DURING STOCHASTIC BOUNDARY OPERATION ON DIII D

TARGET PLATE CONDITIONS DURING STOCHASTIC BOUNDARY OPERATION ON DIII D GA A25445 TARGET PLATE CONDITIONS DURING STOCHASTIC BOUNDARY OPERATION ON DIII D by J.G. WATKINS, T.E. EVANS, C.J. LASNIER, R.A. MOYER, and D.L. RUDAKOV JUNE 2006 QTYUIOP DISCLAIMER This report was prepared

More information

L-Mode and Inter-ELM Divertor Particle and Heat Flux Width Scaling on MAST

L-Mode and Inter-ELM Divertor Particle and Heat Flux Width Scaling on MAST CCFE-PR(13)33 J. R. Harrison, G. M. Fishpool and A. Kirk L-Mode and Inter-ELM Divertor Particle and Heat Flux Width Scaling on MAST Enquiries about copyright and reproduction should in the first instance

More information

Particle Transport Measurements in the LHD Stochastic Magnetic Boundary Plasma using Mach Probes and Ion Sensitive Probe

Particle Transport Measurements in the LHD Stochastic Magnetic Boundary Plasma using Mach Probes and Ion Sensitive Probe Particle Transport Measurements in the LHD Stochastic Magnetic Boundary Plasma using Mach Probes and Ion Sensitive Probe N. Ezumi a*, K. Todoroki a, T. Kobayashi b, K. Sawada c, N. Ohno b, M. Kobayashi

More information

Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations

Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations A. Pochelon, and the TCV team 1 Ecole Polytechnique de Lausanne (EPFL)

More information

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Physics of fusion power. Lecture 14: Anomalous transport / ITER Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities

More information

Development of an experimental profile database for the scrape-off layer

Development of an experimental profile database for the scrape-off layer Development of an experimental profile database for the scrape-off layer M. Groth, 1 G.D. Porter, 1 W.M. Meyer, 1 A.W. Leonard, 2 T.H. Osborne, 2 D.P. Coster, 3 A. Kallenbach, 3 M. Wischmeier 3 N.H. Brooks,

More information

Edge Impurity Dynamics During an ELM Cycle in DIII D

Edge Impurity Dynamics During an ELM Cycle in DIII D Edge Impurity Dynamics During an ELM Cycle in by M.R. Wade 1 in collaboration with K.H. Burrell, A.W. Leonard, T.H. Osborne, P.B. Snyder, J.T. Hogan, 1 and D. Coster 3 1 Oak Ridge National Laboratory General

More information

Cross-Field Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator C-Mod

Cross-Field Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator C-Mod Cross-Field Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator C-Mod B. LaBombard, M. Umansky, R.L. Boivin, J.A. Goetz, J. Hughes, B. Lipschultz, D. Mossessian, C.S. Pitcher, J.L.Terry,

More information

Effect of Ion Orbit Loss on Rotation and the Radial Electric Field in the DIII-D Tokamak

Effect of Ion Orbit Loss on Rotation and the Radial Electric Field in the DIII-D Tokamak Effect of Ion Orbit Loss on Rotation and the Radial Electric Field in the DIII-D Tokamak by T.M. Wilks 1 with W.M. Stacey 1 and T.E. Evans 2 1 Georgia Institute of Technology 2 General Atomics Presented

More information

Experimental results and modelling of ASDEX Upgrade partial detachment

Experimental results and modelling of ASDEX Upgrade partial detachment Experimental results and modelling of ASDEX Upgrade partial detachment M. Wischmeier 1 With thanks to X. Bonnin 2, P. Börner 3, A. Chankin 1, D. P. Coster 1, M. Groth 4, A. Kallenbach 1, V. Kotov 3, H.

More information

ONION-SKIN METHOD (OSM) ANALYSIS OF DIII D EDGE MEASUREMENTS

ONION-SKIN METHOD (OSM) ANALYSIS OF DIII D EDGE MEASUREMENTS GA A2342 ONION-SKIN METHOD (OSM) ANALYSIS OF DIII D EDGE MEASUREMENTS by P.C. STANGEBY, J.G. WATKINS, G.D. PORTER, J.D. ELDER, S. LISGO, D. REITER, W.P. WEST, and D.G. WHYTE JULY 2 DISCLAIMER This report

More information

Simulation of Plasma Flow in the DIII-D Tokamak

Simulation of Plasma Flow in the DIII-D Tokamak UCRL-JC-129497 Preprint Simulation of Plasma Flow in the DIII-D Tokamak G.D Porter, T D. Rognlien, N. Wolf, J Boedo, R.C Isler This paper was prepared for submittal to 1998 International Congress on Plasma

More information

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP - EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak

More information

ITER Divertor Plasma Modelling with Consistent Core-Edge Parameters

ITER Divertor Plasma Modelling with Consistent Core-Edge Parameters CT/P-7 ITER Divertor Plasma Modelling with Consistent Core-Edge Parameters A. S. Kukushkin ), H. D. Pacher ), G. W. Pacher 3), G. Janeschitz ), D. Coster 5), A. Loarte 6), D. Reiter 7) ) ITER IT, Boltzmannstr.,

More information

Predicting the Rotation Profile in ITER

Predicting the Rotation Profile in ITER Predicting the Rotation Profile in ITER by C. Chrystal1 in collaboration with B. A. Grierson2, S. R. Haskey2, A. C. Sontag3, M. W. Shafer3, F. M. Poli2, and J. S. degrassie1 1General Atomics 2Princeton

More information

IMPLICATIONS OF WALL RECYCLING AND CARBON SOURCE LOCATIONS ON CORE PLASMA FUELING AND IMPURITY CONTENT IN DIII-D

IMPLICATIONS OF WALL RECYCLING AND CARBON SOURCE LOCATIONS ON CORE PLASMA FUELING AND IMPURITY CONTENT IN DIII-D 20 th IAEA Fusion Energy Conference Vilamoura, Portugal, 1 to 6 November 2004 IAEA-CN-116/EX/P5-19 IMPLICATIONS OF WALL RECYCLING AND CARBON SOURCE LOCATIONS ON CORE PLASMA FUELING AND IMPURITY CONTENT

More information

Particle transport results from collisionality scans and perturbative experiments on DIII-D

Particle transport results from collisionality scans and perturbative experiments on DIII-D 1 EX/P3-26 Particle transport results from collisionality scans and perturbative experiments on DIII-D E.J. Doyle 1), L. Zeng 1), G.M. Staebler 2), T.E. Evans 2), T.C. Luce 2), G.R. McKee 3), S. Mordijck

More information

II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas. D. Reiter

II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas. D. Reiter II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas D. Reiter Institut für Plasmaphysik, FZ-Jülich, Trilateral Euregio Cluster Atomic and Molecular Data for Fusion Energy

More information

First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIII-D Matched-Shape Plasmas

First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIII-D Matched-Shape Plasmas 1 PD/1-1 First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIII-D Matched-Shape Plasmas R. Nazikian 1, W. Suttrop 2, A. Kirk 3, M. Cavedon 2, T.E. Evans

More information

Edge Momentum Transport by Neutrals

Edge Momentum Transport by Neutrals 1 TH/P3-18 Edge Momentum Transport by Neutrals J.T. Omotani 1, S.L. Newton 1,2, I. Pusztai 1 and T. Fülöp 1 1 Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 CCFE,

More information

Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations.

Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. M. Becoulet 1, F. Orain 1, G.T.A. Huijsmans 2, G. Dif- Pradalier 1, G. Latu 1, C. Passeron 1, E. Nardon 1, V. Grandgirard

More information

Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas

Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas 1 Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas N. Hayashi 1), T. Takizuka 1), N. Aiba 1), N. Oyama 1), T. Ozeki 1), S. Wiesen 2), V. Parail 3) 1) Japan Atomic Energy Agency,

More information

Divertor configuration with two nearby poloidal field nulls: modelling and experiments for EAST and JET tokamaks

Divertor configuration with two nearby poloidal field nulls: modelling and experiments for EAST and JET tokamaks EUROFUSION WPDTT1-PR(16) 14721 G Calabro et al. Divertor configuration with two nearby poloidal field nulls: modelling and experiments for EAST and JET tokamaks Preprint of Paper to be submitted for publication

More information

arxiv: v1 [physics.plasm-ph] 24 Nov 2017

arxiv: v1 [physics.plasm-ph] 24 Nov 2017 arxiv:1711.09043v1 [physics.plasm-ph] 24 Nov 2017 Evaluation of ideal MHD mode stability of CFETR baseline scenario Debabrata Banerjee CAS Key Laboratory of Geospace Environment and Department of Modern

More information

Modelling of the ICRF induced ExB convection in the scrape off layer of ASDEX Upgrade

Modelling of the ICRF induced ExB convection in the scrape off layer of ASDEX Upgrade EUROFUSION WPMST1-PR(16) 15797 W Zhang et al. Modelling of the ICRF induced ExB convection in the scrape off layer of ASDEX Upgrade Preprint of Paper to be submitted for publication in Plasma Physics and

More information

Analyses of Visible Images of the Plasma Periphery Observed with Tangentially Viewing CCD Cameras in the Large Helical Device

Analyses of Visible Images of the Plasma Periphery Observed with Tangentially Viewing CCD Cameras in the Large Helical Device Analyses of Visible Images of the Plasma Periphery Observed with Tangentially Viewing CCD Cameras in the Large Helical Device M. SHOJI, T. WATANABE, S. MASUZAKI, H. YAMADA, A. KOMORI and LHD Experimental

More information

DIVIMP simulation of W transport in the SOL of JET H-mode plasmas

DIVIMP simulation of W transport in the SOL of JET H-mode plasmas DIVIMP simulation of W transport in the SOL of JET H-mode plasmas A. Järvinen a, C. Giroud b, M. Groth a, K. Krieger c, D. Moulton d, S. Wiesen e, S. Brezinsek e and JET- EFDA contributors¹ JET-EFDA, Culham

More information

Two dimensional modelling approach to transport properties of the TEXTOR-DED laminar zone

Two dimensional modelling approach to transport properties of the TEXTOR-DED laminar zone Two dimensional modelling approach to transport properties of the TEXTOR-DED laminar zone T. Eich, D. Reiser K.H. Finken Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, Euratom Association, Trilateral

More information

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal W. M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA, USA Email: weston.stacey@nre.gatech.edu Abstract

More information

Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance

Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance Alberto Loarte European Fusion Development Agreement Close Support Unit - Garching

More information

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France Exhaust scenarios Alberto Loarte Plasma Operation Directorate ITER Organization Route de Vinon sur Verdon, 13067 St Paul lez Durance, France Acknowledgements: Members of ITER Organization (especially R.

More information

Understanding Edge Harmonic Oscillation Physics Using NIMROD

Understanding Edge Harmonic Oscillation Physics Using NIMROD Understanding Edge Harmonic Oscillation Physics Using NIMROD J. King With contributions from S. Kruger & A. Pankin (Tech-X); K. Burrell, A. Garofalo, R. Groebner & P. Snyder (General Atomics) Work supported

More information

Characteristics of the H-mode H and Extrapolation to ITER

Characteristics of the H-mode H and Extrapolation to ITER Characteristics of the H-mode H Pedestal and Extrapolation to ITER The H-mode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference

More information

Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup

Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup M.W. Bongard G.M. Bodner, M.G. Burke, R.J. Fonck, J.L. Pachicano, J.M. Perry, C. Pierren, J.A. Reusch, A.T. Rhodes, N.J. Richner, C.

More information

Impact of High Field & High Confinement on L-mode-Edge Negative Triangularity Tokamak (NTT) Reactor

Impact of High Field & High Confinement on L-mode-Edge Negative Triangularity Tokamak (NTT) Reactor Impact of High Field & High Confinement on L-mode-Edge Negative Triangularity Tokamak (NTT) Reactor M. Kikuchi, T. Takizuka, S. Medvedev, T. Ando, D. Chen, J.X. Li, M. Austin, O. Sauter, L. Villard, A.

More information

Divertor Requirements and Performance in ITER

Divertor Requirements and Performance in ITER Divertor Requirements and Performance in ITER M. Sugihara ITER International Team 1 th International Toki Conference Dec. 11-14, 001 Contents Overview of requirement and prediction for divertor performance

More information

Impact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma

Impact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma 1 Impact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma D. Galassi, P. Tamain, H. Bufferand, C. Baudoin, G. Ciraolo, N. Fedorczak, Ph.

More information

Resistive Wall Mode Control in DIII-D

Resistive Wall Mode Control in DIII-D Resistive Wall Mode Control in DIII-D by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil

More information

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device P. T. Bonoli, Y. Lin. S. Shiraiwa, G. M. Wallace, J. C. Wright, and S. J. Wukitch MIT PSFC, Cambridge, MA 02139 59th Annual Meeting

More information

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant Implementation of a long leg X-point target divertor in the ARC fusion pilot plant A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, H. Hoffman, M. Major, J. Ruiz Ruiz, R.A. Tinguely, E.A. Tolman

More information

1 EX/P6-5 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation

1 EX/P6-5 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation 1 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation Y. Nakashima1), Y. Higashizono1), H. Kawano1), H. Takenaga2), N. Asakura2), N. Oyama2),

More information

Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices

Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Michael Tendler, Alfven Laboratory, Royal Institute of Technology, Stockholm, Sweden Plasma Turbulence Turbulence can be regarded

More information

Edge and SOL turbulence on HFS/LFS at ASDEX Upgrade by Microwave Reflectometry

Edge and SOL turbulence on HFS/LFS at ASDEX Upgrade by Microwave Reflectometry Edge and SOL turbulence on HFS/LFS at ASDEX Upgrade by Microwave Reflectometry V.E. Nikolaeva1,2, M. E. Manso1, L. Guimarais1, U.Stroth3, G. D. Conway3, C. Silva1, and the ASDEX Upgrade team Associação

More information

Expanding Non-Solenoidal Startup with Local Helicity Injection

Expanding Non-Solenoidal Startup with Local Helicity Injection Expanding Non-Solenoidal Startup with Local Helicity Injection Justin M. Perry J. L. Barr, G. M. Bodner, M. W. Bongard, M. G. Burke, R. J. Fonck, E. T. Hinson, B. T. Lewicki, J. A. Reusch, D. J. Schlossberg

More information

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIII-D Group 47 th Annual Meeting

More information

Effect of Variation in Equilibrium Shape on ELMing H Mode Performance in DIII D Diverted Plasmas

Effect of Variation in Equilibrium Shape on ELMing H Mode Performance in DIII D Diverted Plasmas Effect of Variation in Equilibrium Shape on ELMing H Mode Performance in DIII D Diverted Plasmas M.E. Fenstermacher, T.H. Osborne, T.W. Petrie, C.J. Lasnier, A.W. Leonard, J.G. Watkins, 3 T.N. Carlstrom,

More information

ARIES ACT1 progress & ACT2

ARIES ACT1 progress & ACT2 ARIES ACT1 progress & ACT2 C. Kessel and F. Poli Princeton Plasma Physics Laboratory ARIES Project Meeting, 9/26-27/2012 Wash. DC Outline Temperature and density profile variations at R = 5.5 m in order

More information

Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations.

Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. M. Becoulet 1, F. Orain 1, G.T.A. Huijsmans 2, P. Maget 1, N. Mellet 1, G. Dif-Pradalier 1, G. Latu 1, C. Passeron

More information

RFP helical equilibria reconstruction with V3FIT-VMEC

RFP helical equilibria reconstruction with V3FIT-VMEC RFP helical equilibria reconstruction with V3FIT-VMEC D. Terranova 1 J.D. Hanson 2, S.P. Hirshman 3, L. Marrelli 1 1 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova, Italy 2 Auburn University,

More information

Initial Investigations of H-mode Edge Dynamics in the PEGASUS Toroidal Experiment

Initial Investigations of H-mode Edge Dynamics in the PEGASUS Toroidal Experiment Initial Investigations of H-mode Edge Dynamics in the PEGASUS Toroidal Experiment M.W. Bongard, R.J. Fonck, K.E. Thome, D.S. Thompson 55 th Annual Meeting of the APS Division of Plasma Physics University

More information

Ripple Loss of Alpha Particles in a Low-Aspect-Ratio Tokamak Reactor

Ripple Loss of Alpha Particles in a Low-Aspect-Ratio Tokamak Reactor P Ripple Loss of Alpha Particles in a Low-Aspect-Ratio Tokamak Reactor K. TANI, S. NISHIO, K. TOBITA, H. TSUTSUI *, H. MIMATA *, S. TSUJI-IIO *, T. AOKI * Japan Atomic Energy Agency, tani.keiji@jaea.go.jp

More information

Characterization of Edge Stability and Ohmic H-mode in the PEGASUS Toroidal Experiment

Characterization of Edge Stability and Ohmic H-mode in the PEGASUS Toroidal Experiment Characterization of Edge Stability and Ohmic H-mode in the PEGASUS Toroidal Experiment M.W. Bongard, J.L. Barr, M.G. Burke, R.J. Fonck, E.T. Hinson, J.M. Perry, A.J. Redd, D.J. Schlossberg, K.E. Thome

More information

Power Exhaust on JET: An Overview of Dedicated Experiments

Power Exhaust on JET: An Overview of Dedicated Experiments Power Exhaust on JET: An Overview of Dedicated Experiments W.Fundamenski, P.Andrew, T.Eich 1, G.F.Matthews, R.A.Pitts 2, V.Riccardo, W.Sailer 3, S.Sipila 4 and JET EFDA contributors 5 Euratom/UKAEA Fusion

More information

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation - 15TH WORKSHOP ON MHD STABILITY CONTROL: "US-Japan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 15-17, 17, 2010 LHD experiments relevant to Tokamak MHD control - Effect

More information