Divertor Detachment on TCV

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Divertor Detachment on TCV"

Transcription

1 Divertor Detachment on TCV R. A. Pitts, Association EURATOM-Confédération Suisse,, CH- LAUSANNE, Switzerland thanks to A. Loarte a, B. P. Duval, J.-M. Moret, J. A. Boedo b, L. Chousal b, D. Coster c, G. Gunner b, J. Horacek d, A. S. Kukushkin e, D. Reiter f and the TCV Team a EFDA-CSU, Max Planck Institut für Plasmaphysik, D-878 Garching, Germany b Fusion Energy Program, University of California, San Diego, CA 993-7, USA c Max-Plank-Insitut für Plasmaphysik, Boltzmannstr., D-878, Garching, Germany. d IPP, Academy of Sciences of the Czech Republic, Za Slovankou 3, POB 7, 8 Praha e ITER Joint Central Team, Garching Joint Working Site, Boltzmannstr., D-878, Garching, Germany. f Institut für Laser und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr., D- Düsseldorf, Germany

2 Outline Introduction - TCV and divertor configurations Experiment - divertor detachment Simulation - results so far from B-Eirene High Langmuir probe T e s

3 TCV design parameters R =.88 m a =. m κ = 3 (max.) B T =. T (max.) I p =. MA (max.) Tokamak à Configuration Variable Designed to produce a large variety of plasma shapes. Achieved so far: κ =.-.8 δ = I p =. MA

4 Variable Plasma Shapes

5 Plasma Shaping and Control Plasma Shaping: separately controlled poloidal field coils. Vertical Stabilisation: passive: conducting vessel wall (decay time of m= vessel currents ~8ms). active: feedback control with fast coils inside (response time <.ms) and slow coils side (response time~ms) the vacuum vessel. Highest elongation: κ =.8 (at I P =7kA). Highest current: I P = MA (at q 9 =.). [F. Hofmann, et al., Nucl. Fusion 38 (998) 399]

6 Electron Cyclotron Heating System.8 ECH at second harmonic (8.7GHz): gyrotrons, each kw. equatorial and upper lateral ports. Steerable mirrors for poloidal (during a shot) and toroidal (between shots) scanning. Cut-off density (X-mode): n e =.x 9 m -3 ECH at third harmonic (8GHz): gyrotrons, kw, so far - lateral launch. For, 3 gyrotrons, top launch. Cut-off density (X-mode): n e =.x 9 m Ip=8kA,q=./.8,k=./.,d=./.,li=.7 y.. An Example of The Toroidal Coverage of the X RF Beams Sector UL Sector UL Sector EQ Sector EQ Sector 7UL L3 L L.. Sector UL Sh x

7 Divertor Configurations for Detachment Study the influence of er divertor geometry on characteristics of detachment Note high poloidal depth of LFS divertor and short depth at HFS. Horizontal er target, vertical inner target. Bx B drift direction away from X-point. Ohmic discharges only. Midplane to er target connection length m Inner Target Probes #78 f exp =.8 7 cm Reciprocating Probe #783 f exp =. #783 f exp = 9.3 Outer Target Probes

8 Single Null Diverted Equilibria #,.8 s I p = 3 ka δ=.3, κ=.3 z Xpt = 7 cm L cm L cx in L cm f exp = m = m = 8 =.8 #3,.8 s I p = 3 ka δ=.3, κ=.3 z Xpt = 7 cm L cm L cx in L cm f exp = 3 m = m = m =. #7,.8 s I p = 3 ka δ=.3, κ=. z Xpt = 7 cm L cm L cx in L cm f exp = m = m = 3 m =.9 #8,.8 s I p = 38 ka δ=.3, κ=.3 z Xpt = 8 cm L cm L cx in L cm f exp = 9 m = m = m =. #,.8 s I p = ka δ=.33, κ=.83 z Xpt = 8 cm L cm L cx in L cm f exp = 3 m = m = 3 m = 7.7 #7,.8 s I p = 3 ka δ=.3, κ=. z Xpt = cm L cm L cx in L cm f exp = 39 m = 3 m = m =.

9 Typical Density Ramp Discharge Detachment studied so far only in ohmic L-mode density ramp discharges. Mostly at I p = 3 ka to avoid ohmic H-mode transition. Detachment observed in density ramp discharges: at max density: TOT P R /P Ω.8,.n GR. n e Density ramp starts already at high values (otherwise locked modes at divertor formation) er divertor already probably in high recycling n e [ 9 m -3 ] P R [kw] P R TOT P Ω D α (div) [au] #78 Z eff (X-rays) P R DIV Inner divertor never detaches except near separatrix at highest. n e j sat [Acm - ] LP# LP#....8.

10 Divertor Langmuir Probes 3 probes in the central column tiles, in the flat part of the vessel floor. Cylindrical, Ø. mm, with spherical tip protruding. mm above the tile surface. Clearance to tile,. mm, material, polycrystalline graphite. Acquisition at khz for selected probes, khz for most. Probe voltage sweep typically at Hz using programmable waveform to give best resolution in the vicinity of V f. Floor Central Column

11 Visible CCD Camera Image Reconstructions Height Reconstruction Grid Toroidal fan of CCD chords Poloidal projection of pencil beam trajectories - camera position effectively divides the FOV R Iterative non-negative least squares, y:data, T: transfer matrix, x: inverted data ( y Tx)

12 Reciprocating Probe Seen from inside torus Current orientation 3 B On loan from UCSD - Thank you!!! Fully integrated into TCV control system - Vsystem live database. Pins & 3 floating (k tip resistors). Pins,, operated as swept single Langmuir probes. Voltages applied w.r.t. vacuum vessel.

13 Reciprocating Probe - Example of Raw Data 8 Pin V f [V] Pin j [Acm - ] Pin V f [V] Fast Position [V] Pin j [Acm - ] Pin V [V] n e [ 9 m -3 ]

14 Total Radiation Reconstructions - Density Ramp t =.s t =.s t =.7s t =.9s t =.98s t =.s t =.s Divertor very cold early on in the density ramp. Radiation quickly concentrated around the X-point. n e [ 9 m -3 ] 8 #783 Density Ramp j sat [Acm - ] LP#....8.

15 Total Radiation Reconstructions - Low Density t =.s t =.9s t =.7s n e [ 9 m -3 ] P R, P Ω [kw] 3 #783 Low density reference case P Ω P R DIV P R TOT j sat [Acm - ] Z eff (X-rays) LP# Low density reference case - er divertor in low recycling - less radiation inside separatrix at the X-point.

16 Outer target Inner target Profiles of Target Ion Flux Outer target Inner target Outer target Inner target Total Current [ka] j sat [Acm - ] Separatrix distance at the target [cm] 3... #78 f exp = n e [ 9 m -3 ] O Outer Target + Inner Target Separatrix distance at the target [cm] 3... #783 f exp = Separatrix distance at the target [cm] 3... #78 f exp = n e [ 9 m -3 ] n e [ 9 m -3 ] Extent of partial detachment sensitive to extent of flux expansion. Clear signs of probe shadowing by neighbouring tiles as f exp increases (angle )

17 Degree of Detachment (DOD) DOD n e Isat( ) div I sat DOD n e div sep the probe ion saturation current to the divertor targets. Describes the extent to which the -point model scaling Γ n e is obeyed. Detachment at er separatrix more marked for low f exp. Integral DOD s increase with increasing f exp. Small (%) increase in P Ω has a noticeable effect. div I sat Degree of Detachment I p = 3 ka O Ι Ι in j (sep) j in (sep) #78 #783 I p = 38 ka #787 # #78 # n e [ 9 m -3 ] n e [ 9 m -3 ]

18 Visible CCD - D α ( nm) - #78 t =.8 s t =. s t =. s t =.8 s 3 n e [ 9 m -3 ] j sat [Acm - ] LP#....8.

19 Visible CCD - D α ( nm) - #783 t =.8 s t =. s t =. s t =.8 s 3 3 n e [ 9 m -3 ] 8 j sat [Acm - ] LP#

20 Visible CCD - D α ( nm) - #78 t =.8 s t =. s t =. s t =.8 s 3 n e [ 9 m -3 ] 8 j sat [Acm - ] LP#

21 Visible CCD - CIII ( nm) - #783 t =. s t =.8 s t =. s t =.8 s 3 3 n e [ 9 m -3 ] j sat [Acm - ] LP#....8.

22 B-Eirene Modelling Ion Flux onto Outer Divertor [s - ] n sep [ 9 m -3 ] 3 Recombination Sink [s - ] Recombination [%] n sep [ 9 m -3 ], #78, #783, #78 P SOL =.3 MW D, χ =.,.9 m s Y chem = 3.%, R = Z eff n sep [ 9 m -3 ] Radiated Power [MW] Preliminary B-Eirene modelling by A. Loarte, EFDA-CSU Garching. Start at lowest density in the ramp. Fix P SOL, adjust Y chem to get carbon radiation consistent with the measured target ion fluxes. Choose D, χ for approx. match to upstream profiles. Unable to obtain anything like enough recombination via and 3-body processes with artifically increasing the rate coefficients by at least a factor.

23 B-Eirene and Experimental Profiles Compared Experimental upstream and downstream profiles in reasonable agreement at low density. B-Eirene predicts low T e even at lowest densities in the ramp target probes probably unreliable except for j sat. Clear profile broadening as detachment proceeds. Approx. optimisation for lowest density in ramp - needs more work - in progress at CRPP. n e T e [ 9 evm -3 ] T e [ev] n e [ 9 m -3 ] n e [ 9 m -3 ] #783 #783 RCP (Pin ) Outer Target Inner Target... n e [ 9 m -3 ] B: midplane B: er target Midplane separatrix distance [cm] Wall radius at er midplane 3

24 B-Eirene: Degree of Detachment Ion Flux onto Divertor [m - s - ] x 3 B, n sep =.x 9 m -3 B, n sep =.7x 9 m -3 B, n sep = 3.7x 9 m -3.3x 9 m x 9 m -3.x 9 m -3.x 9 m -3 #78 n e Expt. Separatrix Distance at Outer Target [cm] Good quantitative agreement between code and experiment for DOD s except for er target separatrix detachment, even with factor increase in recombination rate coefficient. Target profile shapes not matched. Degree of Detachment #78 #783 #78 Ι Ι in j (sep) j in (sep) n e [ 9 m -3 ] 3 n sep [ 9 m -3 ]

25 B-Eirene: Radiation Distributions- CIII n sep =.8x 9 m -3 n sep =.9x 9 m -3 n sep =.x 9 m -3 n sep =.x 9 m -3 n sep =3.x 9 m -3 n sep =3.7x 9 m -3 Photons m -3 sr - s - CIII TCV-78- CIII TCV-78- CIII TCV-78-3 CIII TCV-78- CIII TCV-78- CIII TCV-78- Good agreement in general with location and movement of CIII radiation distribution as plasma density increases. But C + location does not tell us from where the carbon source originates...

26 B-Eirene: Radiation Distributions- D Ecole Polytechnique α Fédérale de Lausanne Compare reconstructed measured emissivity for varying flux expansion at same er target integral DOD to isolate geometry effects. B-Eirene runs compared for cases with similar level of total recombination. Reasonable agreement (for increased recombination rate coefficients). Code fails to reproduce radiation max. away from strike point at high flux expansions. n sep =3.7x 9 m -3 n sep =3.x 9 m -3 n sep =.9x 9 m -3 D α D α D α Photons m -3 sr - s - TCV-78- TCV TCV-78-7 #78, t =.8s #783, t =.s #78, t =.8s

27 Why do DIvertor Probes Measure T e too High? #783 Time: ms Time: 7 ms Time: 9 ms Fitted Probe Temperatures I [ma] I [ma] I [ma] I [ma] I [ma] I [ma] coll coll coll coll coll coll I sat = 89 ma E /I =. sat sat T =. ev e V = V fl I sat = ma E sat /I sat = NaN T e = 3 ev V fl = 9.8 V I = 83 ma sat E /I =. sat sat T e = 7. ev V = 7. V fl I sat = 8 ma E sat /I sat = NaN T e = ev V =. V fl I sat = 3 ma E /I = NaN sat sat T = 9 ev e V fl = V I = 8 ma sat E /I = NaN sat sat T = 3 ev e V = 8.7 V fl Prb.#.8 mm Prb.#.7 mm Prb.# mm Prb.#. mm Prb.# 9.9 mm Prb.# 9. mm 3 3 V appl [V] I sat = 77. ma E /I =. sat sat T =. ev e V =. V fl I sat = 7 ma E sat /I sat =.8 T e = 8.9 ev V fl =.7 V I = 7 ma sat E /I =.7 sat sat T e = 7. ev V = 3 V fl I sat = ma E sat /I sat = NaN T e = ev V =. V fl I sat = 8 ma E /I = NaN sat sat T = 8 ev e V fl =. V I = 33 ma sat E /I = NaN sat sat T = ev e V =.3 V fl Prb.# 3 mm Prb.#.77 mm Prb.# 8 mm Prb.# 3.9 mm Prb.# 8.7 mm Prb.# 9 mm 3 3 V appl [V] I sat =. ma E /I =.9 sat sat T =.3 ev e V = V fl I sat = 7.7 ma E sat /I sat =. T e = 8 ev V fl =.8 V I = ma sat E /I =. sat sat T e = 7. ev V =.8 V fl I sat = 78 ma E sat /I sat =.9 T e = 7. ev V =. V fl I sat = 39 ma E /I = NaN sat sat T = ev e V fl =.3 V I = ma sat E /I = NaN sat sat T = ev e V =. V fl Prb.#.77 mm Prb.#. mm Prb.# mm Prb.#. mm Prb.#.8 mm Prb.# 9. mm 3 3 V appl [V] Probe distance from separatrix mapped to the er midplane T e (min) fit Te (cut at V f ) fit

28 Influence of Parallel T e Gradient Midplane location at separatrix Approx. X-pt. position. mm,.8 mm,.7 mm, 9. mm: Distance from separatrix at er midplane n e [x 9 m -3 ] Parallel Connection Length [m] Inner Target T e [ev] Parallel Connection Length [m] Inner Target n sep =.8x 9 m -3 n sep =.x 9 m -3 n sep =.x 9 m -3 n sep =.9x 9 m -3 n sep =.x 9 m -3 n sep =.7x 9 m -3 n sep =.7x 9 m -3 n sep = 3.x 9 m Last 3 m Outer Target 9. mm.7 mm.8 mm. mm #783,. s Use parallel field T e gradients from B-Eirene in the absence of diagnostics.

29 Use Wesson s Analytic Model to Compute T eff Wesson s model based simply on mfp arguments and energy filtering effect of the sheath - in the presence of a T e gradient electrons from hotter regions upstream of the divertor target can dominate the probe characteristic. Compute a T eff - the uniform temperature which would give the same sheath potential fall as the actual temperature distribution. T eff /T > implies that the probe derived T e will be higher than the local value at the target, T. T eff /T T eff /T 8 3 Inner Target Outer Target. mm.8 mm.7 mm 9. mm.. 3 Separatrix Density [x 9 m -3 ] Distance from separatrix at er midplane Model in its simplest form (no n e gradient, no presheath), shows that TCV probes will read high at relatively low densities. Some interesting threshold phenomena seen when T e profile has extended flat, convective regions. J. A. Wesson, Plasma Phys. Contr. Fusion 37 (99) 9

EFDA European Fusion Development Agreement - Close Support Unit - Garching

EFDA European Fusion Development Agreement - Close Support Unit - Garching Multi-machine Modelling of Divertor Geometry Effects Alberto Loarte EFDA CSU -Garching Acknowledgements: K. Borrass, D. Coster, J. Gafert, C. Maggi, R. Monk, L. Horton, R.Schneider (IPP), A.Kukushkin (ITER),

More information

Effect of ExB Driven Transport on the Deposition of Carbon in the Outer Divertor of. ASDEX Upgrade

Effect of ExB Driven Transport on the Deposition of Carbon in the Outer Divertor of. ASDEX Upgrade Association Euratom-Tekes ASDEX Upgrade Effect of ExB Driven Transport on the Deposition of Carbon in the Outer Divertor of ASDEX Upgrade L. Aho-Mantila 1,2, M. Wischmeier 3, K. Krieger 3, V. Rohde 3,

More information

Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET

Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET Journal of Nuclear Materials 363 365 (2007) 989 993 www.elsevier.com/locate/jnucmat Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET T. Eich a, *, A.

More information

Physics of the detached radiative divertor regime in DIII-D

Physics of the detached radiative divertor regime in DIII-D Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S741-3335(99)97299-8 Physics of the detached radiative divertor regime in DIII-D M E Fenstermacher, J Boedo, R C Isler, A W Leonard,

More information

Estimating the plasma flow in a recombining plasma from

Estimating the plasma flow in a recombining plasma from Paper P3-38 Estimating the plasma flow in a recombining plasma from the H α emission U. Wenzel a, M. Goto b a Max-Planck-Institut für Plasmaphysik (IPP) b National Institute for Fusion Science, Toki 509-5292,

More information

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod PFC/JA-94-15 Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod J.A. Goetz, B. Lipschultz, M.A. Graf, C. Kurz, R. Nachtrieb, J.A. Snipes, J.L. Terry Plasma

More information

Long Distance Coupling of Lower Hybrid Waves in JET using Gas Feed

Long Distance Coupling of Lower Hybrid Waves in JET using Gas Feed JET R(97)1 Long Distance Coupling of Lower Hybrid Waves in JET using Gas Feed M Goniche 1, J A Dobbing, A Ekedahl, P Schild, F X Söldner. JET Joint Undertaking, Abingdon, Oxfordshire, OX1 3EA, 1 Centre

More information

Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance

Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance Alberto Loarte European Fusion Development Agreement Close Support Unit - Garching

More information

A novel helicon plasma source for negative ion beams for fusion

A novel helicon plasma source for negative ion beams for fusion A novel helicon plasma source for negative ion beams for fusion Ivo Furno 1 R. Agnello 1, B. P. Duval 1, C. Marini 1, A. A. Howling 1, R. Jacquier 1, Ph. Guittienne 2, U. Fantz 3, D. Wünderlich 3, A. Simonin

More information

Fluctuation statistics in the scrape-off layer of Alcator C-Mod

Fluctuation statistics in the scrape-off layer of Alcator C-Mod Fluctuation statistics in the scrape-off layer of Alcator C-Mod R. Kube, O. E. Garcia, B. LaBombard, and J. L. Terry We study long time series of the ion saturation current and floating potential, obtained

More information

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P-01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen

More information

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011 Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor

More information

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT GA A3736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an

More information

L-to-H power threshold comparisons between NBI and RF heated plasmas in NSTX

L-to-H power threshold comparisons between NBI and RF heated plasmas in NSTX Research Supported by L-to-H power threshold comparisons between NBI and RF heated plasmas in NSTX T.M. Biewer 1, R. Maingi 1, H. Meyer 2, R.E. Bell 3, C. Bush 1, S. Kaye 3, S. Kubota 3, B. LeBlanc 3,

More information

Model for humpback relaxation oscillations

Model for humpback relaxation oscillations Model for humpback relaxation oscillations F. Porcelli a,b,c.angioni a,r.behn a,i.furno a,t.goodman a,m.a.henderson a, Z.A. Pietrzyk a,a.pochelon a,h.reimerdes a, E. Rossi c,o.sauter a a Centre de Recherches

More information

High-power ECH and fully non-inductive operation with ECCD in the TCV tokamak

High-power ECH and fully non-inductive operation with ECCD in the TCV tokamak Plasma Phys. Control. Fusion 42 (2000) B311 B321. Printed in the UK PII: S0741-3335(00)17239-2 High-power ECH and fully non-inductive operation with ECCD in the TCV tokamak S Coda, T P Goodman, M A Henderson,

More information

Global migration of impurities in tokamaks: what have we learnt?

Global migration of impurities in tokamaks: what have we learnt? Global migration of impurities in tokamaks: what have we learnt? Euratom-Tekes Annual Seminar Silja Serenade, 28 May, 2013 Antti Hakola, Markus Airila and many others VTT Technical Research Centre of Finland

More information

Impact of neutral atoms on plasma turbulence in the tokamak edge region

Impact of neutral atoms on plasma turbulence in the tokamak edge region Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International

More information

Potentials, E B drifts, and uctuations in the DIII-D boundary

Potentials, E B drifts, and uctuations in the DIII-D boundary Journal of Nuclear Materials 266±269 (1999) 1145±1150 Potentials, E B drifts, and uctuations in the DIII-D boundary R.A. Moyer a, *, R. Lehmer a, J.A. Boedo a, J.G. Watkins b,x.xu c, J.R. Myra d, R. Cohen

More information

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

ELM filament heat loads on plasma facing components in JET and ITER

ELM filament heat loads on plasma facing components in JET and ITER 1 filament heat loads on plasma facing components in JET and ITER 1. Fundamenski, R.A.Pitts, 1 G.Arnoux, 3 M.Jakubowski, A.Loarte, 1 M.Beurskens and JET EFDA contributors 1 Euratom/UKAEA Fusion Association,

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

Effect of ECRH Regime on Characteristics of Short-Wave Turbulence in Plasma of the L-2M Stellarator

Effect of ECRH Regime on Characteristics of Short-Wave Turbulence in Plasma of the L-2M Stellarator 1 Effect of ECRH Regime on Characteristics of Short-Wave Turbulence in Plasma of the L-2M Stellarator N.N. Skvortsova, D.K. Akulina, G.M. Batanov, G.S. Voronov, L.V. Kolik, L.M. Kovrizhnykh, A.A. Letunov,

More information

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device Production of Over-dense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group

More information

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIII-D Group 47 th Annual Meeting

More information

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP - EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak

More information

A novel tracer-gas injection system for scrape-off layer impurity transport and screening experiments

A novel tracer-gas injection system for scrape-off layer impurity transport and screening experiments A novel tracer-gas injection system for scrape-off layer impurity transport and screening experiments B. LaBombard, S. Gangadhara, B. Lipschultz, S. Lisgo a, D.A. Pappas, C.S. Pitcher, P. Stangeby a, J.

More information

Temperature measurement and real-time validation

Temperature measurement and real-time validation Temperature measurement and real-time validation A. Herrmann, B. Sieglin, M. Faitsch, P. de Marné, ASDEX Upgrade team st IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis ITER-

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment E. T. Hinson J. L. Barr, M. W. Bongard, M. G. Burke, R. J. Fonck, J. M. Perry, A. J. Redd,

More information

Integration of Fusion Science and Technology For Steady State Operation Abstract Number:

Integration of Fusion Science and Technology For Steady State Operation Abstract Number: Cover Page Fill out and attach to your manuscript DUE Thursday, December 1, 2011 International Toki Conference (ITC-21) Integration of Fusion Science and Technology For Steady State Operation Abstract

More information

Reinstallation of the COMPASS D Tokamak in IPP ASCR

Reinstallation of the COMPASS D Tokamak in IPP ASCR R. Pánek, O. Bilyková, V. Fuchs, M. Hron, P. Chráska, P. Pavlo, J. Stöckel, J. Urban, V. Weinzettl, J. Zajac and F. Žáček Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou

More information

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J

More information

Understanding sawtooth activity during intense electron cyclotron heating experiments on TCV

Understanding sawtooth activity during intense electron cyclotron heating experiments on TCV Understanding sawtooth activity during intense electron cyclotron heating experiments on TCV I. Furno, C. Angioni, F. Porcelli a, H. Weisen, R. Behn, T.P. Goodman, M.A. Henderson, Z.A. Pietrzyk, A. Pochelon,

More information

Confinement Studies during LHCD and LHW Ion Heating on HL-1M

Confinement Studies during LHCD and LHW Ion Heating on HL-1M Confinement Studies during LHCD and LHW Ion Heating on HL-1M Y. Liu, X.D.Li, E.Y. Wang, J. Rao, Y. Yuan, H. Xia, W.M. Xuan, S.W. Xue, X.T. Ding, G.C Guo, S.K. Yang, J.L. Luo, G.Y Liu, J.E. Zeng, L.F. Xie,

More information

IT/P6-13 Power and particle fluxes at the plasma edge of ITER : Specifications and Physics Basis

IT/P6-13 Power and particle fluxes at the plasma edge of ITER : Specifications and Physics Basis Power and particle fluxes at the plasma edge of ITER : Specifications and Physics Basis A. Loarte 1, M. Sugihara 1, M. Shimada 1. A. Kukushkin 1, D. Campbell 1, M. Pick 1, C. Lowry 1, M. Merola 1, R.A.

More information

Power loads to misaligned edges in COMPASS

Power loads to misaligned edges in COMPASS EUROFUSION WPMST2-PR(16) 14814 R Dejarnac et al. Power loads to misaligned edges in COMPASS Preprint of Paper to be submitted for publication in 22nd International Conference on Plasma Surface Interactions

More information

Phase ramping and modulation of reflectometer signals

Phase ramping and modulation of reflectometer signals 4th Intl. Reflectometry Workshop - IRW4, Cadarache, March 22nd - 24th 1999 1 Phase ramping and modulation of reflectometer signals G.D.Conway, D.V.Bartlett, P.E.Stott JET Joint Undertaking, Abingdon, Oxon,

More information

The Study of Correlation Properties of Geodesic Acoustic Modes in the T-10 Tokamak

The Study of Correlation Properties of Geodesic Acoustic Modes in the T-10 Tokamak 1 The Study of Correlation Properties of Geodesic Acoustic Modes in the T-1 Tokamak A.V. Melnikov 1), L.G. Eliseev 1), S.V. Perfilov 1), S.E. Lysenko 1), V.A. Mavrin 1), R.V. Shurygin 1), D.A. Shelukhin

More information

Benchmarking Tokamak Edge Modelling Codes

Benchmarking Tokamak Edge Modelling Codes EFDA JET CP(7)3/1 D.P. Coster, X. Bonnin, A. Chankin, G. Corrigan, W. Fundamenski, L. Owen, T. Rognlien, S. Wiesen, R. Zagórski and JET EFDA contributors Benchmarking Tokamak Edge Modelling Codes This

More information

Max-Planck-Institut für Plasmaphysik, EURATOM Association POB 1533, D Garching, Germany

Max-Planck-Institut für Plasmaphysik, EURATOM Association POB 1533, D Garching, Germany DEPTH PROFILE REONSTRUTION FROM RUTHERFORD BAKSATTERING DATA U. V. TOUSSAINT, K. KRIEGER, R. FISHER, V. DOSE Max-Planck-Institut für Plasmaphysik, EURATOM Association POB 1533, D-8574 Garching, Germany

More information

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations 1 EXC/P5-02 ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Plasma impurity composition in Alcator C-Mod tokamak.

Plasma impurity composition in Alcator C-Mod tokamak. Plasma impurity composition in Alcator C-Mod tokamak. I. O. Bespamyatnov a, W. L. Rowan a, K. T. Liao a, M. Brookman a, M. L. Reinke b, E. S. Marmar b, M. J. Greenwald b a Institute for Fusion Studies,

More information

Effect of Biasing on Electron Temperature in IR-T1 Tokamak

Effect of Biasing on Electron Temperature in IR-T1 Tokamak Effect of Biasing on Electron Temperature in IR-T1 Tokamak Sakineh Meshkani 1, Mahmood Ghoranneviss 1 and Mansoureh Lafouti 2 1 Plasma Physics Research Center, Science and Research Branch, Islamic Azad

More information

Verification & Validation: application to the TORPEX basic plasma physics experiment

Verification & Validation: application to the TORPEX basic plasma physics experiment Verification & Validation: application to the TORPEX basic plasma physics experiment Paolo Ricci F. Avino, A. Bovet, A. Fasoli, I. Furno, S. Jolliet, F. Halpern, J. Loizu, A. Mosetto, F. Riva, C. Theiler,

More information

GA A22337 INITIAL OPERATION OF THE DIVERTOR THOMSON SCATTERING DIAGNOSTIC ON DIII D

GA A22337 INITIAL OPERATION OF THE DIVERTOR THOMSON SCATTERING DIAGNOSTIC ON DIII D GA A22337 INITIAL OPERATION OF THE DIVERTOR THOMSON SCATTERING by T.N. CARLSTROM, C.L. HSIEH, R.E. STOCKDALE, D.G. NILSON, and D.N. HILL MAY 1996 GA A22337 INITIAL OPERATION OF THE DIVERTOR THOMSON SCATTERING

More information

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices G.M. Wright 1, D. Brunner 1, M.J. Baldwin 2, K. Bystrov 3, R. Doerner 2, B. LaBombard 1, B. Lipschultz 1, G. de Temmerman 3,

More information

Influence of Impurity Seeding on ELM Behaviour and Edge Pedestal in ELMy H-Mode Discharges

Influence of Impurity Seeding on ELM Behaviour and Edge Pedestal in ELMy H-Mode Discharges EFDA JET CP()-5 S.Jachmich, G.Maddison, M.N.A.Beurskens, P.Dumortier, T.Eich, A.Messiaen, M.F.F.Nave, J.Ongena, J.Rapp, J.Strachan, M. Stamp, W.Suttrop, G.Telesca, B.Unterberg and JET EFDA Contributors

More information

Initial Experimental Program Plan for HSX

Initial Experimental Program Plan for HSX Initial Experimental Program Plan for HSX D.T. Anderson, A F. Almagri, F.S.B. Anderson, J. Chen, S. Gerhardt, V. Sakaguchi, J. Shafii and J.N. Talmadge, UW-Madison HSX Plasma Laboratory Team The Helically

More information

ASCOT simulations of electron energy distribution at the divertor targets in an ASDEX Upgrade H-mode discharge

ASCOT simulations of electron energy distribution at the divertor targets in an ASDEX Upgrade H-mode discharge ASCOT simulations of electron energy distribution at the divertor targets in an ASDEX Upgrade H-mode discharge L K Aho-Mantila 1, T Kurki-Suonio 1, A V Chankin 2, D P Coster 2 and S K Sipilä 1 1 Helsinki

More information

Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code

Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code Plasma Science and Technology, Vol.14, No.9, Sep. 2012 Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code Y. PIANROJ, T. ONJUN School of Manufacturing Systems

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower 2, C. Deng 2, D.T.Anderson 1, F.S.B. Anderson 1, A.F. Almagri

More information

Experimental Results on Pellet Injection and MHD from the RTP Tokamak

Experimental Results on Pellet Injection and MHD from the RTP Tokamak Experimental Results on Pellet Injection and MHD from the RTP Tokamak A.A.M. Oomens, J. de Kloe, F.J.B. Salzedas, M.R. de Baar, C.J. Barth, M.N.A. Beurskens, A.J.H. Donné, B. de Groot, G.M.D. Hogeweij,

More information

Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor

Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT, July 8-10, 2009 CMOD Mo tile divertor erosion/redeposition

More information

Enhanced con nement discharges in DIII-D with neon and argon induced radiation

Enhanced con nement discharges in DIII-D with neon and argon induced radiation Journal of Nuclear Materials 266±269 (1999) 380±385 Enhanced con nement discharges in DIII-D with neon and argon induced radiation G.L. Jackson a, *, M. Murakami b, G.M. Staebler a, M.R. Wade b, A.M. Messiaen

More information

Effect of the Radial Electric Field on Lower Hybrid Plasma Heating in the FT-2 Tokamak

Effect of the Radial Electric Field on Lower Hybrid Plasma Heating in the FT-2 Tokamak Plasma Physics Reports, Vol. 7, No.,, pp.. Translated from Fizika Plazmy, Vol. 7, No.,, pp. 9 9. Original Russian Text Copyright by Lashkul, Budnikov, Vekshina, D yachenko, Ermolaev, Esipov, Its, Kantor,

More information

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Roberto Ambrosino 1 Gianmaria De Tommasi 2 Massimiliano Mattei 3 Alfredo Pironti 2 1 CREATE, Università

More information

A Study of Directly Launched Ion Bernstein Waves in a Tokamak

A Study of Directly Launched Ion Bernstein Waves in a Tokamak PFC-/JA-86-6 A Study of Directly Launched Ion Bernstein Waves in a Tokamak Y. Takase, J. D. Moody, C. L. Fiore, F. S. McDermott, M. Porkolab, and J. Squire Plasma Fusion Center Massachusetts Institute

More information

Steady-state operation scenario and the first experimental result on QUEST

Steady-state operation scenario and the first experimental result on QUEST Steady-state operation scenario and the first experimental result on QUEST K.Hanada 1), K.N.Sato 1), H.Zushi 1), K.Nakamura 1), M.Sakamoto 1), H.Idei 1), M.Hasegawa 1), Y.Takase 2), O.Mitarai 3), T.Maekawa

More information

Analytical Study of RWM Feedback Stabilisation with Application to ITER

Analytical Study of RWM Feedback Stabilisation with Application to ITER CT/P- Analytical Study of RWM Feedback Stabilisation with Application to ITER Y Gribov ), VD Pustovitov ) ) ITER International Team, ITER Naka Joint Work Site, Japan ) Nuclear Fusion Institute, Russian

More information

Comparing DINA code simulations with TCV experimental plasma equilibrium responses

Comparing DINA code simulations with TCV experimental plasma equilibrium responses 1 Comparing DINA code simulations with TCV experimental plasma equilibrium responses R.R. Khayrutdinov 2, J.B. Lister 1, V.E. Lukash 3, J.P. Wainwright 4 1 Centre de Recherches en Physique des Plasmas,

More information

Neoclassical Tearing Modes

Neoclassical Tearing Modes Neoclassical Tearing Modes O. Sauter 1, H. Zohm 2 1 CRPP-EPFL, Lausanne, Switzerland 2 Max-Planck-Institut für Plasmaphysik, Garching, Germany Physics of ITER DPG Advanced Physics School 22-26 Sept, 2014,

More information

PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK

PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK by T.C. LUCE, J.R. FERRON, C.T. HOLCOMB, F. TURCO, P.A. POLITZER, and T.W. PETRIE GA A26981 JANUARY 2011 DISCLAIMER This report was prepared

More information

Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment

Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment 1 EXS/P2-07 Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment R.J. Fonck 1), D.J. Battaglia 2), M.W. Bongard 1), E.T. Hinson 1), A.J. Redd 1), D.J.

More information

Flow dynamics and plasma heating of spheromaks in SSX

Flow dynamics and plasma heating of spheromaks in SSX Flow dynamics and plasma heating of spheromaks in SSX M. R. Brown and C. D. Cothran, D. Cohen, J. Horwitz, and V. Chaplin Department of Physics and Astronomy Center for Magnetic Self Organization Swarthmore

More information

Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas

Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas 1 Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas N. Hayashi 1), T. Takizuka 1), N. Aiba 1), N. Oyama 1), T. Ozeki 1), S. Wiesen 2), V. Parail 3) 1) Japan Atomic Energy Agency,

More information

DIII-D TOKAMAK MODELING OF THE RECYCLING PARTICLE FLUX AND ELECTRON PARTICLE TRANSPORT IN THE

DIII-D TOKAMAK MODELING OF THE RECYCLING PARTICLE FLUX AND ELECTRON PARTICLE TRANSPORT IN THE MODELING OF THE RECYCLING ARTICLE FLUX AND ELECTRON ARTICLE TRANSORT IN THE DIIID TOKAMAK by D.R. BAKER, R. MAINGI, L.W. OWEN, G.D. ORTER, and G.L. JACKSON OCTOBER 1996 GENERAL ATOMICS ortions of this

More information

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier EX/C-Rb Relationship between particle and heat transport in JT-U plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),

More information

Plasma Stability in Tokamaks and Stellarators

Plasma Stability in Tokamaks and Stellarators Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1- May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,

More information

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

Impact on Divertor Operation of the Pattern of Edge and SOL Flows Induced by Particle Sources and Sinks

Impact on Divertor Operation of the Pattern of Edge and SOL Flows Induced by Particle Sources and Sinks 1 TH/P4-26 Impact on Divertor Operation of the Pattern of Edge and SOL Flows Induced by Particle Sources and Sinks Ph. Ghendrih 1, T. Auphan 2, B. Bensiali 3, M. Bilanceri 4, K. Bodi 3,5, J. Bucalossi

More information

Towards control of steady state plasma on Tore Supra

Towards control of steady state plasma on Tore Supra Towards control of steady state plasma on Tore Supra P. Moreau, O. Barana, S. Brémond, J. Bucalossi, E. Chatelier, E. Joffrin, D. Mazon, F. Saint-Laurent, E. Witrant and Tore Supra Team Abstract Magnetic

More information

NSTX Plasma-Material Interface (PMI) Probe and supporting experiments

NSTX Plasma-Material Interface (PMI) Probe and supporting experiments NSTX Plasma-Material Interface (PMI) Probe and supporting experiments J.P. Allain 1,2, C.N. Taylor 1, B. Heim 1,3 PPPL Collaborators: C.H. Skinner, H.W. Kugel, R. Kaita, A.L. Roquemore 1 Purdue University,

More information

DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO

DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO 21 st IAEA Fusion Energy Conference Chengdu, China Oct. 16-21, 2006 DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO R. Maingi 1, A. Kirk 2, T. Osborne 3, P. Snyder 3, S. Saarelma 2, R. Scannell

More information

Influence of gas impuritites on plasma performance on JET tokamak

Influence of gas impuritites on plasma performance on JET tokamak 19 Influence of gas impuritites on plasma performance on JET tokamak Martin Kubič České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Katedra fyziky THERMONUCLEAR FUSION 1.1 Introduction

More information

Chemical Sputtering of Carbon Materials due to Combined Bombardment by Ions and Atomic Hydrogen

Chemical Sputtering of Carbon Materials due to Combined Bombardment by Ions and Atomic Hydrogen Chemical Sputtering of Carbon Materials due to Combined Bombardment by Ions and Atomic Hydrogen W. Jacob, C. Hopf, and M. Schlüter Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr.

More information

DIII D Research in Support of ITER

DIII D Research in Support of ITER Research in Support of ITER by E.J. Strait and the Team Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland October 13-18, 28 DIII-D Research Has Made Significant Contributions in the Design

More information

Two dimensional modelling approach to transport properties of the TEXTOR-DED laminar zone

Two dimensional modelling approach to transport properties of the TEXTOR-DED laminar zone Two dimensional modelling approach to transport properties of the TEXTOR-DED laminar zone T. Eich, D. Reiser K.H. Finken Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, Euratom Association, Trilateral

More information

Beams and magnetized plasmas

Beams and magnetized plasmas Beams and magnetized plasmas 1 Jean-Pierre BOEUF LAboratoire PLAsma et Conversion d Energie LAPLACE/ CNRS, Université Paul SABATIER, TOULOUSE Beams and magnetized plasmas 2 Outline Ion acceleration and

More information

Mission and Design of the Fusion Ignition Research Experiment (FIRE)

Mission and Design of the Fusion Ignition Research Experiment (FIRE) Mission and Design of the Fusion Ignition Research Experiment (FIRE) D. M. Meade 1), S. C. Jardin 1), J. A. Schmidt 1), R. J. Thome 2), N. R. Sauthoff 1), P. Heitzenroeder 1), B. E. Nelson 3), M. A. Ulrickson

More information

ICRH Experiments on the Spherical Tokamak Globus-M

ICRH Experiments on the Spherical Tokamak Globus-M 1 Experiments on the Spherical Tokamak Globus-M V.K.Gusev 1), F.V.Chernyshev 1), V.V.Dyachenko 1), Yu.V.Petrov 1), N.V.Sakharov 1), O.N.Shcherbinin 1), V.L.Vdovin 2) 1) A.F.Ioffe Physico-Technical Institute,

More information

Jacob s Ladder Controlling Lightning

Jacob s Ladder Controlling Lightning Host: Fusion specialist: Jacob s Ladder Controlling Lightning PART 1 Jacob s ladder demonstration Video Teacher resources Phil Dooley European Fusion Development Agreement Peter de Vries European Fusion

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Toroidal Multipolar Expansion for Fast L-Mode Plasma Boundary Reconstruction in EAST

Toroidal Multipolar Expansion for Fast L-Mode Plasma Boundary Reconstruction in EAST Plasma Science and Technology, Vol.3, No.3, Jun. 2 Toroidal Multipolar Expansion for Fast L-Mode Plasma Boundary Reconstruction in EAST GUO Yong ), XIAO Bingjia ), LUO Zhengping ) Institute of Plasma Physics,

More information

Short Wavelength Density and Low Frequency MHD Fluctuation Measurements in the STOR-M Tokamak

Short Wavelength Density and Low Frequency MHD Fluctuation Measurements in the STOR-M Tokamak 1 EX/P4-31 Short Wavelength Density and Low Frequency MHD Fluctuation Measurements in the STOR-M Tokamak C. Xiao, S. J. Livingstone, A. K. Singh, D. Raju 1, G. St. Germaine, D. Liu, C. Boucher 2, A. Hirose

More information

Toroidal confinement of non-neutral plasma. Martin Droba

Toroidal confinement of non-neutral plasma. Martin Droba Toroidal confinement of non-neutral plasma Martin Droba Contents Experiments with toroidal non-neutral plasma Magnetic surfaces CNT and IAP-high current ring Conclusion 2. Experiments with toroidal non-neutral

More information

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade 1 TH/P1-26 Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade F.Orain 1, M.Hölzl 1, E.Viezzer 1, M.Dunne 1, M.Bécoulet 2, P.Cahyna 3, G.T.A.Huijsmans

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER M.L. Reinke 1, A. Loarte 2, M. Chilenski 3, N. Howard 3, F. Köchl 4, A. Polevoi 2, A. Hubbard 3, J.W. Hughes

More information

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,

More information

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution Technical collection One dimensional hybrid Maxwell-Boltzmann model of shearth evolution 27 - Conferences publications P. Sarrailh L. Garrigues G. J. M. Hagelaar J. P. Boeuf G. Sandolache S. Rowe B. Jusselin

More information

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.

More information

MHD instability driven by supra-thermal electrons in TJ-II stellarator

MHD instability driven by supra-thermal electrons in TJ-II stellarator MHD instability driven by supra-thermal electrons in TJ-II stellarator K. Nagaoka 1, S. Yamamoto 2, S. Ohshima 2, E. Ascasíbar 3, R. Jiménez-Gómez 3, C. Hidalgo 3, M.A. Pedrosa 3, M. Ochando 3, A.V. Melnikov

More information

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University

More information

proposed [6]. This scaling is found for single null divertor configurations with the VB

proposed [6]. This scaling is found for single null divertor configurations with the VB ORNL/CP-99185 Assessment of Effects of Neutrals on the Power Threshold for L to H Transitions in DIII-D ^ ^ L W Owent, B A Carrerast, R Maingit, P K Mioduszewskit, T N CarlstrfS. R J Groebner* A(jQ j toak

More information

Real-time Data Fusion for Nuclear Fusion

Real-time Data Fusion for Nuclear Fusion Real-time Data Fusion for Nuclear Fusion Chris Rapson R. Fischer, L. Giannone, M. Reich, W. Treutterer & the ASDEX Upgrade Team MPI for Plasma Physics, Garching ASDEX Upgrade -3.6.5 This work has been

More information

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory The Path to Fusion Energy creating a star on earth S. Prager Princeton Plasma Physics Laboratory The need for fusion energy is strong and enduring Carbon production (Gton) And the need is time urgent Goal

More information

The Future of Boundary Plasma and Material Science

The Future of Boundary Plasma and Material Science The Future of Boundary Plasma and Material Science Dennis Whyte Plasma Science & Fusion Center, MIT, Cambridge USA Director, Plasma Surface Interaction Science Center (psisc.org) APS Sherwood Meeting of

More information

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod J. Liptac, J. Decker, R. Parker, V. Tang, P. Bonoli MIT PSFC Y. Peysson CEA Cadarache APS 3 Albuquerque, NM Abstract A Lower Hybrid

More information