Improving Neural Parsing by Disentangling Model Combination and Reranking Effects. Daniel Fried*, Mitchell Stern* and Dan Klein UC Berkeley

Size: px
Start display at page:

Download "Improving Neural Parsing by Disentangling Model Combination and Reranking Effects. Daniel Fried*, Mitchell Stern* and Dan Klein UC Berkeley"

Transcription

1 Improving Neural Parsing by Disentangling Model Combination and Reranking Effects Daniel Fried*, Mitchell Stern* and Dan Klein UC erkeley

2 Top-down generative models

3 Top-down generative models S VP The man had an idea.

4 Top-down generative models S VP The man had an idea. (S

5 Top-down generative models S VP The man had an idea. (S (

6 Top-down generative models S VP (S ( The The man had an idea.

7 Top-down generative models S VP (S ( The man The man had an idea.

8 Top-down generative models S VP (S ( The man ) The man had an idea.

9 Top-down generative models S VP The man had an idea. (S ( The man ) (VP

10 Top-down generative models S VP The man had an idea. (S ( The man ) (VP had ( an idea ) ). )

11 Top-down generative models S VP The man had an idea. (S ( The man ) (VP had ( an idea ) ). ) G LSTM [Parsing as Language Modeling, Choe and Charniak, 2016]

12 Top-down generative models S VP The man had an idea. (S ( The man ) (VP had ( an idea ) ). ) G LSTM [Parsing as Language Modeling, Choe and Charniak, 2016] G RNNG [Recurrent Neural Network Grammars, Dyer et al. 2016]

13 Generative models as rerankers

14 Generative models as rerankers base parser generative neural model G

15 Generative models as rerankers base parser generative neural model G S-INV S VP S VP ADJP The man had an idea. The man had an idea. The man had an idea. y ~ p y x)

16 Generative models as rerankers base parser generative neural model G S-INV VP S ADJP The man had an idea. The man had an idea. S VP The man had an idea. y ~ p y x) argmax y p G (x, y)

17 Generative models as rerankers base parser generative neural model G

18 Generative models as rerankers base parser generative neural model G F1 on Penn Tree ank

19 Generative models as rerankers base parser generative neural model G F1 on Penn Tree ank Choe and Charniak Charniak parser 92.6 LSTM language model (G LSTM )

20 Generative models as rerankers base parser generative neural model G F1 on Penn Tree ank Choe and Charniak 2016 Dyer et al Charniak parser 91.7 RNNG-discriminative 92.6 LSTM language model (G LSTM ) 93.3 RNNG-generative (G RNNG )

21 : Necessary evil, or secret sauce? base parser generative neural model G

22 : Necessary evil, or secret sauce? base parser generative neural model G Should we try to do away with?

23 : Necessary evil, or secret sauce? base parser generative neural model G Should we try to do away with? No, better to combine and G more explicitly

24 : Necessary evil, or secret sauce? base parser generative neural model G Should we try to do away with? No, better to combine and G more explicitly 93.9 F1 on PT; 94.7 semi-supervised

25 Using standard beam search for G True Parse (S ( The man eam

26 Using standard beam search for G True Parse (S ( The man (S eam

27 Using standard beam search for G True Parse (S ( The man (S ( eam (VP (PP

28 Using standard beam search for G True Parse (S ( The man (S ( ( eam (VP (PP ( (

29 Using standard beam search for G True Parse (S ( The man (S ( ( ( eam (VP ( ( (PP ( (

30 Using standard beam search for G True Parse (S ( The man (S ( ( (... The eam (VP ( ( (PP ( (

31 Using standard beam search for G True Parse (S ( The man (S ( ( (... The eam (VP ( ( (PP ( ( G RNNG G LSTM eam Size F F1

32 Log probability Standard beam search in G fails Word generation is lexicalized: (S ( The man ) (VP had ( an idea ) ). )

33 Word-synchronous beam search w 0 (S [Roark 2001; Titov and Henderson 2010; Charniak 2010; uys and lunsom 2015 ]

34 Word-synchronous beam search w 0 w 1 (S ( (VP (PP ( ( The The The [Roark 2001; Titov and Henderson 2010; Charniak 2010; uys and lunsom 2015 ]

35 Word-synchronous beam search w 0 w 1 w 2 (S ( ( The ( man (VP The ( man (PP ( The man [Roark 2001; Titov and Henderson 2010; Charniak 2010; uys and lunsom 2015 ]

36 F1 on PT Word-synchronous beam search G LSTM G RNNG eam Size

37 F1 on PT Word-synchronous beam search G LSTM G RNNG G LSTM G RNNG eam Size

38 Finding model combination effects G

39 Finding model combination effects G S-INV S- VP S VP ADJP The man had an idea. The man had an idea. The man had an idea.

40 Finding model combination effects Add G s search proposal to candidate list: G S-INV S- VP S VP ADJP The man had an idea. The man had an idea. The man had an idea.

41 Finding model combination effects Add G s search proposal to candidate list: G G S-INV S- VP S VP ADJP The man had an idea. The man had an idea. The man had an idea.

42 Finding model combination effects Add G s search proposal to candidate list: G G S S VP S VP S-INV VP S- VP S The man had an idea. VP The man had an idea ADJP. The man had an idea. The man had an idea. The man had an idea. The man had an idea.

43 Finding model combination effects Add G s search proposal to candidate list: G G S VP S S-INV VP S- VP S The man had an idea. VP ADJP The man had an idea. The man had an idea. The man had an idea. The man had an idea. S VP The man had an idea.

44 Finding model combination effects F1 on PT G RNNG RNNG Generative Model G LSTM LSTM Generative Model

45 Finding model combination effects F1 on PT G RNNG RNNG Generative Model G LSTM LSTM Generative Model

46 Reranking shows implicit model combination G hides model errors in G

47 Making model combination explicit Can we do better by simply combining model scores? G G G log p G (x, y)

48 Making model combination explicit Can we do better by simply combining model scores? G + G G + log p G (x, y)

49 Making model combination explicit Can we do better by simply combining model scores? G + G G + λ log p G (x, y) + 1 λ log p (y x)

50 Making model combination explicit score with G + score with G F1 on PT G RNNG RNNG Generative Model (G=G RNNG ) G LSTM LSTM Generative Model (G=G LSTM )

51 Making model combination explicit score with G + score with G F1 on PT G RNNG RNNG Generative Model (G=G RNNG ) G LSTM LSTM Generative Model (G=G LSTM )

52 Explicit score combination prevents errors G + fast G G + best

53 Comparison to past work F1 on PT

54 Comparison to past work F1 on PT 92.6 Choe & Charniak 2016

55 Comparison to past work F1 on PT Choe & Charniak 2016 Dyer et al. 2016

56 Comparison to past work F1 on PT Choe & Charniak 2016 Dyer et al Kuncoro et al. 2017

57 Comparison to past work F1 on PT G RNNG G RNNG Choe & Charniak 2016 Dyer et al Kuncoro et al Ours

58 Comparison to past work F1 on PT add G LSTM 93.5 G RNNG G RNNG Choe & Charniak 2016 Dyer et al Kuncoro et al Ours

59 Comparison to past work F1 on PT 93.8 add silver data add G LSTM 93.5 G RNNG G RNNG Choe & Charniak 2016 Dyer et al Kuncoro et al Ours

60 Comparison to past work F1 on PT 94.7 add silver data 93.8 add silver data add G LSTM 93.5 G RNNG G RNNG Choe & Charniak 2016 Dyer et al Kuncoro et al Ours

61 Search procedure for G Conclusion

62 Conclusion Search procedure for G (more effective version forthcoming: Stern et al., EMNLP 2017)

63 Conclusion Search procedure for G (more effective version forthcoming: Stern et al., EMNLP 2017) Found model combination effects in G

64 Conclusion Search procedure for G (more effective version forthcoming: Stern et al., EMNLP 2017) Found model combination effects in G Large improvements from simple, explicit score combination: G +

65 Thanks!

Improving Sequence-to-Sequence Constituency Parsing

Improving Sequence-to-Sequence Constituency Parsing Improving Sequence-to-Sequence Constituency Parsing Lemao Liu, Muhua Zhu and Shuming Shi Tencent AI Lab, Shenzhen, China {redmondliu,muhuazhu, shumingshi}@tencent.com Abstract Sequence-to-sequence constituency

More information

Marrying Dynamic Programming with Recurrent Neural Networks

Marrying Dynamic Programming with Recurrent Neural Networks Marrying Dynamic Programming with Recurrent Neural Networks I eat sushi with tuna from Japan Liang Huang Oregon State University Structured Prediction Workshop, EMNLP 2017, Copenhagen, Denmark Marrying

More information

Recurrent neural network grammars

Recurrent neural network grammars Widespread phenomenon: Polarity items can only appear in certain contexts Recurrent neural network grammars lide credits: Chris Dyer, Adhiguna Kuncoro Example: anybody is a polarity item that tends to

More information

Quasi-Synchronous Phrase Dependency Grammars for Machine Translation. lti

Quasi-Synchronous Phrase Dependency Grammars for Machine Translation. lti Quasi-Synchronous Phrase Dependency Grammars for Machine Translation Kevin Gimpel Noah A. Smith 1 Introduction MT using dependency grammars on phrases Phrases capture local reordering and idiomatic translations

More information

Parsing with Context-Free Grammars

Parsing with Context-Free Grammars Parsing with Context-Free Grammars CS 585, Fall 2017 Introduction to Natural Language Processing http://people.cs.umass.edu/~brenocon/inlp2017 Brendan O Connor College of Information and Computer Sciences

More information

Random Generation of Nondeterministic Tree Automata

Random Generation of Nondeterministic Tree Automata Random Generation of Nondeterministic Tree Automata Thomas Hanneforth 1 and Andreas Maletti 2 and Daniel Quernheim 2 1 Department of Linguistics University of Potsdam, Germany 2 Institute for Natural Language

More information

Multilevel Coarse-to-Fine PCFG Parsing

Multilevel Coarse-to-Fine PCFG Parsing Multilevel Coarse-to-Fine PCFG Parsing Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David Ellis, Isaac Haxton, Catherine Hill, Shrivaths Iyengar, Jeremy Moore, Michael Pozar, and Theresa

More information

Natural Language Processing

Natural Language Processing SFU NatLangLab Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class Simon Fraser University September 27, 2018 0 Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class

More information

Algorithms for NLP. Classification II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classification II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classification II Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Minimize Training Error? A loss function declares how costly each mistake is E.g. 0 loss for correct label,

More information

Improvements to Training an RNN parser

Improvements to Training an RNN parser Improvements to Training an RNN parser Richard J. BILLINGSLEY James R. CURRAN School of Information Technologies University of Sydney NSW 2006, Australia {richbill,james}@it.usyd.edu.au ABSTRACT Many parsers

More information

Penn Treebank Parsing. Advanced Topics in Language Processing Stephen Clark

Penn Treebank Parsing. Advanced Topics in Language Processing Stephen Clark Penn Treebank Parsing Advanced Topics in Language Processing Stephen Clark 1 The Penn Treebank 40,000 sentences of WSJ newspaper text annotated with phrasestructure trees The trees contain some predicate-argument

More information

Dependency Parsing. Statistical NLP Fall (Non-)Projectivity. CoNLL Format. Lecture 9: Dependency Parsing

Dependency Parsing. Statistical NLP Fall (Non-)Projectivity. CoNLL Format. Lecture 9: Dependency Parsing Dependency Parsing Statistical NLP Fall 2016 Lecture 9: Dependency Parsing Slav Petrov Google prep dobj ROOT nsubj pobj det PRON VERB DET NOUN ADP NOUN They solved the problem with statistics CoNLL Format

More information

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science Natural Language Processing CS 6840 Lecture 06 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Statistical Parsing Define a probabilistic model of syntax P(T S):

More information

NLP Programming Tutorial 11 - The Structured Perceptron

NLP Programming Tutorial 11 - The Structured Perceptron NLP Programming Tutorial 11 - The Structured Perceptron Graham Neubig Nara Institute of Science and Technology (NAIST) 1 Prediction Problems Given x, A book review Oh, man I love this book! This book is

More information

Machine Learning for Structured Prediction

Machine Learning for Structured Prediction Machine Learning for Structured Prediction Grzegorz Chrupa la National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Grzegorz Chrupa la (DCU) Machine Learning for

More information

The Infinite PCFG using Hierarchical Dirichlet Processes

The Infinite PCFG using Hierarchical Dirichlet Processes S NP VP NP PRP VP VBD NP NP DT NN PRP she VBD heard DT the NN noise S NP VP NP PRP VP VBD NP NP DT NN PRP she VBD heard DT the NN noise S NP VP NP PRP VP VBD NP NP DT NN PRP she VBD heard DT the NN noise

More information

Bayes Risk Minimization in Natural Language Parsing

Bayes Risk Minimization in Natural Language Parsing UNIVERSITE DE GENEVE CENTRE UNIVERSITAIRE D INFORMATIQUE ARTIFICIAL INTELLIGENCE LABORATORY Date: June, 2006 TECHNICAL REPORT Baes Risk Minimization in Natural Language Parsing Ivan Titov Universit of

More information

Recap: Lexicalized PCFGs (Fall 2007): Lecture 5 Parsing and Syntax III. Recap: Charniak s Model. Recap: Adding Head Words/Tags to Trees

Recap: Lexicalized PCFGs (Fall 2007): Lecture 5 Parsing and Syntax III. Recap: Charniak s Model. Recap: Adding Head Words/Tags to Trees Recap: Lexicalized PCFGs We now need to estimate rule probabilities such as P rob(s(questioned,vt) NP(lawyer,NN) VP(questioned,Vt) S(questioned,Vt)) 6.864 (Fall 2007): Lecture 5 Parsing and Syntax III

More information

Natural Language Processing. Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu

Natural Language Processing. Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu Natural Language Processing Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu Projects Project descriptions due today! Last class Sequence to sequence models Attention Pointer networks Today Weak

More information

A Supertag-Context Model for Weakly-Supervised CCG Parser Learning

A Supertag-Context Model for Weakly-Supervised CCG Parser Learning A Supertag-Context Model for Weakly-Supervised CCG Parser Learning Dan Garrette Chris Dyer Jason Baldridge Noah A. Smith U. Washington CMU UT-Austin CMU Contributions 1. A new generative model for learning

More information

Features of Statistical Parsers

Features of Statistical Parsers Features of tatistical Parsers Preliminary results Mark Johnson Brown University TTI, October 2003 Joint work with Michael Collins (MIT) upported by NF grants LI 9720368 and II0095940 1 Talk outline tatistical

More information

Probabilistic Context-free Grammars

Probabilistic Context-free Grammars Probabilistic Context-free Grammars Computational Linguistics Alexander Koller 24 November 2017 The CKY Recognizer S NP VP NP Det N VP V NP V ate NP John Det a N sandwich i = 1 2 3 4 k = 2 3 4 5 S NP John

More information

Multiword Expression Identification with Tree Substitution Grammars

Multiword Expression Identification with Tree Substitution Grammars Multiword Expression Identification with Tree Substitution Grammars Spence Green, Marie-Catherine de Marneffe, John Bauer, and Christopher D. Manning Stanford University EMNLP 2011 Main Idea Use syntactic

More information

1. For the following sub-problems, consider the following context-free grammar: S A$ (1) A xbc (2) A CB (3) B yb (4) C x (6)

1. For the following sub-problems, consider the following context-free grammar: S A$ (1) A xbc (2) A CB (3) B yb (4) C x (6) ECE 468 & 573 Problem Set 2: Contet-free Grammars, Parsers (Solutions) 1. For the following sub-problems, consider the following contet-free grammar: S A$ (1) A C (2) A C (3) y (4) λ (5) C (6) (a) What

More information

Outline. Parsing. Approximations Some tricks Learning agenda-based parsers

Outline. Parsing. Approximations Some tricks Learning agenda-based parsers Outline Parsing CKY Approximations Some tricks Learning agenda-based parsers 0 Parsing We need to compute compute argmax d D(x) p θ (d x) Inference: Find best tree given model 1 Parsing We need to compute

More information

LECTURER: BURCU CAN Spring

LECTURER: BURCU CAN Spring LECTURER: BURCU CAN 2017-2018 Spring Regular Language Hidden Markov Model (HMM) Context Free Language Context Sensitive Language Probabilistic Context Free Grammar (PCFG) Unrestricted Language PCFGs can

More information

A Context-Free Grammar

A Context-Free Grammar Statistical Parsing A Context-Free Grammar S VP VP Vi VP Vt VP VP PP DT NN PP PP P Vi sleeps Vt saw NN man NN dog NN telescope DT the IN with IN in Ambiguity A sentence of reasonable length can easily

More information

1. For the following sub-problems, consider the following context-free grammar: S AA$ (1) A xa (2) A B (3) B yb (4)

1. For the following sub-problems, consider the following context-free grammar: S AA$ (1) A xa (2) A B (3) B yb (4) ECE 468 & 573 Problem Set 2: Contet-free Grammars, Parsers 1. For the following sub-problems, consider the following contet-free grammar: S $ (1) (2) (3) (4) λ (5) (a) What are the terminals and non-terminals

More information

Direct Output Connection for a High-Rank Language Model

Direct Output Connection for a High-Rank Language Model Direct Output Connection for a High-Rank Language Model Sho Takase Jun Suzuki Masaaki Nagata NTT Communication Science Laboratories Tohoku University {takase.sho, nagata.masaaki}@lab.ntt.co.jp jun.suzuki@ecei.tohoku.ac.jp

More information

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classifica(on III Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley The Perceptron, Again Start with zero weights Visit training instances one by one Try to classify If correct,

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Stochastic Grammars Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(22) Structured Classification

More information

Advanced Natural Language Processing Syntactic Parsing

Advanced Natural Language Processing Syntactic Parsing Advanced Natural Language Processing Syntactic Parsing Alicia Ageno ageno@cs.upc.edu Universitat Politècnica de Catalunya NLP statistical parsing 1 Parsing Review Statistical Parsing SCFG Inside Algorithm

More information

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I CS395T: Structured Models for NLP Lecture 19: Advanced NNs I Greg Durrett Administrivia Kyunghyun Cho (NYU) talk Friday 11am GDC 6.302 Project 3 due today! Final project out today! Proposal due in 1 week

More information

Decoding and Inference with Syntactic Translation Models

Decoding and Inference with Syntactic Translation Models Decoding and Inference with Syntactic Translation Models March 5, 2013 CFGs S NP VP VP NP V V NP NP CFGs S NP VP S VP NP V V NP NP CFGs S NP VP S VP NP V NP VP V NP NP CFGs S NP VP S VP NP V NP VP V NP

More information

Driving Semantic Parsing from the World s Response

Driving Semantic Parsing from the World s Response Driving Semantic Parsing from the World s Response James Clarke, Dan Goldwasser, Ming-Wei Chang, Dan Roth Cognitive Computation Group University of Illinois at Urbana-Champaign CoNLL 2010 Clarke, Goldwasser,

More information

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I. Greg Durrett

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I. Greg Durrett CS395T: Structured Models for NLP Lecture 19: Advanced NNs I Greg Durrett Administrivia Kyunghyun Cho (NYU) talk Friday 11am GDC 6.302 Project 3 due today! Final project out today! Proposal due in 1 week

More information

A Comparative Study of Parameter Estimation Methods for Statistical Natural Language Processing

A Comparative Study of Parameter Estimation Methods for Statistical Natural Language Processing A Comparative Study of Parameter Estimation Methods for Statistical Natural Language Processing Jianfeng Gao *, Galen Andrew *, Mark Johnson *&, Kristina Toutanova * * Microsoft Research, Redmond WA 98052,

More information

Probabilistic Context Free Grammars. Many slides from Michael Collins and Chris Manning

Probabilistic Context Free Grammars. Many slides from Michael Collins and Chris Manning Probabilistic Context Free Grammars Many slides from Michael Collins and Chris Manning Overview I Probabilistic Context-Free Grammars (PCFGs) I The CKY Algorithm for parsing with PCFGs A Probabilistic

More information

Probabilistic Context-Free Grammars. Michael Collins, Columbia University

Probabilistic Context-Free Grammars. Michael Collins, Columbia University Probabilistic Context-Free Grammars Michael Collins, Columbia University Overview Probabilistic Context-Free Grammars (PCFGs) The CKY Algorithm for parsing with PCFGs A Probabilistic Context-Free Grammar

More information

Probabilistic Context Free Grammars. Many slides from Michael Collins

Probabilistic Context Free Grammars. Many slides from Michael Collins Probabilistic Context Free Grammars Many slides from Michael Collins Overview I Probabilistic Context-Free Grammars (PCFGs) I The CKY Algorithm for parsing with PCFGs A Probabilistic Context-Free Grammar

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Machine Translation. Uwe Dick

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Machine Translation. Uwe Dick Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Machine Translation Uwe Dick Google Translate Rosetta Stone Hieroglyphs Demotic Greek Machine Translation Automatically translate

More information

S NP VP 0.9 S VP 0.1 VP V NP 0.5 VP V 0.1 VP V PP 0.1 NP NP NP 0.1 NP NP PP 0.2 NP N 0.7 PP P NP 1.0 VP NP PP 1.0. N people 0.

S NP VP 0.9 S VP 0.1 VP V NP 0.5 VP V 0.1 VP V PP 0.1 NP NP NP 0.1 NP NP PP 0.2 NP N 0.7 PP P NP 1.0 VP  NP PP 1.0. N people 0. /6/7 CS 6/CS: Natural Language Processing Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang The grammar: Binary, no epsilons,.9..5

More information

A Support Vector Method for Multivariate Performance Measures

A Support Vector Method for Multivariate Performance Measures A Support Vector Method for Multivariate Performance Measures Thorsten Joachims Cornell University Department of Computer Science Thanks to Rich Caruana, Alexandru Niculescu-Mizil, Pierre Dupont, Jérôme

More information

Low-Dimensional Discriminative Reranking. Jagadeesh Jagarlamudi and Hal Daume III University of Maryland, College Park

Low-Dimensional Discriminative Reranking. Jagadeesh Jagarlamudi and Hal Daume III University of Maryland, College Park Low-Dimensional Discriminative Reranking Jagadeesh Jagarlamudi and Hal Daume III University of Maryland, College Park Discriminative Reranking Useful for many NLP tasks Enables us to use arbitrary features

More information

Algorithms for Syntax-Aware Statistical Machine Translation

Algorithms for Syntax-Aware Statistical Machine Translation Algorithms for Syntax-Aware Statistical Machine Translation I. Dan Melamed, Wei Wang and Ben Wellington ew York University Syntax-Aware Statistical MT Statistical involves machine learning (ML) seems crucial

More information

Parsing with Context-Free Grammars

Parsing with Context-Free Grammars Parsing with Context-Free Grammars Berlin Chen 2005 References: 1. Natural Language Understanding, chapter 3 (3.1~3.4, 3.6) 2. Speech and Language Processing, chapters 9, 10 NLP-Berlin Chen 1 Grammars

More information

Learning to translate with neural networks. Michael Auli

Learning to translate with neural networks. Michael Auli Learning to translate with neural networks Michael Auli 1 Neural networks for text processing Similar words near each other France Spain dog cat Neural networks for text processing Similar words near each

More information

CS 545 Lecture XVI: Parsing

CS 545 Lecture XVI: Parsing CS 545 Lecture XVI: Parsing brownies_choco81@yahoo.com brownies_choco81@yahoo.com Benjamin Snyder Parsing Given a grammar G and a sentence x = (x1, x2,..., xn), find the best parse tree. We re not going

More information

Cross-Entropy and Estimation of Probabilistic Context-Free Grammars

Cross-Entropy and Estimation of Probabilistic Context-Free Grammars Cross-Entropy and Estimation of Probabilistic Context-Free Grammars Anna Corazza Department of Physics University Federico II via Cinthia I-8026 Napoli, Italy corazza@na.infn.it Giorgio Satta Department

More information

Statistical Machine Translation of Natural Languages

Statistical Machine Translation of Natural Languages 1/26 Statistical Machine Translation of Natural Languages Heiko Vogler Technische Universität Dresden Germany Graduiertenkolleg Quantitative Logics and Automata Dresden, November, 2012 1/26 Weighted Tree

More information

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford)

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford) Parsing Based on presentations from Chris Manning s course on Statistical Parsing (Stanford) S N VP V NP D N John hit the ball Levels of analysis Level Morphology/Lexical POS (morpho-synactic), WSD Elements

More information

Aspects of Tree-Based Statistical Machine Translation

Aspects of Tree-Based Statistical Machine Translation Aspects of Tree-Based tatistical Machine Translation Marcello Federico (based on slides by Gabriele Musillo) Human Language Technology FBK-irst 2011 Outline Tree-based translation models: ynchronous context

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Parsing with Probabilistic Context-Free Grammar Ulf Leser Content of this Lecture Phrase-Structure Parse Trees Probabilistic Context-Free Grammars Parsing with PCFG Other

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Parsing with Probabilistic Context-Free Grammar Ulf Leser Content of this Lecture Phrase-Structure Parse Trees Probabilistic Context-Free Grammars Parsing with PCFG Other

More information

Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing

Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing Context-Free Parsing: CKY & Earley Algorithms and Probabilistic Parsing Natural Language Processing CS 4120/6120 Spring 2017 Northeastern University David Smith with some slides from Jason Eisner & Andrew

More information

Parsing with CFGs L445 / L545 / B659. Dept. of Linguistics, Indiana University Spring Parsing with CFGs. Direction of processing

Parsing with CFGs L445 / L545 / B659. Dept. of Linguistics, Indiana University Spring Parsing with CFGs. Direction of processing L445 / L545 / B659 Dept. of Linguistics, Indiana University Spring 2016 1 / 46 : Overview Input: a string Output: a (single) parse tree A useful step in the process of obtaining meaning We can view the

More information

Parsing with CFGs. Direction of processing. Top-down. Bottom-up. Left-corner parsing. Chart parsing CYK. Earley 1 / 46.

Parsing with CFGs. Direction of processing. Top-down. Bottom-up. Left-corner parsing. Chart parsing CYK. Earley 1 / 46. : Overview L545 Dept. of Linguistics, Indiana University Spring 2013 Input: a string Output: a (single) parse tree A useful step in the process of obtaining meaning We can view the problem as searching

More information

Processing/Speech, NLP and the Web

Processing/Speech, NLP and the Web CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 25 Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 14 th March, 2011 Bracketed Structure: Treebank Corpus [ S1[

More information

Structure and Complexity of Grammar-Based Machine Translation

Structure and Complexity of Grammar-Based Machine Translation Structure and of Grammar-Based Machine Translation University of Padua, Italy New York, June 9th, 2006 1 2 Synchronous context-free grammars Definitions Computational problems 3 problem SCFG projection

More information

a) b) (Natural Language Processing; NLP) (Deep Learning) Bag of words White House RGB [1] IBM

a) b) (Natural Language Processing; NLP) (Deep Learning) Bag of words White House RGB [1] IBM c 1. (Natural Language Processing; NLP) (Deep Learning) RGB IBM 135 8511 5 6 52 yutat@jp.ibm.com a) b) 2. 1 0 2 1 Bag of words White House 2 [1] 2015 4 Copyright c by ORSJ. Unauthorized reproduction of

More information

Natural Language Processing : Probabilistic Context Free Grammars. Updated 5/09

Natural Language Processing : Probabilistic Context Free Grammars. Updated 5/09 Natural Language Processing : Probabilistic Context Free Grammars Updated 5/09 Motivation N-gram models and HMM Tagging only allowed us to process sentences linearly. However, even simple sentences require

More information

Long-Short Term Memory and Other Gated RNNs

Long-Short Term Memory and Other Gated RNNs Long-Short Term Memory and Other Gated RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Sequence Modeling

More information

Tensor Decomposition for Fast Parsing with Latent-Variable PCFGs

Tensor Decomposition for Fast Parsing with Latent-Variable PCFGs Tensor Decomposition for Fast Parsing with Latent-Variable PCFGs Shay B. Cohen and Michael Collins Department of Computer Science Columbia University New York, NY 10027 scohen,mcollins@cs.columbia.edu

More information

c(a) = X c(a! Ø) (13.1) c(a! Ø) ˆP(A! Ø A) = c(a)

c(a) = X c(a! Ø) (13.1) c(a! Ø) ˆP(A! Ø A) = c(a) Chapter 13 Statistical Parsg Given a corpus of trees, it is easy to extract a CFG and estimate its parameters. Every tree can be thought of as a CFG derivation, and we just perform relative frequency estimation

More information

Introduction to Computational Linguistics

Introduction to Computational Linguistics Introduction to Computational Linguistics Olga Zamaraeva (2018) Based on Bender (prev. years) University of Washington May 3, 2018 1 / 101 Midterm Project Milestone 2: due Friday Assgnments 4& 5 due dates

More information

An introduction to PRISM and its applications

An introduction to PRISM and its applications An introduction to PRISM and its applications Yoshitaka Kameya Tokyo Institute of Technology 2007/9/17 FJ-2007 1 Contents What is PRISM? Two examples: from population genetics from statistical natural

More information

Parsing. Probabilistic CFG (PCFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 22

Parsing. Probabilistic CFG (PCFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 22 Parsing Probabilistic CFG (PCFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2017/18 1 / 22 Table of contents 1 Introduction 2 PCFG 3 Inside and outside probability 4 Parsing Jurafsky

More information

Dynamic Programming for Linear-Time Incremental Parsing

Dynamic Programming for Linear-Time Incremental Parsing Dynamic Programming for Linear-Time Incremental Parsing Liang Huang USC Information Sciences Institute 4676 Admiralty Way, Suite 1001 Marina del Rey, CA 90292 lhuang@isi.edu Kenji Sagae USC Institute for

More information

Dual Decomposition for Natural Language Processing. Decoding complexity

Dual Decomposition for Natural Language Processing. Decoding complexity Dual Decomposition for atural Language Processing Alexander M. Rush and Michael Collins Decoding complexity focus: decoding problem for natural language tasks motivation: y = arg max y f (y) richer model

More information

Decipherment of Substitution Ciphers with Neural Language Models

Decipherment of Substitution Ciphers with Neural Language Models Decipherment of Substitution Ciphers with Neural Language Models Nishant Kambhatla, Anahita Mansouri Bigvand, Anoop Sarkar School of Computing Science Simon Fraser University Burnaby, BC, Canada {nkambhat,amansour,anoop}@sfu.ca

More information

Natural Language Processing. Classification. Features. Some Definitions. Classification. Feature Vectors. Classification I. Dan Klein UC Berkeley

Natural Language Processing. Classification. Features. Some Definitions. Classification. Feature Vectors. Classification I. Dan Klein UC Berkeley Natural Language Processing Classification Classification I Dan Klein UC Berkeley Classification Automatically make a decision about inputs Example: document category Example: image of digit digit Example:

More information

Unit 2: Tree Models. CS 562: Empirical Methods in Natural Language Processing. Lectures 19-23: Context-Free Grammars and Parsing

Unit 2: Tree Models. CS 562: Empirical Methods in Natural Language Processing. Lectures 19-23: Context-Free Grammars and Parsing CS 562: Empirical Methods in Natural Language Processing Unit 2: Tree Models Lectures 19-23: Context-Free Grammars and Parsing Oct-Nov 2009 Liang Huang (lhuang@isi.edu) Big Picture we have already covered...

More information

CMPT-825 Natural Language Processing. Why are parsing algorithms important?

CMPT-825 Natural Language Processing. Why are parsing algorithms important? CMPT-825 Natural Language Processing Anoop Sarkar http://www.cs.sfu.ca/ anoop October 26, 2010 1/34 Why are parsing algorithms important? A linguistic theory is implemented in a formal system to generate

More information

A DOP Model for LFG. Rens Bod and Ronald Kaplan. Kathrin Spreyer Data-Oriented Parsing, 14 June 2005

A DOP Model for LFG. Rens Bod and Ronald Kaplan. Kathrin Spreyer Data-Oriented Parsing, 14 June 2005 A DOP Model for LFG Rens Bod and Ronald Kaplan Kathrin Spreyer Data-Oriented Parsing, 14 June 2005 Lexical-Functional Grammar (LFG) Levels of linguistic knowledge represented formally differently (non-monostratal):

More information

STRUCTURED LEARNING WITH INEXACT SEARCH: ADVANCES IN SHIFT-REDUCE CCG PARSING. Wenduan Xu

STRUCTURED LEARNING WITH INEXACT SEARCH: ADVANCES IN SHIFT-REDUCE CCG PARSING. Wenduan Xu STRUCTURED LEARNING WITH INEXACT SEARCH: ADVANCES IN SHIFT-REDUCE CCG PARSING Wenduan Xu This dissertation is submitted to the Computer Laboratory of the University of Cambridge in partial fulfillment

More information

Lecture 9: Decoding. Andreas Maletti. Stuttgart January 20, Statistical Machine Translation. SMT VIII A. Maletti 1

Lecture 9: Decoding. Andreas Maletti. Stuttgart January 20, Statistical Machine Translation. SMT VIII A. Maletti 1 Lecture 9: Decoding Andreas Maletti Statistical Machine Translation Stuttgart January 20, 2012 SMT VIII A. Maletti 1 Lecture 9 Last time Synchronous grammars (tree transducers) Rule extraction Weight training

More information

Deep Learning For Mathematical Functions

Deep Learning For Mathematical Functions 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Review. Earley Algorithm Chapter Left Recursion. Left-Recursion. Rule Ordering. Rule Ordering

Review. Earley Algorithm Chapter Left Recursion. Left-Recursion. Rule Ordering. Rule Ordering Review Earley Algorithm Chapter 13.4 Lecture #9 October 2009 Top-Down vs. Bottom-Up Parsers Both generate too many useless trees Combine the two to avoid over-generation: Top-Down Parsing with Bottom-Up

More information

Spatial Transformer. Ref: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, Spatial Transformer Networks, NIPS, 2015

Spatial Transformer. Ref: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, Spatial Transformer Networks, NIPS, 2015 Spatial Transormer Re: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, Spatial Transormer Networks, NIPS, 2015 Spatial Transormer Layer CNN is not invariant to scaling and rotation

More information

1. For the following sub-problems, consider the following context-free grammar: S AB$ (1) A xax (2) A B (3) B yby (5) B A (6)

1. For the following sub-problems, consider the following context-free grammar: S AB$ (1) A xax (2) A B (3) B yby (5) B A (6) ECE 468 & 573 Problem Set 2: Contet-free Grammars, Parsers 1. For the following sub-problems, consider the following contet-free grammar: S AB$ (1) A A (2) A B (3) A λ (4) B B (5) B A (6) B λ (7) (a) What

More information

The Rise of Statistical Parsing

The Rise of Statistical Parsing The Rise of Statistical Parsing Karl Stratos Abstract The effectiveness of statistical parsing has almost completely overshadowed the previous dependence on rule-based parsing. Statistically learning how

More information

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister A Syntax-based Statistical Machine Translation Model Alexander Friedl, Georg Teichtmeister 4.12.2006 Introduction The model Experiment Conclusion Statistical Translation Model (STM): - mathematical model

More information

Natural Language Processing 1. lecture 7: constituent parsing. Ivan Titov. Institute for Logic, Language and Computation

Natural Language Processing 1. lecture 7: constituent parsing. Ivan Titov. Institute for Logic, Language and Computation atural Language Processing 1 lecture 7: constituent parsing Ivan Titov Institute for Logic, Language and Computation Outline Syntax: intro, CFGs, PCFGs PCFGs: Estimation CFGs: Parsing PCFGs: Parsing Parsing

More information

CS388: Natural Language Processing Lecture 4: Sequence Models I

CS388: Natural Language Processing Lecture 4: Sequence Models I CS388: Natural Language Processing Lecture 4: Sequence Models I Greg Durrett Mini 1 due today Administrivia Project 1 out today, due September 27 Viterbi algorithm, CRF NER system, extension Extension

More information

The Marginal Value of Adaptive Gradient Methods in Machine Learning

The Marginal Value of Adaptive Gradient Methods in Machine Learning The Marginal Value of Adaptive Gradient Methods in Machine Learning Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht University of California, Berkeley. Toyota Technological

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

CS460/626 : Natural Language

CS460/626 : Natural Language CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 23, 24 Parsing Algorithms; Parsing in case of Ambiguity; Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 8 th,

More information

Semantic Role Labeling and Constrained Conditional Models

Semantic Role Labeling and Constrained Conditional Models Semantic Role Labeling and Constrained Conditional Models Mausam Slides by Ming-Wei Chang, Nick Rizzolo, Dan Roth, Dan Jurafsky Page 1 Nice to Meet You 0: 2 ILP & Constraints Conditional Models (CCMs)

More information

The relation of surprisal and human processing

The relation of surprisal and human processing The relation of surprisal and human processing difficulty Information Theory Lecture Vera Demberg and Matt Crocker Information Theory Lecture, Universität des Saarlandes April 19th, 2015 Information theory

More information

Bringing machine learning & compositional semantics together: central concepts

Bringing machine learning & compositional semantics together: central concepts Bringing machine learning & compositional semantics together: central concepts https://githubcom/cgpotts/annualreview-complearning Chris Potts Stanford Linguistics CS 244U: Natural language understanding

More information

Introduction to Data-Driven Dependency Parsing

Introduction to Data-Driven Dependency Parsing Introduction to Data-Driven Dependency Parsing Introductory Course, ESSLLI 2007 Ryan McDonald 1 Joakim Nivre 2 1 Google Inc., New York, USA E-mail: ryanmcd@google.com 2 Uppsala University and Växjö University,

More information

Applications of Tree Automata Theory Lecture VI: Back to Machine Translation

Applications of Tree Automata Theory Lecture VI: Back to Machine Translation Applications of Tree Automata Theory Lecture VI: Back to Machine Translation Andreas Maletti Institute of Computer Science Universität Leipzig, Germany on leave from: Institute for Natural Language Processing

More information

Lagrangian Relaxation Algorithms for Inference in Natural Language Processing

Lagrangian Relaxation Algorithms for Inference in Natural Language Processing Lagrangian Relaxation Algorithms for Inference in Natural Language Processing Alexander M. Rush and Michael Collins (based on joint work with Yin-Wen Chang, Tommi Jaakkola, Terry Koo, Roi Reichart, David

More information

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recap Standard RNNs Training: Backpropagation Through Time (BPTT) Application to sequence modeling Language modeling Applications: Automatic speech

More information

Parsing. Unger s Parser. Introduction (1) Unger s parser [Grune and Jacobs, 2008] is a CFG parser that is

Parsing. Unger s Parser. Introduction (1) Unger s parser [Grune and Jacobs, 2008] is a CFG parser that is Introduction (1) Unger s parser [Grune and Jacobs, 2008] is a CFG parser that is Unger s Parser Laura Heinrich-Heine-Universität Düsseldorf Wintersemester 2012/2013 a top-down parser: we start with S and

More information

Smoothing for Bracketing Induction

Smoothing for Bracketing Induction Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Smoothing for racketing Induction Xiangyu Duan, Min Zhang *, Wenliang Chen Soochow University, China Institute

More information

Globally Normalized Transition-Based Neural Networks

Globally Normalized Transition-Based Neural Networks Globally Normalized Transition-Based Neural Networks Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov and Michael Collins Google Inc New York,

More information

Lecture 5: UDOP, Dependency Grammars

Lecture 5: UDOP, Dependency Grammars Lecture 5: UDOP, Dependency Grammars Jelle Zuidema ILLC, Universiteit van Amsterdam Unsupervised Language Learning, 2014 Generative Model objective PCFG PTSG CCM DMV heuristic Wolff (1984) UDOP ML IO K&M

More information

Statistical NLP Spring 2010

Statistical NLP Spring 2010 Statistical NLP Spring 2010 Lecture 5: WSD / Maxent Dan Klein UC Berkeley Unsupervised Learning with EM Goal, learn parameters without observing labels y y y θ x x x x x x x x x 1 EM: More Formally Hard

More information

Context-Free Grammars (and Languages) Lecture 7

Context-Free Grammars (and Languages) Lecture 7 Context-Free Grammars (and Languages) Lecture 7 1 Today Beyond regular expressions: Context-Free Grammars (CFGs) What is a CFG? What is the language associated with a CFG? Creating CFGs. Reasoning about

More information