A DOP Model for LFG. Rens Bod and Ronald Kaplan. Kathrin Spreyer Data-Oriented Parsing, 14 June 2005

Size: px
Start display at page:

Download "A DOP Model for LFG. Rens Bod and Ronald Kaplan. Kathrin Spreyer Data-Oriented Parsing, 14 June 2005"

Transcription

1 A DOP Model for LFG Rens Bod and Ronald Kaplan Kathrin Spreyer Data-Oriented Parsing, 14 June 2005

2 Lexical-Functional Grammar (LFG) Levels of linguistic knowledge represented formally differently (non-monostratal): constituent structure as PS tree, functional relations as AVM Mapping φ between c-structure and f-structure, established by annotations in the PS rules S NP VP ( SUBJ)= = S NP VP Kim sleeps PRED SUBJ [ sleep ( SUBJ ] PRED Kim 1

3 A DOP model for LFG is more expressive than Tree-DOP, and therefore requires extension of DOP parameters to multilevel nature of LFG: Representations Fragments Composition Operation Probability model 2

4 Representations Tree-DOP: (context-free) phrase structure trees LFG-DOP: 1. PS trees (c-structure) 2. AVMs (f-structure) 3. mapping from tree nodes to AVMs (φ) A c-structure/f-structure pair is a valid representation only if it satisfies Nonbranching Dominance: no c-structure such that X X Uniqueness: at most one value for any attribute in an f-structure Coherence: every grammatical relation in an f-structure must be governed by a PRED Completeness: all functions governed by a PRED appear as attributes in the local f-structure 3

5 Fragments Basic idea: Association of Tree-DOP fragments (= connected subtrees) with f-structure units Challenge: Fragmentation operations (and composition later on) must (i) preserve validity of f-structure components, and (ii) manipulate the correspondence function φ. Tree-DOP fragments can be produced by two operations: Root: Select any node in a tree as the root of the fragment; erase all nodes dominating that root. Frontier: Select a set of nodes in the Root-generated fragment (except its root node); erase the subtrees dominated by these nodes. 4

6 Fragments contd. Extension for f-structure components: Root removes all φ links leaving the erased nodes, all f-structure units that are not contained in the φ-projections of the remaining nodes, and all PRED features of the φ-projections of erased nodes Like Root, Frontier removes φ-correspondences of erased nodes and their respective PRED features. Frontier removes nothing else. 5

7 An example: John said that Kim sleeps. S NP VP John V S said C S PRED SUBJ VCOMP say ( SUBJ)( VCOMP) [ ] PRED John PRED sleep ( SUBJ) COMPFORM SUBJ [ PRED that ] Kim that NP VP Kim sleeps 6

8 Generalisation of Fragments Root and Frontier retain all agreement features of nodes that are φ-accessible from the fragment nodes. In some cases, specification of these features is more restrictive than necessary. [ ] VP SUBJ PERS 2 sleep PRED sleep ( SUBJ) Intuitively, the fragment should also be compatible with a 1st person SUBJ. Discard operation: delete a feature whose corresponding node has been erased. VP sleep SUBJ [] PRED sleep ( SUBJ) 7

9 Composition of Fragments Composition ( ) is defined in two steps: 1. Left-most substitution on the c-structure (cf. Tree-DOP); 2. Unification of the f-structures corresponding to the matching nodes. Given this definition, a derivation of a representation R is a sequence of fragments f 1, f 2,..., f k such that root(f 1 ) = S and f 1 f 2... f k = R. Interaction of composition and Discard may result in valid representations assigned to ungrammatical utterances = robust language model. Corpus-based notion of grammaticality can be expressed as constraint on derivations: A sentence is grammatical iff there is at least one Discard-free derivation for a valid representation. 8

10 Validity Checking Recall: An LFG-DOP representation is valid iff it obeys the Nonbranching Dominance (property of c-structure, ignored here), Uniqueness, Coherence, and Completeness Conditions. Uniqueness and Coherence: on-line or off-line check, since these constraints are monotonic: once an f-structure violates one of the constraints, it will remain inconsistent, no matter which information is added in subsequent composition steps. But: Completeness can only be verified for final representations, otherwise, partial information added in later steps could not be taken into account. Off-line checking does not affect the generation of derivations directly, whereas on-line evaluation of conditions restricts the Competition Set (CS): The competition set CS i at step i of the composition contains exactly those fragments that are composable with the analysis obtained by f 1... f i 1. 9

11 Composability Off-line evaluation of all validity conditions: as in Tree-DOP, fragment s root category must match category of left-most nonterminal in current analysis; on-line evaluation of Uniqueness: (c-structure) node categories match and their corresponding f-structures unify; on-line evaluation of Coherence: (c-structure) node categories match and the result of unifying the corresponding f-structures is coherent. Note that on-line satisfaction of the Coherence condition implies satisfaction of Uniqueness. 10

12 The Probability Model Probability of a fragment in Tree-DOP: relative frequency. LFG-DOP should distinguish between Root-/Frontier-generated and Discardgenerated (= generalised) fragments, since the number of the latter is exponential in the number of features of the underlying R.-/F.-generated fragments. Discounted Relative Frequency: Generalised fragments are treated as unseen events which receive a probability mass of n 1 N, where n 1 = #singleton events, N = #seen events. Let D the bag of generalised fragments, f the frequency of a fragment f, then ( n1 ) f P(f f D) = N f D f and ( P(f f D) = 1 n ) 1 f N f D f 11

13 The Probability Model contd. Derivation of a representation as a stochastic process: 1. Select initial fragment f 1 from the set of all fragments rooted in S; 2. each subsequent fragment f i is randomly drawn from the competition set CS i. Competition Probability of a fragment f CS: CP(f CS) = P(f) f CS P(f ) Probability of a derivation: P( f 1, f 2,..., f k ) = k 1 CP(f i CS i ). Probability of a (valid) representation R for sentence S: D derives R P(R) = P(D) R valid and R yields W P(R ) 12

14 Parsing with LFG-DOP Step 1. Apply the fragmentation operations to a (disambiguated) treebank of LFG representations; Step 2. parse the input sentence with a BU chart parser, using only the c-structure components of the fragments obtained in step 1; Step 3. decode the resulting chart with Monte Carlo disambiguation, i.e. generate a large number of random derivations from the chart, filter out those representations that violate Uniqueness or Coherence conditions, and select the most frequently generated representation among the remaining representations. 13

15 Evaluation LFG-annotated corpora: Verbmobil (540 parses), Homecentre (980 parses); split: 90% training data, 10% test data; parsing of test set with LFG-DOP parsing using fragments from training set (limited to framents with depth up to 4) metrics: exact match, plus precision and recall. Precision = #correct constituents in P #constituents in P #correct constituents in P Recall = #constituents in T Adaptation for f-structures: f-structures of P and T φ-correspond. 14

16 Evaluation contd. Fragment estimators (results for Homecentre only): Estimator Exact Match Precision Recall +Discard Discard +Discard Discard +Discard Discard Rel.Freq. 2.7% 37.9% 17.1% 77.8% 15.5% 77.2% Disc.Rel.Freq. 38.4% 37.9% 80.0% 77.8% 78.6% 77.2% Simple Relative Frequency estimator inaccurate with generalised fragments, scores significantly higher with only Root-/Frontier-generated fragments; Discounted Relative Frequency estimator takes advantage of the generalised fragments. 15

17 Evaluation contd. Fragment sizes (results for Homecentre only): Fragment Depth Exact Match Precision Recall % 75.0% 71.5% % 77.1% 74.7% % 77.8% 76.1% % 80.0% 78.6% Supports DOP-hypothesis: Parse accuracy increases with increasing fragment size. 16

18 Evaluation contd. LFG-DOP vs. Tree-DOP (results for Homecentre only): Model Exact Match Precision Recall Tree-DOP 49.0% 93.4% 92.1% LFG-DOP 53.2% 95.8% 94.7% Discounted Relative Frequency estimator and fragments up to depth 4 for LFG-DOP; parse accuracy only for tree-structures f-structures help improve accuracy significantly even if only tree-structures matter 17

19 For Short LFG-DOP enables robust, deep parsing without a competence grammar. The notion of grammaticality is corpus-based. LFG-DOP probability models define a parametrised stochastic process: Uniqueness and/or Coherence constraints can be processed on-line of off-line. LFG-DOP outperforms Tree-DOP. 18

Advanced Natural Language Processing Syntactic Parsing

Advanced Natural Language Processing Syntactic Parsing Advanced Natural Language Processing Syntactic Parsing Alicia Ageno ageno@cs.upc.edu Universitat Politècnica de Catalunya NLP statistical parsing 1 Parsing Review Statistical Parsing SCFG Inside Algorithm

More information

Topics in Lexical-Functional Grammar. Ronald M. Kaplan and Mary Dalrymple. Xerox PARC. August 1995

Topics in Lexical-Functional Grammar. Ronald M. Kaplan and Mary Dalrymple. Xerox PARC. August 1995 Projections and Semantic Interpretation Topics in Lexical-Functional Grammar Ronald M. Kaplan and Mary Dalrymple Xerox PARC August 199 Kaplan and Dalrymple, ESSLLI 9, Barcelona 1 Constituent structure

More information

Probabilistic Context-free Grammars

Probabilistic Context-free Grammars Probabilistic Context-free Grammars Computational Linguistics Alexander Koller 24 November 2017 The CKY Recognizer S NP VP NP Det N VP V NP V ate NP John Det a N sandwich i = 1 2 3 4 k = 2 3 4 5 S NP John

More information

Andreas Zollmann. A Consistent and Efficient Estimator for the Data-Oriented Parsing Model

Andreas Zollmann. A Consistent and Efficient Estimator for the Data-Oriented Parsing Model Andreas Zollmann A Consistent and Efficient Estimator for the Data-Oriented Parsing Model MoL-2004-02, received: May 2004 ILLC Scientific Publications Series editor: Benedikt Löwe Master of Logic Thesis

More information

Parsing with Context-Free Grammars

Parsing with Context-Free Grammars Parsing with Context-Free Grammars Berlin Chen 2005 References: 1. Natural Language Understanding, chapter 3 (3.1~3.4, 3.6) 2. Speech and Language Processing, chapters 9, 10 NLP-Berlin Chen 1 Grammars

More information

A* Search. 1 Dijkstra Shortest Path

A* Search. 1 Dijkstra Shortest Path A* Search Consider the eight puzzle. There are eight tiles numbered 1 through 8 on a 3 by three grid with nine locations so that one location is left empty. We can move by sliding a tile adjacent to the

More information

Processing/Speech, NLP and the Web

Processing/Speech, NLP and the Web CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 25 Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 14 th March, 2011 Bracketed Structure: Treebank Corpus [ S1[

More information

Algorithms for Syntax-Aware Statistical Machine Translation

Algorithms for Syntax-Aware Statistical Machine Translation Algorithms for Syntax-Aware Statistical Machine Translation I. Dan Melamed, Wei Wang and Ben Wellington ew York University Syntax-Aware Statistical MT Statistical involves machine learning (ML) seems crucial

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Parsing with Probabilistic Context-Free Grammar Ulf Leser Content of this Lecture Phrase-Structure Parse Trees Probabilistic Context-Free Grammars Parsing with PCFG Other

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Parsing with Probabilistic Context-Free Grammar Ulf Leser Content of this Lecture Phrase-Structure Parse Trees Probabilistic Context-Free Grammars Parsing with PCFG Other

More information

Chapter 14 (Partially) Unsupervised Parsing

Chapter 14 (Partially) Unsupervised Parsing Chapter 14 (Partially) Unsupervised Parsing The linguistically-motivated tree transformations we discussed previously are very effective, but when we move to a new language, we may have to come up with

More information

Grammar and Feature Unification

Grammar and Feature Unification Grammar and Feature Unification Problems with CF Phrase Structure Grammars Difficult to capture dependencies between constituents the boy runs the boys run * the boy run * the boys runs Problems with CF

More information

DT2118 Speech and Speaker Recognition

DT2118 Speech and Speaker Recognition DT2118 Speech and Speaker Recognition Language Modelling Giampiero Salvi KTH/CSC/TMH giampi@kth.se VT 2015 1 / 56 Outline Introduction Formal Language Theory Stochastic Language Models (SLM) N-gram Language

More information

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science Natural Language Processing CS 6840 Lecture 06 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Statistical Parsing Define a probabilistic model of syntax P(T S):

More information

Parsing. Probabilistic CFG (PCFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 22

Parsing. Probabilistic CFG (PCFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 22 Parsing Probabilistic CFG (PCFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2017/18 1 / 22 Table of contents 1 Introduction 2 PCFG 3 Inside and outside probability 4 Parsing Jurafsky

More information

Natural Language Processing : Probabilistic Context Free Grammars. Updated 5/09

Natural Language Processing : Probabilistic Context Free Grammars. Updated 5/09 Natural Language Processing : Probabilistic Context Free Grammars Updated 5/09 Motivation N-gram models and HMM Tagging only allowed us to process sentences linearly. However, even simple sentences require

More information

CKY & Earley Parsing. Ling 571 Deep Processing Techniques for NLP January 13, 2016

CKY & Earley Parsing. Ling 571 Deep Processing Techniques for NLP January 13, 2016 CKY & Earley Parsing Ling 571 Deep Processing Techniques for NLP January 13, 2016 No Class Monday: Martin Luther King Jr. Day CKY Parsing: Finish the parse Recognizer à Parser Roadmap Earley parsing Motivation:

More information

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford)

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford) Parsing Based on presentations from Chris Manning s course on Statistical Parsing (Stanford) S N VP V NP D N John hit the ball Levels of analysis Level Morphology/Lexical POS (morpho-synactic), WSD Elements

More information

Lecture 5: UDOP, Dependency Grammars

Lecture 5: UDOP, Dependency Grammars Lecture 5: UDOP, Dependency Grammars Jelle Zuidema ILLC, Universiteit van Amsterdam Unsupervised Language Learning, 2014 Generative Model objective PCFG PTSG CCM DMV heuristic Wolff (1984) UDOP ML IO K&M

More information

Bringing machine learning & compositional semantics together: central concepts

Bringing machine learning & compositional semantics together: central concepts Bringing machine learning & compositional semantics together: central concepts https://githubcom/cgpotts/annualreview-complearning Chris Potts Stanford Linguistics CS 244U: Natural language understanding

More information

Probabilistic Context Free Grammars. Many slides from Michael Collins and Chris Manning

Probabilistic Context Free Grammars. Many slides from Michael Collins and Chris Manning Probabilistic Context Free Grammars Many slides from Michael Collins and Chris Manning Overview I Probabilistic Context-Free Grammars (PCFGs) I The CKY Algorithm for parsing with PCFGs A Probabilistic

More information

Probabilistic Context Free Grammars

Probabilistic Context Free Grammars 1 Defining PCFGs A PCFG G consists of Probabilistic Context Free Grammars 1. A set of terminals: {w k }, k = 1..., V 2. A set of non terminals: { i }, i = 1..., n 3. A designated Start symbol: 1 4. A set

More information

National Centre for Language Technology School of Computing Dublin City University

National Centre for Language Technology School of Computing Dublin City University with with National Centre for Language Technology School of Computing Dublin City University Parallel treebanks A parallel treebank comprises: sentence pairs parsed word-aligned tree-aligned (Volk & Samuelsson,

More information

Backoff Parameter Estimation for the DOP Model

Backoff Parameter Estimation for the DOP Model Backoff Parameter Estimation for the DOP Model Khalil ima an and Luciano Buratto Institute for Logic, Language and Computation (ILLC) University of Amsterdam, The Netherlands simaan@science.uva.nl; lburatto@citri.iq.usp.br

More information

Ling 240 Lecture #15. Syntax 4

Ling 240 Lecture #15. Syntax 4 Ling 240 Lecture #15 Syntax 4 agenda for today Give me homework 3! Language presentation! return Quiz 2 brief review of friday More on transformation Homework 4 A set of Phrase Structure Rules S -> (aux)

More information

A Supertag-Context Model for Weakly-Supervised CCG Parser Learning

A Supertag-Context Model for Weakly-Supervised CCG Parser Learning A Supertag-Context Model for Weakly-Supervised CCG Parser Learning Dan Garrette Chris Dyer Jason Baldridge Noah A. Smith U. Washington CMU UT-Austin CMU Contributions 1. A new generative model for learning

More information

Tree Adjoining Grammars

Tree Adjoining Grammars Tree Adjoining Grammars Feature Structure Based TAG Laura Kallmeyer & Benjamin Burkhardt HHU Düsseldorf WS 2017/2018 1 / 20 Outline 1 Why feature structures? 2 Basics of feature structure logic 3 Feature

More information

Recap: Lexicalized PCFGs (Fall 2007): Lecture 5 Parsing and Syntax III. Recap: Charniak s Model. Recap: Adding Head Words/Tags to Trees

Recap: Lexicalized PCFGs (Fall 2007): Lecture 5 Parsing and Syntax III. Recap: Charniak s Model. Recap: Adding Head Words/Tags to Trees Recap: Lexicalized PCFGs We now need to estimate rule probabilities such as P rob(s(questioned,vt) NP(lawyer,NN) VP(questioned,Vt) S(questioned,Vt)) 6.864 (Fall 2007): Lecture 5 Parsing and Syntax III

More information

Penn Treebank Parsing. Advanced Topics in Language Processing Stephen Clark

Penn Treebank Parsing. Advanced Topics in Language Processing Stephen Clark Penn Treebank Parsing Advanced Topics in Language Processing Stephen Clark 1 The Penn Treebank 40,000 sentences of WSJ newspaper text annotated with phrasestructure trees The trees contain some predicate-argument

More information

A Polynomial Time Algorithm for Parsing with the Bounded Order Lambek Calculus

A Polynomial Time Algorithm for Parsing with the Bounded Order Lambek Calculus A Polynomial Time Algorithm for Parsing with the Bounded Order Lambek Calculus Timothy A. D. Fowler Department of Computer Science University of Toronto 10 King s College Rd., Toronto, ON, M5S 3G4, Canada

More information

Dynamic programming for parsing and estimation of. Stochastic Unification-Based Grammars (SUBGs)

Dynamic programming for parsing and estimation of. Stochastic Unification-Based Grammars (SUBGs) Dynamic programming for parsing and estimation of stochastic unification-based grammars Stuart Geman Division of Applied Mathematics Brown University geman@dam.brown.edu Mark Johnson Cognitive and Linguistic

More information

Features of Statistical Parsers

Features of Statistical Parsers Features of tatistical Parsers Preliminary results Mark Johnson Brown University TTI, October 2003 Joint work with Michael Collins (MIT) upported by NF grants LI 9720368 and II0095940 1 Talk outline tatistical

More information

Multilevel Coarse-to-Fine PCFG Parsing

Multilevel Coarse-to-Fine PCFG Parsing Multilevel Coarse-to-Fine PCFG Parsing Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David Ellis, Isaac Haxton, Catherine Hill, Shrivaths Iyengar, Jeremy Moore, Michael Pozar, and Theresa

More information

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis 1 Introduction Parenthesis Matching Problem Describe the set of arithmetic expressions with correctly matched parenthesis. Arithmetic expressions with correctly matched parenthesis cannot be described

More information

Probabilistic Context-Free Grammar

Probabilistic Context-Free Grammar Probabilistic Context-Free Grammar Petr Horáček, Eva Zámečníková and Ivana Burgetová Department of Information Systems Faculty of Information Technology Brno University of Technology Božetěchova 2, 612

More information

Parikh s theorem. Håkan Lindqvist

Parikh s theorem. Håkan Lindqvist Parikh s theorem Håkan Lindqvist Abstract This chapter will discuss Parikh s theorem and provide a proof for it. The proof is done by induction over a set of derivation trees, and using the Parikh mappings

More information

Parsing with CFGs L445 / L545 / B659. Dept. of Linguistics, Indiana University Spring Parsing with CFGs. Direction of processing

Parsing with CFGs L445 / L545 / B659. Dept. of Linguistics, Indiana University Spring Parsing with CFGs. Direction of processing L445 / L545 / B659 Dept. of Linguistics, Indiana University Spring 2016 1 / 46 : Overview Input: a string Output: a (single) parse tree A useful step in the process of obtaining meaning We can view the

More information

Parsing with CFGs. Direction of processing. Top-down. Bottom-up. Left-corner parsing. Chart parsing CYK. Earley 1 / 46.

Parsing with CFGs. Direction of processing. Top-down. Bottom-up. Left-corner parsing. Chart parsing CYK. Earley 1 / 46. : Overview L545 Dept. of Linguistics, Indiana University Spring 2013 Input: a string Output: a (single) parse tree A useful step in the process of obtaining meaning We can view the problem as searching

More information

Object Detection Grammars

Object Detection Grammars Object Detection Grammars Pedro F. Felzenszwalb and David McAllester February 11, 2010 1 Introduction We formulate a general grammar model motivated by the problem of object detection in computer vision.

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Stochastic Grammars Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(22) Structured Classification

More information

Probabilistic Linguistics

Probabilistic Linguistics Matilde Marcolli MAT1509HS: Mathematical and Computational Linguistics University of Toronto, Winter 2019, T 4-6 and W 4, BA6180 Bernoulli measures finite set A alphabet, strings of arbitrary (finite)

More information

A Context-Free Grammar

A Context-Free Grammar Statistical Parsing A Context-Free Grammar S VP VP Vi VP Vt VP VP PP DT NN PP PP P Vi sleeps Vt saw NN man NN dog NN telescope DT the IN with IN in Ambiguity A sentence of reasonable length can easily

More information

Attendee information. Seven Lectures on Statistical Parsing. Phrase structure grammars = context-free grammars. Assessment.

Attendee information. Seven Lectures on Statistical Parsing. Phrase structure grammars = context-free grammars. Assessment. even Lectures on tatistical Parsing Christopher Manning LA Linguistic Institute 7 LA Lecture Attendee information Please put on a piece of paper: ame: Affiliation: tatus (undergrad, grad, industry, prof,

More information

An axiomatic approach to speaker preferences

An axiomatic approach to speaker preferences 1 An axiomatic approach to speaker preferences In this paper, we propose a set of axioms that can be used to model the choices made by speakers and hearers when pairing speech signals with meanings in

More information

The Formal Architecture of. Lexical-Functional Grammar. Ronald M. Kaplan and Mary Dalrymple

The Formal Architecture of. Lexical-Functional Grammar. Ronald M. Kaplan and Mary Dalrymple The Formal Architecture of Lexical-Functional Grammar Ronald M. Kaplan and Mary Dalrymple Xerox Palo Alto Research Center 1. Kaplan and Dalrymple, ESSLLI 1995, Barcelona Architectural Issues Representation:

More information

On rigid NL Lambek grammars inference from generalized functor-argument data

On rigid NL Lambek grammars inference from generalized functor-argument data 7 On rigid NL Lambek grammars inference from generalized functor-argument data Denis Béchet and Annie Foret Abstract This paper is concerned with the inference of categorial grammars, a context-free grammar

More information

Improved TBL algorithm for learning context-free grammar

Improved TBL algorithm for learning context-free grammar Proceedings of the International Multiconference on ISSN 1896-7094 Computer Science and Information Technology, pp. 267 274 2007 PIPS Improved TBL algorithm for learning context-free grammar Marcin Jaworski

More information

CS460/626 : Natural Language

CS460/626 : Natural Language CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 23, 24 Parsing Algorithms; Parsing in case of Ambiguity; Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 8 th,

More information

Multiword Expression Identification with Tree Substitution Grammars

Multiword Expression Identification with Tree Substitution Grammars Multiword Expression Identification with Tree Substitution Grammars Spence Green, Marie-Catherine de Marneffe, John Bauer, and Christopher D. Manning Stanford University EMNLP 2011 Main Idea Use syntactic

More information

Probabilistic Context-Free Grammars. Michael Collins, Columbia University

Probabilistic Context-Free Grammars. Michael Collins, Columbia University Probabilistic Context-Free Grammars Michael Collins, Columbia University Overview Probabilistic Context-Free Grammars (PCFGs) The CKY Algorithm for parsing with PCFGs A Probabilistic Context-Free Grammar

More information

Latent Variable Models in NLP

Latent Variable Models in NLP Latent Variable Models in NLP Aria Haghighi with Slav Petrov, John DeNero, and Dan Klein UC Berkeley, CS Division Latent Variable Models Latent Variable Models Latent Variable Models Observed Latent Variable

More information

Model-Theory of Property Grammars with Features

Model-Theory of Property Grammars with Features Model-Theory of Property Grammars with Features Denys Duchier Thi-Bich-Hanh Dao firstname.lastname@univ-orleans.fr Yannick Parmentier Abstract In this paper, we present a model-theoretic description of

More information

Unification Grammars and Off-Line Parsability. Efrat Jaeger

Unification Grammars and Off-Line Parsability. Efrat Jaeger Unification Grammars and Off-Line Parsability Efrat Jaeger October 1, 2002 Unification Grammars and Off-Line Parsability Research Thesis Submitted in partial fulfillment of the requirements for the degree

More information

Naïve Bayes Classifiers

Naïve Bayes Classifiers Naïve Bayes Classifiers Example: PlayTennis (6.9.1) Given a new instance, e.g. (Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong ), we want to compute the most likely hypothesis: v NB

More information

Review. Earley Algorithm Chapter Left Recursion. Left-Recursion. Rule Ordering. Rule Ordering

Review. Earley Algorithm Chapter Left Recursion. Left-Recursion. Rule Ordering. Rule Ordering Review Earley Algorithm Chapter 13.4 Lecture #9 October 2009 Top-Down vs. Bottom-Up Parsers Both generate too many useless trees Combine the two to avoid over-generation: Top-Down Parsing with Bottom-Up

More information

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this.

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this. Chapter 12 Synchronous CFGs Synchronous context-free grammars are a generalization of CFGs that generate pairs of related strings instead of single strings. They are useful in many situations where one

More information

Quasi-Synchronous Phrase Dependency Grammars for Machine Translation. lti

Quasi-Synchronous Phrase Dependency Grammars for Machine Translation. lti Quasi-Synchronous Phrase Dependency Grammars for Machine Translation Kevin Gimpel Noah A. Smith 1 Introduction MT using dependency grammars on phrases Phrases capture local reordering and idiomatic translations

More information

Decoding and Inference with Syntactic Translation Models

Decoding and Inference with Syntactic Translation Models Decoding and Inference with Syntactic Translation Models March 5, 2013 CFGs S NP VP VP NP V V NP NP CFGs S NP VP S VP NP V V NP NP CFGs S NP VP S VP NP V NP VP V NP NP CFGs S NP VP S VP NP V NP VP V NP

More information

S NP VP 0.9 S VP 0.1 VP V NP 0.5 VP V 0.1 VP V PP 0.1 NP NP NP 0.1 NP NP PP 0.2 NP N 0.7 PP P NP 1.0 VP NP PP 1.0. N people 0.

S NP VP 0.9 S VP 0.1 VP V NP 0.5 VP V 0.1 VP V PP 0.1 NP NP NP 0.1 NP NP PP 0.2 NP N 0.7 PP P NP 1.0 VP  NP PP 1.0. N people 0. /6/7 CS 6/CS: Natural Language Processing Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang The grammar: Binary, no epsilons,.9..5

More information

LECTURER: BURCU CAN Spring

LECTURER: BURCU CAN Spring LECTURER: BURCU CAN 2017-2018 Spring Regular Language Hidden Markov Model (HMM) Context Free Language Context Sensitive Language Probabilistic Context Free Grammar (PCFG) Unrestricted Language PCFGs can

More information

{Probabilistic Stochastic} Context-Free Grammars (PCFGs)

{Probabilistic Stochastic} Context-Free Grammars (PCFGs) {Probabilistic Stochastic} Context-Free Grammars (PCFGs) 116 The velocity of the seismic waves rises to... S NP sg VP sg DT NN PP risesto... The velocity IN NP pl of the seismic waves 117 PCFGs APCFGGconsists

More information

10/17/04. Today s Main Points

10/17/04. Today s Main Points Part-of-speech Tagging & Hidden Markov Model Intro Lecture #10 Introduction to Natural Language Processing CMPSCI 585, Fall 2004 University of Massachusetts Amherst Andrew McCallum Today s Main Points

More information

Natural Language Processing

Natural Language Processing SFU NatLangLab Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class Simon Fraser University September 27, 2018 0 Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class

More information

Natural Language Processing 1. lecture 7: constituent parsing. Ivan Titov. Institute for Logic, Language and Computation

Natural Language Processing 1. lecture 7: constituent parsing. Ivan Titov. Institute for Logic, Language and Computation atural Language Processing 1 lecture 7: constituent parsing Ivan Titov Institute for Logic, Language and Computation Outline Syntax: intro, CFGs, PCFGs PCFGs: Estimation CFGs: Parsing PCFGs: Parsing Parsing

More information

Computational Linguistics

Computational Linguistics Computational Linguistics Dependency-based Parsing Clayton Greenberg Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2016 Acknowledgements These slides

More information

Analysing Soft Syntax Features and Heuristics for Hierarchical Phrase Based Machine Translation

Analysing Soft Syntax Features and Heuristics for Hierarchical Phrase Based Machine Translation Analysing Soft Syntax Features and Heuristics for Hierarchical Phrase Based Machine Translation David Vilar, Daniel Stein, Hermann Ney IWSLT 2008, Honolulu, Hawaii 20. October 2008 Human Language Technology

More information

Models of Language Evolution

Models of Language Evolution Models of Matilde Marcolli CS101: Mathematical and Computational Linguistics Winter 2015 Main Reference Partha Niyogi, The computational nature of language learning and evolution, MIT Press, 2006. From

More information

Feature Constraint Logics. for Unication Grammars. Gert Smolka. German Research Center for Articial Intelligence and. Universitat des Saarlandes

Feature Constraint Logics. for Unication Grammars. Gert Smolka. German Research Center for Articial Intelligence and. Universitat des Saarlandes Feature Constraint Logics for Unication Grammars Gert Smolka German Research Center for Articial Intelligence and Universitat des Saarlandes Stuhlsatzenhausweg 3, D-66123 Saarbrucken, Germany smolka@dfki.uni-sb.de

More information

PCFGs 2 L645 / B659. Dept. of Linguistics, Indiana University Fall PCFGs 2. Questions. Calculating P(w 1m ) Inside Probabilities

PCFGs 2 L645 / B659. Dept. of Linguistics, Indiana University Fall PCFGs 2. Questions. Calculating P(w 1m ) Inside Probabilities 1 / 22 Inside L645 / B659 Dept. of Linguistics, Indiana University Fall 2015 Inside- 2 / 22 for PCFGs 3 questions for Probabilistic Context Free Grammars (PCFGs): What is the probability of a sentence

More information

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister A Syntax-based Statistical Machine Translation Model Alexander Friedl, Georg Teichtmeister 4.12.2006 Introduction The model Experiment Conclusion Statistical Translation Model (STM): - mathematical model

More information

Computational Linguistics. Acknowledgements. Phrase-Structure Trees. Dependency-based Parsing

Computational Linguistics. Acknowledgements. Phrase-Structure Trees. Dependency-based Parsing Computational Linguistics Dependency-based Parsing Dietrich Klakow & Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2013 Acknowledgements These slides

More information

A proof theoretical account of polarity items and monotonic inference.

A proof theoretical account of polarity items and monotonic inference. A proof theoretical account of polarity items and monotonic inference. Raffaella Bernardi UiL OTS, University of Utrecht e-mail: Raffaella.Bernardi@let.uu.nl Url: http://www.let.uu.nl/ Raffaella.Bernardi/personal

More information

Handout 8: Computation & Hierarchical parsing II. Compute initial state set S 0 Compute initial state set S 0

Handout 8: Computation & Hierarchical parsing II. Compute initial state set S 0 Compute initial state set S 0 Massachusetts Institute of Technology 6.863J/9.611J, Natural Language Processing, Spring, 2001 Department of Electrical Engineering and Computer Science Department of Brain and Cognitive Sciences Handout

More information

Unification. Two Routes to Deep Structure. Unification. Unification Grammar. Martin Kay. Stanford University University of the Saarland

Unification. Two Routes to Deep Structure. Unification. Unification Grammar. Martin Kay. Stanford University University of the Saarland Two Routes to Deep Structure Derivational! Transformational! Procedural Deep Unidirectional Transformations Surface Stanford University University of the Saarland Constraint-based! Declarative Deep Surface

More information

Roger Levy Probabilistic Models in the Study of Language draft, October 2,

Roger Levy Probabilistic Models in the Study of Language draft, October 2, Roger Levy Probabilistic Models in the Study of Language draft, October 2, 2012 224 Chapter 10 Probabilistic Grammars 10.1 Outline HMMs PCFGs ptsgs and ptags Highlight: Zuidema et al., 2008, CogSci; Cohn

More information

Sharpening the empirical claims of generative syntax through formalization

Sharpening the empirical claims of generative syntax through formalization Sharpening the empirical claims of generative syntax through formalization Tim Hunter University of Minnesota, Twin Cities ESSLLI, August 2015 Part 1: Grammars and cognitive hypotheses What is a grammar?

More information

Syntax-Based Decoding

Syntax-Based Decoding Syntax-Based Decoding Philipp Koehn 9 November 2017 1 syntax-based models Synchronous Context Free Grammar Rules 2 Nonterminal rules NP DET 1 2 JJ 3 DET 1 JJ 3 2 Terminal rules N maison house NP la maison

More information

Semantics and Pragmatics of NLP Pronouns

Semantics and Pragmatics of NLP Pronouns Semantics and Pragmatics of NLP Pronouns School of Informatics University of Edinburgh Outline Observations About Data 1 Observations of what factors influence the way pronouns get resolved 2 Some algorithms

More information

Context-free grammars for natural languages

Context-free grammars for natural languages Context-free grammars Basic definitions Context-free grammars for natural languages Context-free grammars can be used for a variety of syntactic constructions, including some non-trivial phenomena such

More information

Spatial Role Labeling CS365 Course Project

Spatial Role Labeling CS365 Course Project Spatial Role Labeling CS365 Course Project Amit Kumar, akkumar@iitk.ac.in Chandra Sekhar, gchandra@iitk.ac.in Supervisor : Dr.Amitabha Mukerjee ABSTRACT In natural language processing one of the important

More information

CHAPTER THREE: RELATIONS AND FUNCTIONS

CHAPTER THREE: RELATIONS AND FUNCTIONS CHAPTER THREE: RELATIONS AND FUNCTIONS 1 Relations Intuitively, a relation is the sort of thing that either does or does not hold between certain things, e.g. the love relation holds between Kim and Sandy

More information

CMPT-825 Natural Language Processing. Why are parsing algorithms important?

CMPT-825 Natural Language Processing. Why are parsing algorithms important? CMPT-825 Natural Language Processing Anoop Sarkar http://www.cs.sfu.ca/ anoop October 26, 2010 1/34 Why are parsing algorithms important? A linguistic theory is implemented in a formal system to generate

More information

Parsing. Unger s Parser. Laura Kallmeyer. Winter 2016/17. Heinrich-Heine-Universität Düsseldorf 1 / 21

Parsing. Unger s Parser. Laura Kallmeyer. Winter 2016/17. Heinrich-Heine-Universität Düsseldorf 1 / 21 Parsing Unger s Parser Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2016/17 1 / 21 Table of contents 1 Introduction 2 The Parser 3 An Example 4 Optimizations 5 Conclusion 2 / 21 Introduction

More information

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius Doctoral Course in Speech Recognition May 2007 Kjell Elenius CHAPTER 12 BASIC SEARCH ALGORITHMS State-based search paradigm Triplet S, O, G S, set of initial states O, set of operators applied on a state

More information

CS 662 Sample Midterm

CS 662 Sample Midterm Name: 1 True/False, plus corrections CS 662 Sample Midterm 35 pts, 5 pts each Each of the following statements is either true or false. If it is true, mark it true. If it is false, correct the statement

More information

A brief introduction to Logic. (slides from

A brief introduction to Logic. (slides from A brief introduction to Logic (slides from http://www.decision-procedures.org/) 1 A Brief Introduction to Logic - Outline Propositional Logic :Syntax Propositional Logic :Semantics Satisfiability and validity

More information

1 Rules in a Feature Grammar

1 Rules in a Feature Grammar 27 Feature Grammars and Unification Drew McDermott drew.mcdermott@yale.edu 2015-11-20, 11-30, 2016-10-28 Yale CS470/570 1 Rules in a Feature Grammar Grammar rules look like this example (using Shieber

More information

c(a) = X c(a! Ø) (13.1) c(a! Ø) ˆP(A! Ø A) = c(a)

c(a) = X c(a! Ø) (13.1) c(a! Ø) ˆP(A! Ø A) = c(a) Chapter 13 Statistical Parsg Given a corpus of trees, it is easy to extract a CFG and estimate its parameters. Every tree can be thought of as a CFG derivation, and we just perform relative frequency estimation

More information

A CONSISTENT AND EFFICIENT ESTIMATOR FOR DATA-ORIENTED PARSING 1

A CONSISTENT AND EFFICIENT ESTIMATOR FOR DATA-ORIENTED PARSING 1 Journal of Automata, Languages and Combinatorics 10 (2005) 2/3, 367 388 c Otto-von-Guericke-Universität Magdeburg A CONITENT AND EFFICIENT ETIMATOR FOR DATA-ORIENTED PARING 1 Andreas Zollmann chool of

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

On the Statistical Consistency of DOP Estimators

On the Statistical Consistency of DOP Estimators On the tatistical Consistency of DOP Estimators Detlef Prescher, Remko cha, Khalil ima an and Andreas Zollmann Institute for Logic, Language and Computation (ILLC) Universiteit van Amsterdam Abstract Given

More information

Sequences and Information

Sequences and Information Sequences and Information Rahul Siddharthan The Institute of Mathematical Sciences, Chennai, India http://www.imsc.res.in/ rsidd/ Facets 16, 04/07/2016 This box says something By looking at the symbols

More information

Generating Sentences by Editing Prototypes

Generating Sentences by Editing Prototypes Generating Sentences by Editing Prototypes K. Guu 2, T.B. Hashimoto 1,2, Y. Oren 1, P. Liang 1,2 1 Department of Computer Science Stanford University 2 Department of Statistics Stanford University arxiv

More information

The effect of non-tightness on Bayesian estimation of PCFGs

The effect of non-tightness on Bayesian estimation of PCFGs The effect of non-tightness on Bayesian estimation of PCFGs hay B. Cohen Department of Computer cience Columbia University scohen@cs.columbia.edu Mark Johnson Department of Computing Macquarie University

More information

Variable Latent Semantic Indexing

Variable Latent Semantic Indexing Variable Latent Semantic Indexing Prabhakar Raghavan Yahoo! Research Sunnyvale, CA November 2005 Joint work with A. Dasgupta, R. Kumar, A. Tomkins. Yahoo! Research. Outline 1 Introduction 2 Background

More information

Tree sets. Reinhard Diestel

Tree sets. Reinhard Diestel 1 Tree sets Reinhard Diestel Abstract We study an abstract notion of tree structure which generalizes treedecompositions of graphs and matroids. Unlike tree-decompositions, which are too closely linked

More information

Marrying Dynamic Programming with Recurrent Neural Networks

Marrying Dynamic Programming with Recurrent Neural Networks Marrying Dynamic Programming with Recurrent Neural Networks I eat sushi with tuna from Japan Liang Huang Oregon State University Structured Prediction Workshop, EMNLP 2017, Copenhagen, Denmark Marrying

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

This lecture covers Chapter 5 of HMU: Context-free Grammars

This lecture covers Chapter 5 of HMU: Context-free Grammars This lecture covers Chapter 5 of HMU: Context-free rammars (Context-free) rammars (Leftmost and Rightmost) Derivations Parse Trees An quivalence between Derivations and Parse Trees Ambiguity in rammars

More information

STRUCTURAL NON-CORRESPONDENCE IN TRANSLATION

STRUCTURAL NON-CORRESPONDENCE IN TRANSLATION STRUCTURAL NON-CORRESPONDENCE IN TRANSLATION Louisa Sadler, Dept. of Language and Linguistics, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, Essex, UK. louisa@uk.ac.essex Henry S. Thompson,

More information