arxiv:cond-mat/ v1 [cond-mat.str-el] 15 Dec 2003

Size: px
Start display at page:

Download "arxiv:cond-mat/ v1 [cond-mat.str-el] 15 Dec 2003"

Transcription

1 Imperial Collee Preprints PREPRINT arxiv:cond-mat/ v1 [cond-mat.str-el] 15 Dec 2003 First- and Second Order Phase Transitions in the Holstein- Hubbard Model W. Koller 1, D. Meyer 1, Y. Ōno2 and A. C. Hewson 1 1 Department of Mathematics, Imperial Collee, London SW7 2BZ, UK 2 Department of Physics, Niiata University, Niiata, Ikarashi, , Japan PACS Fd Lattice fermion models (Hubbard model, etc.). PACS h Metal-insulator transitions and other electronic transitions. PACS k Polarons and electron-phonon interactions (see also Kr Phonon-electron interactions in lattices). Abstract. We investiate metal-insulator transitions in the Holstein-Hubbard model as a function of the on-site electron-electron interaction U and the electron-phonon couplin. We use several different numerical methods to calculate the phase diaram, the results of which are in excellent areement. When the electron-electron interaction U is dominant the transition is to a Mott-insulator; when the electron-phonon interaction dominates, the transition is to a localised bipolaronic state. In the former case, the transition is always found to be second order. This is in contrast to the transition to the bipolaronic state, which is clearly first order for larer values of U. We also present results for the quasiparticle weiht and the double-occupancy as function of U and. Stron correlation effects and localiation can occur in metallic systems due both to stron electron-electron interactions and stron electron-phonon couplin and also their interplay. There are many systems with stronly correlated electrons where there is also a stron couplin to the lattice and lattice modes, for example V 2 O 3 [9,10], mananites [11] or fullerides [12]. The stron electron-electron interactions can be described by the Hubbard model, where the transition to a Mott-Hubbard insulator has been extensively investiated [1, 2, 3, 4, 5]. The Holstein model has been used to examine localiation to a polaronic or bipolaronic insulator due to electron-phonon interactions [6, 7, 8]. The interplay between these two types of localiation can be investiated usin the Holstein-Hubbard model which includes both types of interaction: H = ǫ( k)c c kσ kσ + U n i n i + ω 0 b i b i + (b i + b i) ( n iσ 1 ), (1) kσ i i i σ where U describes the electron-electron interaction within a band of dispersion ǫ( k) and band width W = 4, the electron-phonon couplin and ω 0 is the frequency of a local Einsteinphonon mode. In the lare-ω 0 limit, the model can be mapped onto an effective Hubbard model with U eff U 2 2 /ω 0 [13,14]. c P Sciences

2 2 Imperial Collee Preprints bipolaronic insulator 0.7 metal Mott-Hubbard insulator Fi. 1 The calculated phase diaram of the Hubbard-Holstein model at T = 0. The solid lines represent the results. They are in excellent areement with the,, and results, as indicated by the crosses, open circles, and filled circles respectively. The dashed line represents the locus of the points with U eff U 2 2 /ω 0 = 0 which becomes the phase boundary for U > 6.4. U Here we investiate the phase diaram where metal to insulator transitions driven by both electron-electron and electron-phonon interaction can occur. In eneral, no exact solution of this model is known. We use a number of approximation schemes which lead to a consistent picture of the physics of these transitions. Two of the approaches we use are based on the dynamical mean-field theory [3], where the lattice model is mapped onto an effective impurity model with a self-consistency constraint. We use two different methods to solve the effective impurity model, the exact diaonaliation method () [15] and the numerical renormaliation roup () [16,17]. In the method a restricted basis set is used to describe the bath of the impurity model, which can then be solved exactly. The calculations presented here were performed on an 8-site cluster. In the approach, the impurity model is solved by an iterative diaonaliation scheme which has the advantae that it can probe arbitrarily low enery scales. In the calculations up to 1200 states were retained with Λ = 1.8 and up to 36 phonon states. We also use the dynamical impurity approximation (DIA), introduced recently by Potthoff [18,19]. This method has the advantae of bein a variational approach for the rand potential. Its main limitation is the restricted set of trial selfeneries that one can handle in practice. We use trial selfeneries correspondin to impurity models with one (two-site DIA ) and three bath sites (four-site DIA ). In fiure 1, we plot the vs. U phase diaram as obtained by the methods described above. There is excellent areement between the results of all four methods. The critical couplin for the Mott transition U cm 5.85 on the = 0 axis corresponds to the results already known for the Hubbard model [4, 5], and c 9 on the U = 0 axis for the Holstein model [8]. The dashed line (polaronic line) is the locus of the points with U eff = 0; above (below) this line, U eff < 0 (> 0). The metal-insulator transition in the reion U eff > 0 is very similar to the Mott-Hubbard transition as found in the pure Hubbard model, where double-occupancy d = n iσ n i σ is almost completely suppressed.

3 W. Koller, D. Meyer, Y. Ōno and A. C. Hewson : Hubbard-Holstein Model U U Fi. 2 The quasiparticle weiht as a function of the electron-electron repulsion U for two values of the electron-phonon couplin: = in the left fiure and = 5 in the riht. The phase boundary is larely independent of the electron-phonon couplin until the polaronic line is reached. This is due to the fact that in this reion the chare fluctuations which couple to the phonons are stronly suppressed. On the other hand, the transition in the other reion (U eff < 0) depends stronly on both U and. The insulatin phase here is a bipolaronic one with enhanced on-site double-occupancy. To probe the physics of these transitions in more detail, we consider the variation of the quasiparticle weiht both in scans with a fixed or a fixed U. In fiure 2 we look at the cases = and = 5. The results of all four methods show the same eneral trend, althouh the two-site DIA appears to systematically overestimate the values of in eneral but ives almost correct values for the critical couplins. For = we start in a metallic state for U = 0 with a value of which is already rather less than one, due to the electron-phonon interaction [8]. Upon increasin U, initially increases until U eff = 0 and then steadily decreases to = 0 at the critical value of U = U cm. For = 5 and U = 0 we start in the insulatin phase. At a critical value U = U cb 0.9 there is a sudden onset of a metallic solution which suests that this transition miht be first order. As in the case for =, the quasiparticle weiht increases until U eff = 0 and decreases to the transition at U = U cm 6.0. In both cases, the transition at U cm appears to be continuous. The complementary scans of with fixed U and variable are shown in fiure 3. There is little chane of in the reion with U eff > 0 as the repulsive electron-electron interaction U effectively suppresses chare fluctuations which would otherwise couple to the phonons. This suppression can also be seen in the results for the double-occupancy d = n n, which are plotted in fiure 3. Once U eff is less than ero, there is a rather rapid decrease in and an apparent jump at the critical value of indicatin a first order transition. There is a correspondin sudden increase of the double-occupancy d. For larer values of U, even increases until a point very close to the transition, and the jump becomes more pronounced as can be seen for U = 5.0 (lower left fiure 3). Above the transition the value of d but the numerical values in the results fluctuate between d 1 and d 0 reflectin the fact that the round state is unstable to chare orderin. With numerical methods it is difficult to exclude the possibility that the transition is continuous but very sharp. However, with the DIA one calculates the rand potential Ω which enables one to address the order of the transition directly. In fiure 4 we plot the results for Ω as a function of the variation parameter V for = 0 and values of U close to the transitions at U cm (left plot) and U cb (riht plot). For the transition at U cm we see

4 4 Imperial Collee Preprints U=1.0 U=3.0 U= d Fi. 3 The quasiparticle weiht as a function of the electron-phonon couplin for three values of the electron-electron interaction: U = 1.0 in the upper left, U = 3.0 in the upper riht and U = 5.0 in the lower left fiure. The lower riht fiure shows the double-occupancy d = n n as a function of for all three values of U. The lines correspond to the results and the open (filled) circles to the () results. that there is a lobal minimum which shifts continuously to V = 0 as U approaches U cm. In the, V = 0 corresponds to the insulatin solution. These results are very similar to the results obtained by Potthoff for the pure Hubbard model [19]. In the riht fiure the same data is plotted for the transition at U cb. Startin with the larest value of U = 3.26 the lobal minimum is at finite V 6 correspondin to a metallic state. Decreasin U, the minimum becomes shallower but shifts only slihtly to smaller values V 4. The minimum at V = 0 becomes the lobal minimum for U < U cb = This is clear evidence for a first order transition, at least within the. In fiure 5 we plot the rand potential as a function of as calculated with the and approaches for three values of U = 1.0, 3.0 and 5.0. For the larest value of U = 5.0, the discontinuity of the radient of Ω with respect to U is clearly seen. As one reduces U, the kink becomes proressively smaller. For calculations, similar to those presented in fiure 4, a kink persists down to U = 0 and the phase transition is always first order. For the correspondin calculations, however, the situation is not quite so clear. In this small-u rane, a jump in is also difficult to identify (see fiure 3). The evidence from the calculations apart from the, indicates that the transition is probably for all practical purposes continuous for U < 3. In contrast, the transitions alon the line U cm are always continuous. All methods used in our investiation lead to a consistent picture of the metal-insulator

5 W. Koller, D. Meyer, Y. Ōno and A. C. Hewson : Hubbard-Holstein Model Ω Ω(V =0) Ω Ω(V =0) V V Fi. 4 The rand potential Ω as a function of the variational parameter V of the method at = 0. The left fiure displays a second order transition from a metal to a Mott-Hubbard insulator. The minimum shifts smoothly to ero as U increases from U = 5.6, the lowest curve, in steps of to U = 7.0 for the uppermost curve. The riht fiure shows a first order transition from a metal to a bipolaronic state. There is a jump of the position of the minimum as U decreases from U = 3.26, the lowest curve, in steps of 1 to U = 3.20 for the uppermost curve. transitions in the Holstein-Hubbard model. The phase diaram is composed of three reions, a metallic reion and two qualitatively different insulatin reions. The boundary between the metallic and the Mott-insulatin reion is described by a line of second order transitions, and is only weakly dependent on the electron-phonon couplin. Our evidence is that the transition from the metal to a bipolaron insulator state, which is characterised by an enhanced on-site double-occupancy, is of first order for larer values of U. However, the discontinuity becomes proressively smaller as U is decreased and has virtually disappeared for the rane U < Ω Ω2(V=0) U=1.0 U=3.0 U= Fi. 5 The rand potential Ω as function of for three different values of U, as calculated with the (bi open symbols) and (small dots) methods. Here, Ω 2(V = 0) denotes the value of the rand potential for V = 0 in the method.

6 6 Imperial Collee Preprints The behaviour near the boundary between the two insulatin phases is difficult to access by all of our methods except within the, where the results indicate that there is a first order transition between them. Detailed results and discussions of dynamical response functions at T = 0 for this model have been calculated and will be prepared for publication in due course. We wish to thank the EPSRC (Grant GR/S18571/01)for financial support. One of us (YŌ) was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technoloy. We also thank M. Potthoff and M. Aichhorn for helpful discussions reardin the DIA method. REFERENCES [1] J. Hubbard, Proc. R. Soc. London, Ser. A 281, [2] M. Jarrell, Phys. Rev. Lett. 69(1), [3] A. Geores, G. Kotliar, W. Krauth, and M. J. Roenber, Rev. Mod. Phys. 68(1), [4] G. Moeller, Q. Si, G. Kotliar, M. Roenber, and D. S. Fisher, Phys. Rev. Lett. 74, [5] R. Bulla, Phys. Rev. Lett. 83, [6] T. Holstein, Ann. Phys. 8, [7] P. Benedetti and R. Zeyher, Phys. Rev. B 58(21), [8] D. Meyer, A. C. Hewson, and R. Bulla, Phys. Rev. Lett. 89(19), [9] P. Majumdar and H. R. Krishnamurthy, Phys. Rev. Lett. 73(11), [10] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, [11] A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74(25), [12] O. Gunnarson, Rev. Mod. Phys. 69(2), [13] J. K. Freericks, Phys. Rev. B 48(6), [14] D. Meyer and A. C. Hewson, Acta Physica Polonica B 34, [15] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72(10), [16] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21(3), [17] R. Bulla, A. C. Hewson, and T. Pruschke, J. Phys.: Condens. Matter 10, [18] M. Potthoff, Eur. Phys. J. B 32, [19] M. Potthoff, cond-mat/

arxiv:cond-mat/ v2 [cond-mat.str-el] 10 Feb 2004

arxiv:cond-mat/ v2 [cond-mat.str-el] 10 Feb 2004 Europhysics Letters PREPRINT arxiv:cond-mat/0312367v2 [cond-mat.str-el] 10 Feb 2004 First- and Second Order Phase Transitions in the Holstein- Hubbard Model W. Koller 1, D. Meyer 1, Y. Ōno2 and A. C. Hewson

More information

First- and Second Order Phase Transitions in the Holstein- Hubbard Model

First- and Second Order Phase Transitions in the Holstein- Hubbard Model Europhysics Letters PREPRINT First- and Second Order Phase Transitions in the Holstein- Hubbard Model W. Koller 1, D. Meyer 1,Y.Ōno 2 and A. C. Hewson 1 1 Department of Mathematics, Imperial Collee, London

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003 Phase diagram of the frustrated Hubbard model R. Zitzler, N. ong, h. Pruschke, and R. Bulla Center for electronic correlations and magnetism, heoretical Physics III, Institute of Physics, University of

More information

Cooperative Effect of Coulomb Interaction and Electron-Phonon Coupling on the Heavy Fermion State in the Two-Orbital Periodic Anderson Model

Cooperative Effect of Coulomb Interaction and Electron-Phonon Coupling on the Heavy Fermion State in the Two-Orbital Periodic Anderson Model Typeset with jpsj3.cls Full Paper Cooperative Effect of Coulomb Interaction and Electron-Phonon Couplin on the Heavy Fermion State in the Two-Orbital Periodic Anderson Model Keisuke Mitsumoto and

More information

Dynamical mean field approach in interacting electron-electron and electron phonon systems: an introduction with some selected applications (II)

Dynamical mean field approach in interacting electron-electron and electron phonon systems: an introduction with some selected applications (II) Dynamical mean field approach in interacting electron-electron and electron phonon systems: an introduction with some selected applications (II) S. Ciuchi Uni/INFM Aquila Collaborations M. Capone - ISC

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 17 Sep 1999

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 17 Sep 1999 Shape Effects of Finite-Size Scalin Functions for Anisotropic Three-Dimensional Isin Models Kazuhisa Kaneda and Yutaka Okabe Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 92-397,

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

Overview of Dark Matter Searches at the ATLAS Experiment

Overview of Dark Matter Searches at the ATLAS Experiment 1th International Symposium on Cosmoloy and Particle Astrophysics (CosPA 015) International Journal of Modern Physics: Conference Series Vol. 43 (016) 1660196 (8 paes) c The Author(s) DOI:.114/S0194516601964

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Sep 2002

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Sep 2002 arxiv:cond-mat/0209587v1 [cond-mat.str-el] 25 Sep 2002 The 2D Mott-Hubbard transition in presence of a parallel magnetic field A. Avella and F. Mancini Dipartimento di Fisica E.R. Caianiello - Unità INFM

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 15 March 2011 Version of attached file: Published Version Peer-review status of attached file: Peer-reviewed Citation for published item: Brand, S. and Kaliteevski,

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 4 Jul 2000

arxiv:cond-mat/ v1 [cond-mat.str-el] 4 Jul 2000 EPJ manuscript No. (will be inserted by the editor) arxiv:cond-mat/742v1 [cond-mat.str-el] 4 Jul 2 Phase diagram of the three-dimensional Hubbard model at half filling R. Staudt 1, M. Dzierzawa 1, and

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 13 Dec 1999

arxiv:cond-mat/ v2 [cond-mat.str-el] 13 Dec 1999 Exhaustion Physics in the Periodic Anderson Model from Iterated Perturbation Theory arxiv:cond-mat/9905408v2 [cond-mat.str-el] 13 Dec 1999 N. S. Vidhyadhiraja 1,2,A. N. Tahvildar-Zadeh 1, M. Jarrell 2,

More information

Surprises in Correlated Electron Physics

Surprises in Correlated Electron Physics Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 4 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Surprises in Correlated Electron Physics K. Byczuk a,b, W. Hofstetter c,

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 19 May 2004

arxiv:cond-mat/ v2 [cond-mat.str-el] 19 May 2004 arxiv:cond-mat/0405335v2 [cond-mat.str-el] 19 May 2004 CHARGE ORDERING UNDER A MAGNETIC FIELD IN THE EXTENDED HUBBARD MODEL DUC ANH - LE 1,2, ANH TUAN - HOANG 1 and TOAN THANG - NGUYEN 1 1 Institute of

More information

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Nano-DMFT : the electronic structure of small, strongly correlated, systems Nano-DMFT : the electronic structure of small, strongly correlated, systems Nanoscale Dynamical Mean-Field Theory for Molecules and Mesoscopic Devices in the Strong-Correlation Regime Author: S. Florens,

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Effects of boson dispersion in fermion-boson coupled systems

Effects of boson dispersion in fermion-boson coupled systems PHYSICAL REVIEW B VOLUME 62, NUMBER 19 15 NOVEMBER 2000-I Effects of boson dispersion in fermion-boson coupled systems Yukitoshi Motome Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki

More information

Donor-Acceptor Pair Luminescence of P-Al and N-Al Pairs in 3C-SiC and the Ionization Energy of the P Donor

Donor-Acceptor Pair Luminescence of P-Al and N-Al Pairs in 3C-SiC and the Ionization Energy of the P Donor onor-cceptor Pair Luminescence of P-l and N-l Pairs in 3C-SiC and the Ionization Enery of the P onor Ivan Ivanov, nne Henry, Fei Yan, Wolfan J. Choyke and Erik Janzén Linköpin University Post Print N.B.:

More information

First-order Mott transition at zero temperature in two dimensions: Variational plaquette study

First-order Mott transition at zero temperature in two dimensions: Variational plaquette study January 2009 EPL, 85 (2009) 17002 doi: 10.1209/0295-5075/85/17002 www.epljournal.org First-order Mott transition at zero temperature in two dimensions: ariational plaquette study M. Balzer 1, B. Kyung

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Efficient method for obtaining parameters of stable pulse in grating compensated dispersion-managed communication systems

Efficient method for obtaining parameters of stable pulse in grating compensated dispersion-managed communication systems 3 Conference on Information Sciences and Systems, The Johns Hopkins University, March 12 14, 3 Efficient method for obtainin parameters of stable pulse in ratin compensated dispersion-manaed communication

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 18 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 18 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Device Applications Class 18 Group Theory For Crystals Multi-Electron Crystal Field Theory Weak Field Scheme Stron Field Scheme Tanabe-Suano Diaram 1 Notation Convention

More information

Optical and transport properties of small polarons from Dynamical Mean-Field Theory

Optical and transport properties of small polarons from Dynamical Mean-Field Theory Optical and transport properties of small polarons from Dynamical Mean-Field Theory S. Fratini, S. Ciuchi Outline: Historical overview DMFT for Holstein polaron Optical conductivity Transport Polarons:

More information

Altitude measurement for model rocketry

Altitude measurement for model rocketry Altitude measurement for model rocketry David A. Cauhey Sibley School of Mechanical Aerospace Enineerin, Cornell University, Ithaca, New York 14853 I. INTRODUCTION In his book, Rocket Boys, 1 Homer Hickam

More information

C. Non-linear Difference and Differential Equations: Linearization and Phase Diagram Technique

C. Non-linear Difference and Differential Equations: Linearization and Phase Diagram Technique C. Non-linear Difference and Differential Equations: Linearization and Phase Diaram Technique So far we have discussed methods of solvin linear difference and differential equations. Let us now discuss

More information

Low-energy spectrum and finite temperature properties of quantum rings

Low-energy spectrum and finite temperature properties of quantum rings Eur. Phys. J. B 8, 48 489 () DOI:.4/epjb/e-5-5 THE EUROPEAN PHYSICAL JOURNAL B Low-enery spectrum and finite temperature properties of quantum rins P. Koskinen, M. Koskinen, and M. Manninen a Department

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Linearized dynamical mean-field theory for the Mott-Hubbard transition

Linearized dynamical mean-field theory for the Mott-Hubbard transition Eur. Phys. J. B 13, 257 264 (2000) THE EUROPEAN PHYSICAL JOURNAL B c EDP Sciences Società Italiana di Fisica Springer-Verlag 2000 Linearized dynamical mean-field theory for the Mott-Hubbard transition

More information

Nonresonant inelastic light scattering in the Hubbard model

Nonresonant inelastic light scattering in the Hubbard model Nonresonant inelastic light scattering in the Hubbard model J. K. Freericks, 1 T. P. Devereaux, 2 R. Bulla, 3 and Th. Pruschke 3 1 Department of Physics, Georgetown University, Washington, D.C. 20057 2

More information

Slip-Flow and Heat Transfer in Isoflux Rectangular Microchannels with Thermal Creep Effects

Slip-Flow and Heat Transfer in Isoflux Rectangular Microchannels with Thermal Creep Effects Journal of Applied Fluid Mechanics, Vol. 3, No. 2, pp. 33-4, 200. Available online at www.jafmonline.net, ISSN 735-3645. Slip-Flow and Heat Transfer in Isoflux Rectanular Microchannels with Thermal Creep

More information

Assessment of Variation in Zero Field Hall Constant of Colossal Magnetoresistive Manganites (Re1-x AxMnO3)

Assessment of Variation in Zero Field Hall Constant of Colossal Magnetoresistive Manganites (Re1-x AxMnO3) ESSENCE - International Journal for Environmental Rehabilitation and Conservation Panwar & Kumar/VIII [2] 2017/103 107 Volume VIII [2] 2017 [103 107] [ISSN 0975-6272] [www.essence-journal.com] Assessment

More information

Surprises in correlated electron physics

Surprises in correlated electron physics Surprises in correlated electron physics K. Byczuk 1,, W. Hofstetter 3, M. Kollar 1, and D. Vollhardt 1 (1) Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute for Physics,

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 1 May 1998

arxiv:cond-mat/ v1 [cond-mat.str-el] 1 May 1998 typeset using JPSJ.sty Dynamic Exponent of t-j and t-j-w Model Hirokazu Tsunetsugu and Masatoshi Imada 1 arxiv:cond-mat/9805002v1 [cond-mat.str-el] 1 May 1998 Institute of Applied Physics, University

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information

Order parameter, correlation functions, and fidelity susceptibility for the BCS model in the thermodynamic limit

Order parameter, correlation functions, and fidelity susceptibility for the BCS model in the thermodynamic limit PHYSICA REVIEW B 89, 3452 (204) Order parameter, correlation functions, and fidelity susceptibility for the BCS model in the thermodynamic limit Omar El Araby,2 and Dionys Baeriswyl,3 Department of Physics,

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR-28/5 he Compact Muon Solenoid Experiment Conference Report Mailin address: CMS CERN, CH-1211 GENEVA 23, Switzerland 14 February 28 Observin Heavy op Quarks with

More information

Critical phenomena associated with self-orthogonality in non-hermitian quantum mechanics

Critical phenomena associated with self-orthogonality in non-hermitian quantum mechanics EUROPHYSICS LETTERS 15 June 23 Europhys. Lett., 62 (6), pp. 789 794 (23) Critical phenomena associated with self-orthoonality in non-hermitian quantum mechanics E. Narevicius 1,P.Serra 2 and N. Moiseyev

More information

The Hubbard model for the hydrogen molecule

The Hubbard model for the hydrogen molecule INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 3 (00) 11 16 EUROPEAN JOURNAL OF PHYSICS PII:S0143-0807(0)351-6 The Hubbard model for the hydrogen molecule B Alvarez-Fernández and J A Blanco Dpto. de Física,

More information

Calculating Well Deliverability in Gas Condensate Reservoirs

Calculating Well Deliverability in Gas Condensate Reservoirs 1 14 Calculatin Well Deliverability in Gas Condensate Reservoirs ROBERT MOTT AEA Technoloy, Winfrith, Dorchester, Dorset DT2 8DH, United Kindom Abstract Well deliverability in most as condensate reservoirs

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 19 Sep 2001

arxiv:cond-mat/ v1 [cond-mat.str-el] 19 Sep 2001 Many-polaron states in the Holstein-Hubbard model Laurent Proville and Serge Aubry arxiv:cond-mat/010934v1 [cond-mat.str-el] 19 Sep 001 Groupe de Physique des Solides, UMR 7588-CNRS Universités Paris 7

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Apr 2001

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Apr 2001 Photoemission spectra of LaMnO 3 controlled by orbital excitations Jeroen van den Brink, Peter Horsch, and Andrzej M. Oleś, Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse, D-7569 Stuttgart,

More information

Topological fate of edge states of single Bi bilayer on Bi(111)

Topological fate of edge states of single Bi bilayer on Bi(111) PHYSICAL REVIEW B 93, 75435 (26) Topoloical fate of ede states of sinle Bi bilayer on Bi() Han Woon Yeom,,2,* Kyun-Hwan Jin, 2 and Seun-Hoon Jhi 2 Center for Artificial Low Dimensional Electronic Systems,

More information

Conical Pendulum: Part 2 A Detailed Theoretical and Computational Analysis of the Period, Tension and Centripetal Forces

Conical Pendulum: Part 2 A Detailed Theoretical and Computational Analysis of the Period, Tension and Centripetal Forces European J of Physics Education Volume 8 Issue 1 1309-70 Dean onical Pendulum: Part A Detailed heoretical and omputational Analysis of the Period, ension and entripetal orces Kevin Dean Physics Department,

More information

ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor

ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor Ade afar Abdullah Electrical Enineerin Department, Faculty of Technoloy and Vocational Education Indonesia University of Education

More information

Simple Optimization (SOPT) for Nonlinear Constrained Optimization Problem

Simple Optimization (SOPT) for Nonlinear Constrained Optimization Problem (ISSN 4-6) Journal of Science & Enineerin Education (ISSN 4-6) Vol.,, Pae-3-39, Year-7 Simple Optimization (SOPT) for Nonlinear Constrained Optimization Vivek Kumar Chouhan *, Joji Thomas **, S. S. Mahapatra

More information

arxiv: v1 [quant-ph] 30 Jan 2015

arxiv: v1 [quant-ph] 30 Jan 2015 Thomas Fermi approximation and lare-n quantum mechanics Sukla Pal a,, Jayanta K. Bhattacharjee b a Department of Theoretical Physics, S.N.Bose National Centre For Basic Sciences, JD-Block, Sector-III,

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 10 Jan 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 10 Jan 2003 Self-energy-functional approach to systems of correlated electrons Michael Potthoff * Lehrstuhl Festkörpertheorie, Institut für Physik, Humboldt-Universität zu Berlin, 10115 Berlin, Germany arxiv:cond-mat/0301137v1

More information

arxiv: v1 [cond-mat.str-el] 11 Jul 2017

arxiv: v1 [cond-mat.str-el] 11 Jul 2017 Dynamic electronic correlation effects in NbO as compared to VO W. H. Brito, 1, M. C. O. Auiar, 3 K. Haule, and G. Kotliar,1 1 Condensed Matter Physics and Materials Science Department, Brookhaven National

More information

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra M. Jarrell, A. Macridin, Th. Maier, D.J. Scalapino Thanks to T. Devereaux, A. Lanzara, W. Meevasana, B. Moritz, G. A. Sawatzky,

More information

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family Superconductivity, antiferromagnetism and Mott critical point in the BEDT family A.-M. Tremblay P. Sémon, G. Sordi, K. Haule, B. Kyung, D. Sénéchal ISCOM 2013, 14 19 July 2013 Half-filled band: Not always

More information

Metal-Mott insulator transitions

Metal-Mott insulator transitions University of Ljubljana Faculty of Mathematics and Physics Seminar I b Metal-Mott insulator transitions Author: Alen Horvat Advisor: doc. dr. Tomaž Rejec Co-advisor: dr. Jernej Mravlje Ljubljana, September

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006 Non-Fermi-liquid phases in the two-band Hubbard model: Finite-temperature exact diagonalization study of Hund s rule coupling A. Liebsch and T. A. Costi Institut für Festkörperforschung, Forschungszentrum

More information

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor Anomalous Behavior in an Anderston-Holstein Model for a Single Molecule Transistor Alexander Davis Dr Kevin Ingersent August 3, 2011 Abstract This lab was designed to test whether Poisson statistics can

More information

MODELING A METAL HYDRIDE HYDROGEN STORAGE SYSTEM. Apurba Sakti EGEE 520, Mathematical Modeling of EGEE systems Spring 2007

MODELING A METAL HYDRIDE HYDROGEN STORAGE SYSTEM. Apurba Sakti EGEE 520, Mathematical Modeling of EGEE systems Spring 2007 MODELING A METAL HYDRIDE HYDROGEN STORAGE SYSTEM Apurba Sakti EGEE 520, Mathematical Modelin of EGEE systems Sprin 2007 Table of Contents Abstract Introduction Governin Equations Enery balance Momentum

More information

Generation of random waves in time-dependent extended mild-slope. equations using a source function method

Generation of random waves in time-dependent extended mild-slope. equations using a source function method Generation of random waves in time-dependent etended mild-slope equations usin a source function method Gunwoo Kim a, Chanhoon Lee b*, Kyun-Duck Suh c a School of Civil, Urban, and Geosystem Enineerin,

More information

arxiv: v2 [cond-mat.str-el] 3 Jun 2015

arxiv: v2 [cond-mat.str-el] 3 Jun 2015 arxiv:1410.0282v2 [cond-mat.str-el] 3 Jun 2015 Screening of a single impurity and Friedel oscillations in Fermi liquids Banhi Chatterjee and Krzysztof Byczuk Institute of Theoretical Physics, Faculty of

More information

Dynamical Mean Field within Iterative Perturbation Theory

Dynamical Mean Field within Iterative Perturbation Theory Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Dynamical Mean Field within Iterative Perturbation Theory B. Radzimirski

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Rapid synthesis of nanocrystalline SnO 2 by a microwave-assisted combustion method

Rapid synthesis of nanocrystalline SnO 2 by a microwave-assisted combustion method Journal of Advanced Ceramics 014, 3(3): 171 176 ISSN 6-4108 DOI: 10.1007/s40145-014-0101-5 CN 10-1154/TQ Research Article Rapid synthesis of nanocrystalline SnO by a microwave-assisted combustion method

More information

STOCHASTICALLY GENERATED MULTIGROUP DIFFUSION COEFFICIENTS

STOCHASTICALLY GENERATED MULTIGROUP DIFFUSION COEFFICIENTS STOCHASTICALLY GENERATED MULTIGROUP DIFFUSION COEFFICIENTS A Thesis Presented to The Academic Faculty by Justin M. Pounders In Partial Fulfillment of the Requirements for the Deree Master of Science in

More information

Advanced Methods Development for Equilibrium Cycle Calculations of the RBWR. Andrew Hall 11/7/2013

Advanced Methods Development for Equilibrium Cycle Calculations of the RBWR. Andrew Hall 11/7/2013 Advanced Methods Development for Equilibrium Cycle Calculations of the RBWR Andrew Hall 11/7/2013 Outline RBWR Motivation and Desin Why use Serpent Cross Sections? Modelin the RBWR Axial Discontinuity

More information

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID ABSTRACT--- I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 26 Jan 2007

arxiv:cond-mat/ v1 [cond-mat.supr-con] 26 Jan 2007 Competition of Fermi surface symmetry breaing and superconductivity arxiv:cond-mat/0701660v1 [cond-mat.supr-con] 26 Jan 2007 Hiroyui Yamase and Walter Metzner Max-Planc-Institute for Solid State Research,

More information

Experiment 1: Simple Pendulum

Experiment 1: Simple Pendulum COMSATS Institute of Information Technoloy, Islamabad Campus PHY-108 : Physics Lab 1 (Mechanics of Particles) Experiment 1: Simple Pendulum A simple pendulum consists of a small object (known as the bob)

More information

Inelastic light scattering and the correlated metal-insulator transition

Inelastic light scattering and the correlated metal-insulator transition Inelastic light scattering and the correlated metal-insulator transition Jim Freericks (Georgetown University) Tom Devereaux (University of Waterloo) Ralf Bulla (University of Augsburg) Funding: National

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Thermodynamic Limits of Solar Cells with Non-ideal Optical Response

Thermodynamic Limits of Solar Cells with Non-ideal Optical Response Absorptance A(E Thermodynamic imits of Solar Cells with Non-ideal Optical Response M Ryyan Khan Peter Bermel and Muhammad A Alam Electrical and Computer Enineerin epartment Purdue University West afayette

More information

A Mathematical Model for the Fire-extinguishing Rocket Flight in a Turbulent Atmosphere

A Mathematical Model for the Fire-extinguishing Rocket Flight in a Turbulent Atmosphere A Mathematical Model for the Fire-extinuishin Rocket Fliht in a Turbulent Atmosphere CRISTINA MIHAILESCU Electromecanica Ploiesti SA Soseaua Ploiesti-Tiroviste, Km 8 ROMANIA crismihailescu@yahoo.com http://www.elmec.ro

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 11 Dec 1997

arxiv:cond-mat/ v1 [cond-mat.supr-con] 11 Dec 1997 Anderson Model in a Superconductor: Φ-Derivable Theory arxiv:cond-mat912118v1 [cond-matsupr-con] 11 Dec 199 Ari T Alastalo (a), Robert J Joynt (b) and Martti M Salomaa (a,b) (a) Materials Physics Laboratory,

More information

Author(s) Kawashima, Maoki; Miyashita, Seiji;

Author(s) Kawashima, Maoki; Miyashita, Seiji; Title Quantum Phase Transition of Heisenberg Antiferromagnet Two-Dim Author(s) Todo, Synge; Yasuda, Chitoshi; Kato Kawashima, Maoki; Miyashita, Seiji; Citation Progress of Theoretical Physics Sup 512 Issue

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

arxiv: v1 [cond-mat.str-el] 18 Jul 2007

arxiv: v1 [cond-mat.str-el] 18 Jul 2007 arxiv:0707.2704v1 [cond-mat.str-el] 18 Jul 2007 Determination of the Mott insulating transition by the multi-reference density functional theory 1. Introduction K. Kusakabe Graduate School of Engineering

More information

arxiv: v1 [hep-ex] 25 Aug 2014

arxiv: v1 [hep-ex] 25 Aug 2014 Proceedins of the Second Annual LHCP AL-PHYS-PROC-- Auust 7, 8 Inclusive searches for squarks and luinos with the ALAS detector arxiv:8.5776v [hep-ex] 5 Au Marija Vranješ Milosavljević On behalf of the

More information

Equivalent rocking systems: Fundamental rocking parameters

Equivalent rocking systems: Fundamental rocking parameters Equivalent rockin systems: Fundamental rockin parameters M.J. DeJon University of Cambride, United Kindom E.G. Dimitrakopoulos The Hon Kon University of Science and Technoloy SUMMARY Early analytical investiations

More information

arxiv:hep-ph/ v2 12 Nov 1997

arxiv:hep-ph/ v2 12 Nov 1997 CERN-T/97-68 hep-ph/9705337 QCD Effects in is Physics arxiv:hep-ph/9705337v 1 Nov 1997 Michael Spira Theoretical Physics Division, CERN, C-111 Geneva 3, Switzerland Abstract is boson production at the

More information

Electroweak Corrections at the LHC withmcfm

Electroweak Corrections at the LHC withmcfm John M. Campbell Fermilab, PO Box 5, Batavia, IL 651, USA E-mail: johnmc@fnal.ov Doreen Wackeroth Department of Physics, SUNY at Buffalo, Buffalo, NY 146, USA E-mail: dow@ubpheno.physics.buffalo.edu Department

More information

Mathematical Analysis of Efficiencies in Hydraulic Pumps for Automatic Transmissions

Mathematical Analysis of Efficiencies in Hydraulic Pumps for Automatic Transmissions TECHNICAL PAPER Mathematical Analysis of Efficiencies in Hydraulic Pumps for Automatic Transmissions N. YOSHIDA Y. INAGUMA This paper deals with a mathematical analysis of pump effi ciencies in an internal

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime

Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime CHINESE JOURNAL OF PHYSICS VOL. 42, NO. 3 JUNE 2004 Evolution of the Second Lowest Extended State as a Function of the Effective Magnetic Field in the Fractional Quantum Hall Regime Tse-Ming Chen, 1 C.-T.

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Evidence for exhaustion in the conductivity of the infinite-dimensional periodic Anderson model

Evidence for exhaustion in the conductivity of the infinite-dimensional periodic Anderson model PHYSICAL REVIEW B VOLUME 60, NUMBER 15 15 OCTOBER 1999-I Evidence for exhaustion in the conductivity of the infinite-dimensional periodic Anderson model A. N. Tahvildar-Zadeh and M. Jarrell Department

More information

Experiment 3 The Simple Pendulum

Experiment 3 The Simple Pendulum PHY191 Fall003 Experiment 3: The Simple Pendulum 10/7/004 Pae 1 Suested Readin for this lab Experiment 3 The Simple Pendulum Read Taylor chapter 5. (You can skip section 5.6.IV if you aren't comfortable

More information

STRENGTH ESTIMATION OF END FAILURES IN CORRUGATED STEEL SHEAR DIAPHRAGMS

STRENGTH ESTIMATION OF END FAILURES IN CORRUGATED STEEL SHEAR DIAPHRAGMS SDSS Rio STABILITY AND DUCTILITY OF STEEL STRUCTURES Nobutaka Shimizu et al. (Eds.) Rio de Janeiro, Brazil, September 8 -, STRENGTH ESTIMATION OF END FAILURES IN CORRUGATED STEEL SHEAR DIAPHRAGMS Nobutaka

More information

Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems

Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems 1. Hubbard to Holstein 2. Peierls Picture of CDW Transition 3. Phonons with Dispersion 4. Holstein Model on Honeycomb Lattice 5. A New

More information

Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study

Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study January 27 EPL, 77 (27) 277 doi: 1.129/295-575/77/277 www.epljournal.org Optical conductivity and kinetic energy of the superconducting state: A cluster dynamical mean field study K. Haule and G. Kotliar

More information

Convergence of DFT eigenvalues with cell volume and vacuum level

Convergence of DFT eigenvalues with cell volume and vacuum level Converence of DFT eienvalues with cell volume and vacuum level Sohrab Ismail-Beii October 4, 2013 Computin work functions or absolute DFT eienvalues (e.. ionization potentials) requires some care. Obviously,

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Linearized optimal power flow

Linearized optimal power flow Linearized optimal power flow. Some introductory comments The advantae of the economic dispatch formulation to obtain minimum cost allocation of demand to the eneration units is that it is computationally

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 25 Jun 2003

arxiv:cond-mat/ v2 [cond-mat.str-el] 25 Jun 2003 Magnetic field-induced Landau Fermi Liquid in high-t c metals M.Ya. Amusia a,b, V.R. Shaginyan a,c 1 arxiv:cond-mat/0304432v2 [cond-mat.str-el] 25 Jun 2003 a The Racah Institute of Physics, the Hebrew

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

7. QCD. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 7. QCD 1

7. QCD. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 7. QCD 1 7. QCD Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 7. QCD 1 In this section... The stron vertex Colour, luons and self-interactions QCD potential, confinement Hadronisation, jets Runnin

More information

Metal-to-Insilator Phase Transition. Hubbard Model.

Metal-to-Insilator Phase Transition. Hubbard Model. Master M2 Sciences de la Matière ENS de Lyon 2016-2017 Phase Transitions and Critical Phenomena Metal-to-Insilator Phase Transition. Hubbard Model. Vitaly Gorelov January 13, 2017 Abstract In this essay

More information

Localization and electron-phonon interactions in disordered systems

Localization and electron-phonon interactions in disordered systems EUROPHYSICS LETTERS 20 February 1996 Europhys. Lett., 33 (6), pp. 459-464 (1996) Localization and electron-phonon interactions in disordered systems G. Kopidakis 1, C. M. Soukoulis 1 and E. N. Economou

More information

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005 Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model arxiv:cond-mat/0504529v2 [cond-mat.supr-con] 1 Dec 2005 T.A. Maier, 1 M. Jarrell, 2 T.C. Schulthess, 1 P. R. C. Kent, 3 and

More information

This relationship is known as the ideal gas law and is mathematically described with the formula below:

This relationship is known as the ideal gas law and is mathematically described with the formula below: Chemistry 20 Ideal as law If we combine all the information contained in Boyle s, Charles and Avoadro s laws, we can derive an expression that describes the temperature, pressure and volume of a as. This

More information

THEORETICAL STUDY ON SOLAR POWERED ABSORPTION COOLING SYSTEM

THEORETICAL STUDY ON SOLAR POWERED ABSORPTION COOLING SYSTEM THEORETICAL STUDY ON SOLAR POWERED ABSORPTION COOLING SYSTEM B. CACIULA, V. POPA 2, L. COSTIUC 3 CRIOMEC SA, GALAŢI, 2 DUNĂREA DE JOS UNIVERSITY GALAŢI, 3 TRANSILVANIA UNIVERSITY, BRAŞOV Abstract. This

More information