AMS Foundations

Size: px
Start display at page:

Download "AMS Foundations"

Transcription

1 ams-5-sol-04-m.nb AMS 5 - Foundations Factor Models Robert J. Frey Research Professor Stony Brook University, Applied Mathematics and Statistics frey@ams.sunysb.edu Exercises for Class 3. The Chapters refer to Luenberger s Investment Science. February 2006 Mathematica Tutorial A matrix in Mathematica is represented by a list of equal length lists. The function "MatrixForm" is useful for displaying both vectors and matrices in a user friendly form. v = 8, 2, 3<; q = 88, 2, 0<, 84, 0, 6<, 80, 8, 9<<; MatrixForm@vD MatrixForm@qD i y 2 j z k 3 { i 2 0 y j z k { In Mathematica vectors are treated as one-dimnsional objects not as row or column vectors per se. Thus, the bilinear form v T Qv can be entered as v.q.v 78

2 ams-5-sol-04-m.nb 2 The "Solve" function attempts to solve an equation or system of equations symbolically. It returns its results as a list of a list of production rules. Each top-level list represents a solution.? Solve Solve@eqns, varsd attempts to solve an equation or set of equations for the variables vars. Solve@ eqns, vars, elimsd attempts to solve the equations for vars, eliminating the variables elims. More For this system of equations there are four possible solutions. Each solution consists of two production rules. Solve@8y == a x 2 + b, y ã c x2 2 + d<, 8x, x2<d è!!!!!!!!!!!!!!! è!!!!!!!!!!!!!!! è!!!!!!!!!!!!!!! è!!!!!!!!!!!!!!! -b + y -d + y -b + y -d + y 99x Ø - Å è!!! ÅÅ, x2 Ø - Å è!!! ÅÅ =, 9x Ø - Å è!!! ÅÅ, x2 Ø Å è!!! ÅÅ =, a c a c è!!!!!!!!!!!!!!! è!!!!!!!!!!!!!!!! è!!!!!!!!!!!!!!! è!!!!!!!!!!!!!!! -b + y -d + y -b + y -d + y 9x Ø Å è!!! ÅÅ, x2 Ø - Å è!!! ÅÅ =, 9x Ø Å è!!! ÅÅ, x2 Ø Å è!!! ÅÅ == a c a c "Outer" is usually used to perform an outer product of two vectors, although it generalizes to other operations and to more complex list structures.? Outer Outer@f, list, list2,... D gives the generalized outer product of the listi, forming all possible combinations of the lowestlevel elements in each of them, and feeding them as arguments to f. Outer@f, list, list2,..., nd treats as separate elements only sublists at level n in the listi. Outer@f, list, list2,..., n, n2,... D treats as separate elements only sublists at level ni in the corresponding listi. More MatrixForm@Outer@Times, 8x, x2, x3<, 8y, y2<dd i x y x2 y j k x3 y x y2 y x2 y2 z x3 y2 { A numerical matrix may be inverted with "Inverse".

3 ams-5-sol-04-m.nb 3? Inverse gives the inverse of a square matrix m. More qi = Inverse@qD; MatrixForm@qiD MatrixForm@q.qiD i 2 ÅÅÅ j k - 4 y z { i 0 0 y 0 0 j z k 0 0 { There are two common statistical functions used : "Mean" and "Variance". General::spell : Possible spelling error: new symbol name "and" is similar to existing symbol "And". More Syntax::tsntxi : "Variance." is incomplete; more input is needed. More There are two common statistical functions used : "Mean" and "Variance".? Mean? Variance Mean@listD gives the statistical mean of the elements in list. More Variance@listD gives the statistical variance of the elements in list. More Chapter 7, Problem 2 Here's the data we are given in the problem. nriskfree = 0.; nmarketreturn = 0.8; mncovariance = , 0.0<, 80.0, 0.02<<; vnmarketportfolio = 80.5, 0.5<;

4 ams-5-sol-04-m.nb 4 The market variance is a function of the covariance and the market portfolio, both of which are known. nvarmarket = vnmarketportfolio.mncovariance.vnmarketportfolio 0.02 The gradient of the Langrangian implies that Q x r r f. Once we know the returns to within proportionality, we can then solve for them using the CAPM and the fact that the market portfolio has a b of. 8pA, pb< = mncovariance.vnmarketportfolio; sol = First@ Solve@ 8 l pa ã ba HnMarketReturn - nriskfreel, l pb ã bb HnMarketReturn - nriskfreel, ã 8bA, bb<.vnmarketportfolio <, 8l, ba, bb<d D General::spell : Possible spelling error: new symbol name "bb" is similar to existing symbol "ba". More 8l Ø 4., ba Ø.25, bb Ø 0.75< Once the b's are known, the CAPM can be used to compute the asset returns. ra = nriskfree + HbA ê. soll HnMarketReturn - nriskfreel rb = nriskfree + HbB ê. soll HnMarketReturn - nriskfreel As a final check, we verify that the asset returns when taken in proportion to the market portfolio yield the market return. nmarketreturn ã 8rA, rb<.vnmarketportfolio True

5 ams-5-sol-04-m.nb 5 Chapter 7, Problem 6 Here are the data provided in the table and text of the problem in form appropriate for computation. vnassetprice = 8.50, 2.<; vnassetshares = 800, 50<; vnassetreturn = 80.5, 0.2<; vnassetsdev = 80.5, 0.09<; mncorrelation = 88, ê 3<, 8 ê 3, <<; mncovariance = Outer@Times, #, #D &@vnassetsdevd mncorrelation; First, the market portfolio is computed as the proportion of each asset's market capitalizaion. vnmarketportfolio = # Å Plus üü # &@vnassetprice vnassetsharesd , < The expected rate of return and standard deviation are computed from the market portfolio applied to the expect asset returns and asset covariances. nmarketreturn = vnassetreturn.vnmarketportfolio nmarketsdev = è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! vnmarketportfolio.mncovariance.vnmarketportfolio!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Letting "rf" represent the risk free rate, we can solve for ba and bb in terms of the risk free rate.

6 ams-5-sol-04-m.nb 6 sol = First@ Solve@ 8 vnassetreturnpt - rf ã ba HnMarketReturn - rfl, vnassetreturnp2t - rf ã bb HnMarketReturn - rfl <, 8bA, bb< D D. H rfl. H rfl 9bA Ø - ÅÅ ÅÅÅ, bb Ø - ÅÅ ÅÅÅ = rf rf However, if we now weight these b's by the market portfolio, then we find the result is independent of the value of "rf". Simplify@H8bA, bb< ê. soll.vnmarketportfoliod. Any risk free rate works in satisfying the requirement that the market has a b of. Thus, the risk free rate is indeterminate. Chapter 7, Problem 8 The key returns are: Note that nmarketreturn = 0.33; nriskfree = 0.09; and by the definition of b E[I Å p pêê M(r c m r ê m)] = E[H ÅÅÅÅ c L E[Hp pêê L(r m r ê m)] = ÅÅÅÅ 2 ( Å 20 + Å 6 ) 20 s m 2 b = E[I Å p pêê M(r c m r ê 2 m)] / s m = ÅÅÅÅ 2 ( Å 20 + Å 6 ) 20 nbeta = ÅÅÅÅ 2 i j ÅÅ k 20 + ÅÅ y z { General::spell : Possible spelling error: new symbol name "nbeta" is similar to existing symbol "Beta". More.25

7 ams-5-sol-04-m.nb 7 We can now determine the CAPM return. ncapmreturn = nriskfree + nbeta HnMarketReturn - nriskfreel 0.36 The actual rate of return projected is nexpectedreturn = ÅÅÅÅ i j ÅÅ 24 k 20 + ÅÅ 24 y z -. 6 { Thus, the project falls slightly short of the return required by the CAPM. Chapter 8, Problem 2 The data for the problem are as follows. vnreturn = 80.5, 0.20<; nriskfree = 0.0; mnfactorloadings = 88, 2, <, 8, 3, 4<<; If we assume that the CAPM applies to the factors, then the excess factor returns are vnfactorexcessreturns = Inverse@mnFactorLoadingsPAll, 82, 3<TD.HvnReturn - nriskfreel 80.02, 0.0< We can now construct l = {l 0, l, l 2 } by simply prepending the risk free rate to the factor returns. vnlambda = Prepend@vnFactorExcessReturns, nriskfreed 80., 0.02, 0.0< When we apply l to the original APT factor loadings we recover the original expected returns.

8 ams-5-sol-04-m.nb 8 vnreturn ã mnfactorloadings.vnlambda True Chapter 8, Problem 4 This the well-known statistical results for the sample mean and sample variance. Any text on mathematical statistics will provide a proof. Intuitively, however, we are using the sample, rather than true, mean in the computation of the sample variance and have lost a degree of freedom, i.e., we have n and not n independent data points. Chapter 8, Problem 6 Here is the raw data for the problem: two-years of monthly returns, expressed as percentages. vnmonthlyreturn = 8.0, 0.5, 4.2, -2.7, -2.0, 3.5, -3., 4.,.7, 0., -2.4, 3.2, 4.2, 4.5, -2.5, 2., -.7, 3.7, 3.2, -2.4, 2.7, 2.9, -.9,.<; nsamplesize = Length@vnMonthlyReturnD; The mean and standard deviation of return are nmonthlymean = Mean@vnMonthlyReturnD nmonthlysdev = è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Variance@vnMonthlyReturnD!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Using the approximation suggested in the text, the annualized mean and standard deviation are nannualizedmean = 2 nmonthlymean nannualizedsdev = è!!!!!!! 2 nmonthlysdev

9 ams-5-sol-04-m.nb 9 The standard deviations of the monthly estimates are nmonthlymeansdev = nmonthlysdev ë è!!!!!!!!!!!!!!!!!!!!!!!!!!!! nsamplesize nmonthlyvarsdev = I è!!! 2 nmonthlysdev 2 M ë è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! nsamplesize

Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2

Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2 Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2 Eric Zivot July 7, 2014 Bivariate Probability Distribution Example - Two discrete rv s and Bivariate pdf

More information

Econ671 Factor Models: Principal Components

Econ671 Factor Models: Principal Components Econ671 Factor Models: Principal Components Jun YU April 8, 2016 Jun YU () Econ671 Factor Models: Principal Components April 8, 2016 1 / 59 Factor Models: Principal Components Learning Objectives 1. Show

More information

Multivariate Tests of the CAPM under Normality

Multivariate Tests of the CAPM under Normality Multivariate Tests of the CAPM under Normality Bernt Arne Ødegaard 6 June 018 Contents 1 Multivariate Tests of the CAPM 1 The Gibbons (198) paper, how to formulate the multivariate model 1 3 Multivariate

More information

Linear Systems of Differential Equations

Linear Systems of Differential Equations Chapter 5 Linear Systems of Differential Equations Project 5. Automatic Solution of Linear Systems Calculations with numerical matrices of order greater than 3 are most frequently carried out with the

More information

AMS Computational Finance

AMS Computational Finance ams-514-lec-13-m.nb 1 AMS 514 - Computational Finance Workshop Robert J. Frey, Research Professor Stony Brook University, Applied Mathematics and Statistics http://www.ams.sunysb.edu/~frey/ frey@ams.sunysb.edu

More information

R = µ + Bf Arbitrage Pricing Model, APM

R = µ + Bf Arbitrage Pricing Model, APM 4.2 Arbitrage Pricing Model, APM Empirical evidence indicates that the CAPM beta does not completely explain the cross section of expected asset returns. This suggests that additional factors may be required.

More information

Interpreting Regression Results

Interpreting Regression Results Interpreting Regression Results Carlo Favero Favero () Interpreting Regression Results 1 / 42 Interpreting Regression Results Interpreting regression results is not a simple exercise. We propose to split

More information

Modern Portfolio Theory with Homogeneous Risk Measures

Modern Portfolio Theory with Homogeneous Risk Measures Modern Portfolio Theory with Homogeneous Risk Measures Dirk Tasche Zentrum Mathematik Technische Universität München http://www.ma.tum.de/stat/ Rotterdam February 8, 2001 Abstract The Modern Portfolio

More information

COMPUTING AND DATA ANALYSIS WITH EXCEL. Matrix manipulation and systems of linear equations

COMPUTING AND DATA ANALYSIS WITH EXCEL. Matrix manipulation and systems of linear equations COMPUTING AND DATA ANALYSIS WITH EXCEL Matrix manipulation and systems of linear equations Outline 1 Matrices Addition Subtraction Excel functions that return more than one cell Solving systems of linear

More information

Matrix algebra. Econ Pre-Session Math Solutions of Problem Sheet 2 30/08/2017

Matrix algebra. Econ Pre-Session Math Solutions of Problem Sheet 2 30/08/2017 Econ Pre-Session Math Solutions of Problem Sheet /8/7 Matrix algebra (ABC = A(BC In general AB BA!! (A + BC = AC + BC (A T T = A (A + B T = A T + B T (AB T = B T A T rank(a: is the number of pivot elements

More information

Regression: Ordinary Least Squares

Regression: Ordinary Least Squares Regression: Ordinary Least Squares Mark Hendricks Autumn 2017 FINM Intro: Regression Outline Regression OLS Mathematics Linear Projection Hendricks, Autumn 2017 FINM Intro: Regression: Lecture 2/32 Regression

More information

Ross (1976) introduced the Arbitrage Pricing Theory (APT) as an alternative to the CAPM.

Ross (1976) introduced the Arbitrage Pricing Theory (APT) as an alternative to the CAPM. 4.2 Arbitrage Pricing Model, APM Empirical evidence indicates that the CAPM beta does not completely explain the cross section of expected asset returns. This suggests that additional factors may be required.

More information

Network Connectivity and Systematic Risk

Network Connectivity and Systematic Risk Network Connectivity and Systematic Risk Monica Billio 1 Massimiliano Caporin 2 Roberto Panzica 3 Loriana Pelizzon 1,3 1 University Ca Foscari Venezia (Italy) 2 University of Padova (Italy) 3 Goethe University

More information

The Black Litterman Model: A Detailed Exploration

The Black Litterman Model: A Detailed Exploration Abstract 1 The Black Litterman Model: A Detailed Exploration Revised: May 2, 2008 Copyright 2008 Jay Walters, CFA jwalters@computer.org This paper provides a description of the Black Litterman model. It

More information

Financial Econometrics Lecture 6: Testing the CAPM model

Financial Econometrics Lecture 6: Testing the CAPM model Financial Econometrics Lecture 6: Testing the CAPM model Richard G. Pierse 1 Introduction The capital asset pricing model has some strong implications which are testable. The restrictions that can be tested

More information

Lagrange Multiplier Method & Karush-Kuhn-Tucker (KKT) Conditions

Lagrange Multiplier Method & Karush-Kuhn-Tucker (KKT) Conditions LagrangeFunctionKKT.nb 1 Lagrange Multiplier Method & Karush-Kuhn-Tucker (KKT) Conditions General Non-Linear Program Minimize : f@x 1, x,..., x n D # variables = n Subject to : Equality constraints : h

More information

Model Mis-specification

Model Mis-specification Model Mis-specification Carlo Favero Favero () Model Mis-specification 1 / 28 Model Mis-specification Each specification can be interpreted of the result of a reduction process, what happens if the reduction

More information

Identifying Financial Risk Factors

Identifying Financial Risk Factors Identifying Financial Risk Factors with a Low-Rank Sparse Decomposition Lisa Goldberg Alex Shkolnik Berkeley Columbia Meeting in Engineering and Statistics 24 March 2016 Outline 1 A Brief History of Factor

More information

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006.

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. 9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Introduction to Time Series and Forecasting. P.J. Brockwell and R. A. Davis, Springer Texts

More information

INVERSE OF A MATRIX [2.2]

INVERSE OF A MATRIX [2.2] INVERSE OF A MATRIX [2.2] The inverse of a matrix: Introduction We have a mapping from R n to R n represented by a matrix A. Can we invert this mapping? i.e. can we find a matrix (call it B for now) such

More information

Optimal Investment Strategies: A Constrained Optimization Approach

Optimal Investment Strategies: A Constrained Optimization Approach Optimal Investment Strategies: A Constrained Optimization Approach Janet L Waldrop Mississippi State University jlc3@ramsstateedu Faculty Advisor: Michael Pearson Pearson@mathmsstateedu Contents Introduction

More information

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA Andrew ID: ljelenak August 25, 2018 This assignment reviews basic mathematical tools you will use throughout

More information

ECON4515 Finance theory 1 Diderik Lund, 5 May Perold: The CAPM

ECON4515 Finance theory 1 Diderik Lund, 5 May Perold: The CAPM Perold: The CAPM Perold starts with a historical background, the development of portfolio theory and the CAPM. Points out that until 1950 there was no theory to describe the equilibrium determination of

More information

Principal Component Analysis (PCA) Our starting point consists of T observations from N variables, which will be arranged in an T N matrix R,

Principal Component Analysis (PCA) Our starting point consists of T observations from N variables, which will be arranged in an T N matrix R, Principal Component Analysis (PCA) PCA is a widely used statistical tool for dimension reduction. The objective of PCA is to find common factors, the so called principal components, in form of linear combinations

More information

Econ 424 Review of Matrix Algebra

Econ 424 Review of Matrix Algebra Econ 424 Review of Matrix Algebra Eric Zivot January 22, 205 Matrices and Vectors Matrix 2 A = 2 22 2 ( )...... 2 = of rows, = of columns Square matrix : = Vector x ( ) = 2. Remarks R is a matrix oriented

More information

6-2 Matrix Multiplication, Inverses and Determinants

6-2 Matrix Multiplication, Inverses and Determinants Find AB and BA, if possible. 1. A = A = ; A is a 1 2 matrix and B is a 2 2 matrix. Because the number of columns of A is equal to the number of rows of B, AB exists. To find the first entry of AB, find

More information

Factor Models for Asset Returns. Prof. Daniel P. Palomar

Factor Models for Asset Returns. Prof. Daniel P. Palomar Factor Models for Asset Returns Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST,

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 6

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 6 EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 6 6.1 Introduction: Matrix Inversion In the last note, we considered a system of pumps and reservoirs where the water in

More information

Linear Programming: Chapter 1 Introduction

Linear Programming: Chapter 1 Introduction Linear Programming: Chapter 1 Introduction Robert J. Vanderbei September 16, 2010 Slides last edited on October 5, 2010 Operations Research and Financial Engineering Princeton University Princeton, NJ

More information

Network Connectivity, Systematic Risk and Diversification

Network Connectivity, Systematic Risk and Diversification Network Connectivity, Systematic Risk and Diversification Monica Billio 1 Massimiliano Caporin 2 Roberto Panzica 3 Loriana Pelizzon 1,3 1 University Ca Foscari Venezia (Italy) 2 University of Padova (Italy)

More information

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 You can t see this text! Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 Eric Zivot Spring 2015 Eric Zivot (Copyright 2015) Probability Review - Part 2 1 /

More information

18.06 Problem Set 3 Solution Due Wednesday, 25 February 2009 at 4 pm in Total: 160 points.

18.06 Problem Set 3 Solution Due Wednesday, 25 February 2009 at 4 pm in Total: 160 points. 8.6 Problem Set 3 Solution Due Wednesday, 25 February 29 at 4 pm in 2-6. Total: 6 points. Problem : Consider the matrix A = 2 4 2 6 3 4 2 7 (a) Reduce A to echelon form U, find a special solution for each

More information

Revision of the thermal chip simulation, J.E. Akin, Rice University

Revision of the thermal chip simulation, J.E. Akin, Rice University Revision of the thermal chip simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering

More information

Foundations of Computer Vision

Foundations of Computer Vision Foundations of Computer Vision Wesley. E. Snyder North Carolina State University Hairong Qi University of Tennessee, Knoxville Last Edited February 8, 2017 1 3.2. A BRIEF REVIEW OF LINEAR ALGEBRA Apply

More information

Structure of the CAPM Covariance Matrix

Structure of the CAPM Covariance Matrix Structure of the CAPM Covariance Matrix James Bridgeman University of Connecticut UConn Actuarial Science Seminar September 10, 2014 (UConn Actuarial Science Seminar) CAPM September 10, 2014 1 / 24 INTENTIONS

More information

Collaborative Filtering

Collaborative Filtering Case Study 4: Collaborative Filtering Collaborative Filtering Matrix Completion Alternating Least Squares Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

Ch3. TRENDS. Time Series Analysis

Ch3. TRENDS. Time Series Analysis 3.1 Deterministic Versus Stochastic Trends The simulated random walk in Exhibit 2.1 shows a upward trend. However, it is caused by a strong correlation between the series at nearby time points. The true

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Deep Learning in Asset Pricing

Deep Learning in Asset Pricing Deep Learning in Asset Pricing Luyang Chen 1 Markus Pelger 1 Jason Zhu 1 1 Stanford University November 17th 2018 Western Mathematical Finance Conference 2018 Motivation Hype: Machine Learning in Investment

More information

Subrings and Ideals 2.1 INTRODUCTION 2.2 SUBRING

Subrings and Ideals 2.1 INTRODUCTION 2.2 SUBRING Subrings and Ideals Chapter 2 2.1 INTRODUCTION In this chapter, we discuss, subrings, sub fields. Ideals and quotient ring. We begin our study by defining a subring. If (R, +, ) is a ring and S is a non-empty

More information

A Dynamic Model for Investment Strategy

A Dynamic Model for Investment Strategy A Dynamic Model for Investment Strategy Richard Grinold Stanford Conference on Quantitative Finance August 18-19 2006 Preview Strategic view of risk, return and cost Not intended as a portfolio management

More information

ASSET PRICING MODELS

ASSET PRICING MODELS ASSE PRICING MODELS [1] CAPM (1) Some notation: R it = (gross) return on asset i at time t. R mt = (gross) return on the market portfolio at time t. R ft = return on risk-free asset at time t. X it = R

More information

EE263 Review Session 1

EE263 Review Session 1 EE263 Review Session 1 October 5, 2018 0.1 Importing Variables from a MALAB.m file If you are importing variables given in file vars.m, use the following code at the beginning of your script. close a l

More information

A SHORT SUMMARY OF VECTOR SPACES AND MATRICES

A SHORT SUMMARY OF VECTOR SPACES AND MATRICES A SHORT SUMMARY OF VECTOR SPACES AND MATRICES This is a little summary of some of the essential points of linear algebra we have covered so far. If you have followed the course so far you should have no

More information

Markowitz Efficient Portfolio Frontier as Least-Norm Analytic Solution to Underdetermined Equations

Markowitz Efficient Portfolio Frontier as Least-Norm Analytic Solution to Underdetermined Equations Markowitz Efficient Portfolio Frontier as Least-Norm Analytic Solution to Underdetermined Equations Sahand Rabbani Introduction Modern portfolio theory deals in part with the efficient allocation of investments

More information

CSEP 590 Data Compression Autumn Arithmetic Coding

CSEP 590 Data Compression Autumn Arithmetic Coding CSEP 590 Data Compression Autumn 2007 Arithmetic Coding Reals in Binary Any real number x in the interval [0,1) can be represented in binary as.b 1 b 2... where b i is a bit. x 0 0 1 0 1... binary representation

More information

Inverses of Square Matrices

Inverses of Square Matrices Inverses of Square Matrices A. Havens Department of Mathematics University of Massachusetts, Amherst February 23-26, 2018 Outline 1 Defining Inverses Inverses for Products and Functions Defining Inverse

More information

Multivariate GARCH models.

Multivariate GARCH models. Multivariate GARCH models. Financial market volatility moves together over time across assets and markets. Recognizing this commonality through a multivariate modeling framework leads to obvious gains

More information

Algebra 2. Rings and fields. Rings. A.M. Cohen, H. Cuypers, H. Sterk

Algebra 2. Rings and fields. Rings. A.M. Cohen, H. Cuypers, H. Sterk and fields 2 and fields A.M. Cohen, H. Cuypers, H. Sterk A.M. Cohen, H. Cuypers, H. Sterk 2 September 25, 2006 1 / 31 and fields Multiplication turns each of the sets Z, Q, R, C, Z[X ], Q[X ], R[X ], C[X

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 11 CHAPTER 3 CONTEXT-FREE LANGUAGES 1. Context Free Grammars 2. Pushdown Automata 3. Pushdown automata and context -free

More information

Kevin James. MTHSC 3110 Section 2.2 Inverses of Matrices

Kevin James. MTHSC 3110 Section 2.2 Inverses of Matrices MTHSC 3110 Section 2.2 Inverses of Matrices Definition Suppose that T : R n R m is linear. We will say that T is invertible if for every b R m there is exactly one x R n so that T ( x) = b. Note If T is

More information

Matrices BUSINESS MATHEMATICS

Matrices BUSINESS MATHEMATICS Matrices BUSINESS MATHEMATICS 1 CONTENTS Matrices Special matrices Operations with matrices Matrix multipication More operations with matrices Matrix transposition Symmetric matrices Old exam question

More information

RATING TRANSITIONS AND DEFAULT RATES

RATING TRANSITIONS AND DEFAULT RATES RATING TRANSITIONS AND DEFAULT RATES 2001-2012 I. Transition Rates for Banks Transition matrices or credit migration matrices characterise the evolution of credit quality for issuers with the same approximate

More information

Chapter 15 Panel Data Models. Pooling Time-Series and Cross-Section Data

Chapter 15 Panel Data Models. Pooling Time-Series and Cross-Section Data Chapter 5 Panel Data Models Pooling Time-Series and Cross-Section Data Sets of Regression Equations The topic can be introduced wh an example. A data set has 0 years of time series data (from 935 to 954)

More information

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology FE670 Algorithmic Trading Strategies Lecture 8. Robust Portfolio Optimization Steve Yang Stevens Institute of Technology 10/17/2013 Outline 1 Robust Mean-Variance Formulations 2 Uncertain in Expected Return

More information

Linear Algebra The Inverse of a Matrix

Linear Algebra The Inverse of a Matrix Linear Algebra The Inverse of a Matrix Dr. Bisher M. Iqelan biqelan@iugaza.edu.ps Department of Mathematics The Islamic University of Gaza 2017-2018, Semester 2 Dr. Bisher M. Iqelan (IUG) Sec.2.2: The

More information

14 Week 5 Empirical methods notes

14 Week 5 Empirical methods notes 14 Week 5 Empirical methods notes 1. Motivation and overview 2. Time series regressions 3. Cross sectional regressions 4. Fama MacBeth 5. Testing factor models. 14.1 Motivation and Overview 1. Expected

More information

Review : Powers of a matrix

Review : Powers of a matrix Review : Powers of a matrix Given a square matrix A and a positive integer k, we define A k = AA A } {{ } k times Note that the multiplications AA, AAA,... make sense. Example. Suppose A=. Then A 0 2 =

More information

Chapter 3. Vector Spaces and Subspaces. Po-Ning Chen, Professor. Department of Electrical and Computer Engineering. National Chiao Tung University

Chapter 3. Vector Spaces and Subspaces. Po-Ning Chen, Professor. Department of Electrical and Computer Engineering. National Chiao Tung University Chapter 3 Vector Spaces and Subspaces Po-Ning Chen, Professor Department of Electrical and Computer Engineering National Chiao Tung University Hsin Chu, Taiwan 30010, R.O.C. 3.1 Spaces of vectors 3-1 What

More information

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra Lecture: Linear algebra. 1. Subspaces. 2. Orthogonal complement. 3. The four fundamental subspaces 4. Solutions of linear equation systems The fundamental theorem of linear algebra 5. Determining the fundamental

More information

MATH 1003 Review: Part 2. Matrices. MATH 1003 Review: Part 2. Matrices

MATH 1003 Review: Part 2. Matrices. MATH 1003 Review: Part 2. Matrices Matrices (Ch.4) (i) System of linear equations in 2 variables (L.5, Ch4.1) Find solutions by graphing Supply and demand curve (ii) Basic ideas about Matrices (L.6, Ch4.2) To know a matrix Row operation

More information

Factor Analysis of Data Matrices

Factor Analysis of Data Matrices Factor Analysis of Data Matrices PAUL HORST University of Washington HOLT, RINEHART AND WINSTON, INC. New York Chicago San Francisco Toronto London Contents Preface PART I. Introductory Background 1. The

More information

CFG Simplification. (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions

CFG Simplification. (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions CFG Simplification (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions 1 Eliminating useless symbols 1. A symbol X is generating if there exists: X * w, for

More information

Section 1 (closed-book) Total points 30

Section 1 (closed-book) Total points 30 CS 454 Theory of Computation Fall 2011 Section 1 (closed-book) Total points 30 1. Which of the following are true? (a) a PDA can always be converted to an equivalent PDA that at each step pops or pushes

More information

The Linear Regression Model

The Linear Regression Model The Linear Regression Model Carlo Favero Favero () The Linear Regression Model 1 / 67 OLS To illustrate how estimation can be performed to derive conditional expectations, consider the following general

More information

Systems of Equations 1. Systems of Linear Equations

Systems of Equations 1. Systems of Linear Equations Lecture 1 Systems of Equations 1. Systems of Linear Equations [We will see examples of how linear equations arise here, and how they are solved:] Example 1: In a lab experiment, a researcher wants to provide

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

Math 1B03/1ZC3 - Tutorial 2. Jan. 21st/24th, 2014

Math 1B03/1ZC3 - Tutorial 2. Jan. 21st/24th, 2014 Math 1B03/1ZC3 - Tutorial 2 Jan. 21st/24th, 2014 Tutorial Info: Website: http://ms.mcmaster.ca/ dedieula. Math Help Centre: Wednesdays 2:30-5:30pm. Email: dedieula@math.mcmaster.ca. Does the Commutative

More information

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n Lectures -2: Linear Algebra Background Almost all linear and nonlinear problems in scientific computation require the use of linear algebra These lectures review basic concepts in a way that has proven

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Heteroscedasticity and Autocorrelation

Heteroscedasticity and Autocorrelation Heteroscedasticity and Autocorrelation Carlo Favero Favero () Heteroscedasticity and Autocorrelation 1 / 17 Heteroscedasticity, Autocorrelation, and the GLS estimator Let us reconsider the single equation

More information

REPEATED MEASURES. Copyright c 2012 (Iowa State University) Statistics / 29

REPEATED MEASURES. Copyright c 2012 (Iowa State University) Statistics / 29 REPEATED MEASURES Copyright c 2012 (Iowa State University) Statistics 511 1 / 29 Repeated Measures Example In an exercise therapy study, subjects were assigned to one of three weightlifting programs i=1:

More information

Section Matrices and Systems of Linear Eqns.

Section Matrices and Systems of Linear Eqns. QUIZ: strings Section 14.3 Matrices and Systems of Linear Eqns. Remembering matrices from Ch.2 How to test if 2 matrices are equal Assume equal until proved wrong! else? myflag = logical(1) How to test

More information

(a) Compute the projections of vectors [1,0,0] and [0,1,0] onto the line spanned by a Solution: The projection matrix is P = 1

(a) Compute the projections of vectors [1,0,0] and [0,1,0] onto the line spanned by a Solution: The projection matrix is P = 1 6 [3] 3. Consider the plane S defined by 2u 3v+w = 0, and recall that the normal to this plane is the vector a = [2, 3,1]. (a) Compute the projections of vectors [1,0,0] and [0,1,0] onto the line spanned

More information

arxiv: v1 [math.co] 7 Jul 2014

arxiv: v1 [math.co] 7 Jul 2014 Sum-ratio estimates over arbitrary finite fields Oliver Roche-Newton arxiv:1407.1654v1 [math.co] 7 Jul 2014 July 11, 2018 Abstract The aim of this note is to record a proof that the estimate max{ A+A,

More information

GMM - Generalized method of moments

GMM - Generalized method of moments GMM - Generalized method of moments GMM Intuition: Matching moments You want to estimate properties of a data set {x t } T t=1. You assume that x t has a constant mean and variance. x t (µ 0, σ 2 ) Consider

More information

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix Definition: Let L : V 1 V 2 be a linear operator. The null space N (L) of L is the subspace of V 1 defined by N (L) = {x

More information

chapter 11 ALGEBRAIC SYSTEMS GOALS

chapter 11 ALGEBRAIC SYSTEMS GOALS chapter 11 ALGEBRAIC SYSTEMS GOALS The primary goal of this chapter is to make the reader aware of what an algebraic system is and how algebraic systems can be studied at different levels of abstraction.

More information

Lecture 13. Simple Linear Regression

Lecture 13. Simple Linear Regression 1 / 27 Lecture 13 Simple Linear Regression October 28, 2010 2 / 27 Lesson Plan 1. Ordinary Least Squares 2. Interpretation 3 / 27 Motivation Suppose we want to approximate the value of Y with a linear

More information

ECON Homework #2 - ANSWERS. Y C I = G 0 b(1 t)y +C = a. ky li = M 0

ECON Homework #2 - ANSWERS. Y C I = G 0 b(1 t)y +C = a. ky li = M 0 ECON 331 - Homework #2 - ANSWERS 1. IS-LM model in a closed economy: a Equilibrium in the real goods sector: Y = C + I + G National income = Total planned expenditures. Equilibrium in the monetary sector:

More information

MFE Financial Econometrics 2018 Final Exam Model Solutions

MFE Financial Econometrics 2018 Final Exam Model Solutions MFE Financial Econometrics 2018 Final Exam Model Solutions Tuesday 12 th March, 2019 1. If (X, ε) N (0, I 2 ) what is the distribution of Y = µ + β X + ε? Y N ( µ, β 2 + 1 ) 2. What is the Cramer-Rao lower

More information

MODEL ANSWERS TO THE THIRD HOMEWORK

MODEL ANSWERS TO THE THIRD HOMEWORK MODEL ANSWERS TO THE THIRD HOMEWORK 1 (i) We apply Gaussian elimination to A First note that the second row is a multiple of the first row So we need to swap the second and third rows 1 3 2 1 2 6 5 7 3

More information

STAT 3008 Applied Regression Analysis Tutorial 1: Introduction LAI Chun Hei

STAT 3008 Applied Regression Analysis Tutorial 1: Introduction LAI Chun Hei STAT 3008 Applied Regression Analysis Tutorial 1: Introduction LAI Chun Hei Department of Statistics, The Chinese University of Hong Kong 1 Mathematical Background In this courses, some theorems from elementary

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

INVERSE OF A MATRIX [2.2] 8-1

INVERSE OF A MATRIX [2.2] 8-1 INVERSE OF A MATRIX [2.2] 8-1 The inverse of a matrix: Introduction We have a mapping from R n to R n represented by a matrix A. Can we invert this mapping? i.e. can we find a matrix (call it B for now)

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

Miloš Kopa. Decision problems with stochastic dominance constraints

Miloš Kopa. Decision problems with stochastic dominance constraints Decision problems with stochastic dominance constraints Motivation Portfolio selection model Mean risk models max λ Λ m(λ r) νr(λ r) or min λ Λ r(λ r) s.t. m(λ r) µ r is a random vector of assets returns

More information

Linear Systems of n equations for n unknowns

Linear Systems of n equations for n unknowns Linear Systems of n equations for n unknowns In many application problems we want to find n unknowns, and we have n linear equations Example: Find x,x,x such that the following three equations hold: x

More information

Estimating Covariance Using Factorial Hidden Markov Models

Estimating Covariance Using Factorial Hidden Markov Models Estimating Covariance Using Factorial Hidden Markov Models João Sedoc 1,2 with: Jordan Rodu 3, Lyle Ungar 1, Dean Foster 1 and Jean Gallier 1 1 University of Pennsylvania Philadelphia, PA joao@cis.upenn.edu

More information

Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix

Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix 3.3. Matrix Rank and the Inverse of a Full Rank Matrix 1 Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix Note. The lengthy section (21 pages in the text) gives a thorough study of the rank

More information

Generalized Autoregressive Score Models

Generalized Autoregressive Score Models Generalized Autoregressive Score Models by: Drew Creal, Siem Jan Koopman, André Lucas To capture the dynamic behavior of univariate and multivariate time series processes, we can allow parameters to be

More information

Monoids. Definition: A binary operation on a set M is a function : M M M. Examples:

Monoids. Definition: A binary operation on a set M is a function : M M M. Examples: Monoids Definition: A binary operation on a set M is a function : M M M. If : M M M, we say that is well defined on M or equivalently, that M is closed under the operation. Examples: Definition: A monoid

More information

Chapter 3 Relational Model

Chapter 3 Relational Model Chapter 3 Relational Model Table of Contents 1. Structure of Relational Databases 2. Relational Algebra 3. Tuple Relational Calculus 4. Domain Relational Calculus Chapter 3-1 1 1. Structure of Relational

More information

Math 414 Lecture 1. Reading assignment: Text: Pages 1-29 and Scilab Users Guide: Sections 1-3.

Math 414 Lecture 1. Reading assignment: Text: Pages 1-29 and Scilab Users Guide: Sections 1-3. Math 414 Lecture 1 Homework assignments are always due at the beginning of the next lecture. Operations Research studies linear programming and associated algorithms. Businesses use it to find resource

More information

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then 1 Sec 21 Matrix Operations Review Let A, B, and C be matrices of the same size, and let r and s be scalars Then (i) A + B = B + A (iv) r(a + B) = ra + rb (ii) (A + B) + C = A + (B + C) (v) (r + s)a = ra

More information