Principal Component Analysis (PCA) Our starting point consists of T observations from N variables, which will be arranged in an T N matrix R,

Size: px
Start display at page:

Download "Principal Component Analysis (PCA) Our starting point consists of T observations from N variables, which will be arranged in an T N matrix R,"

Transcription

1 Principal Component Analysis (PCA) PCA is a widely used statistical tool for dimension reduction. The objective of PCA is to find common factors, the so called principal components, in form of linear combinations of the variables under investigation, and to rank them according to their importance. Our starting point consists of T observations from N variables, which will be arranged in an T N matrix R, R = r 11 r 21 r N1 r 12 r 22 r N r 1T r 2T r NT. That is, r it is the return of asset i at time t. Usually centered data are used, so that R R/(T 1) is the sample covariance matrix (or correlation matrix) of the returns under study. 1

2 The First Principal Component Let us start with one variable, say p. Variable p takes T values, to be arranged in a column vector p = [p 1,..., p T ]. p is not yet determined, but let us proceed as if it were. Then our approximation takes the form R pa, where a is an N dimensional column vector, i.e., r 11 r 21 r N1 r 12 r 22 r N r 1T r 2T r NT = p 1 p 2. p T p 1 a 1 p 1 a 2 p 1 a N p 2 a 1 p 2 a 2 p 2 a N p T a 1 p T a 2 p T a N. [ ] a1 a N. 2

3 Thus, r it is approximated by p t a i. The matrix of discrepancies is R pa. Our criterion for choosing p and a will be to select these vectors such that the sum of squares of all T N discrepancies is minimized, i.e., N i=1 T (r it p t a i ) 2 = tr[(r pa ) (R pa )], (1) t=1 using property (14) of the trace (see Appendix). Note that the product pa remains unchanged when p is multiplied by some scalar c 0 and a by 1/c. By imposing T p 2 t = p p = 1, (2) t=1 we obtain uniqueness except for sign. 3

4 Then our objective function (1) becomes S = tr[(r pa ) (R pa )] = tr(r R) tr(ap R) tr(r pa ) +tr(a }{{} p p a ) =1 = tr(r R) 2p Ra + a a, (3) using that, from (13), tr(ap R) = tr(p Ra) = p Ra, tr(r pa ) = tr(pa R ) = tr(a R p) = a R p = p Ra, and tr(aa ) = tr(a a) = a a. 4

5 Differentiating (3) with respect to a (for given p) and putting the derivative equal to zero, S a = 2R p + 2a = 0, gives a = R p. (4) Now substitute (4) in the objective function (3) to obtain S = tr(r R) p RR p, showing that our new task is to maximize p RR p with respect to p, subject to (2). The Lagrangian is L = p RR p + λ(p p 1). 5

6 The first order condition requires that L p = 2RR p 2λp = 0 where I is the identity matrix. (RR λi)p = 0, (5) For (5) to have a nontrivial solution (p 0), we must have that det(rr λi) = 0, (6) which means that p is an eigenvector of the T T positive semidefinite matrix RR corresponding to the eigenvalue (or root) λ. As RR has, in general, N nonzero eigenvalues (if the sample covariance matrix is of full rank), we have to determine which eigenvalue is to be taken. 6

7 To do so, multiply (5) by p, resulting in p RR p = λp p = λ, (7) which, as we want to maximize p RR p, means that we should take the largest root of RR. Note that all roots of RR are nonnegative, and the positive roots are those of R R, which is T 1 times the sample covariance matrix of the returns under consideration. Note that by multiplying (5) by R we also obtain (R R λi) R p }{{} =a = (R R λi)a = 0, (8) which means that a is an eigenvector of R R corresponding to the largest root of R R (note that R R and RR have the same nonzero eigenvalues). Furthermore, (4) and (5) imply λp (5) = RR p (4) = Ra p = 1 Ra. (9) λ 7

8 Vector p given by (9), which is a linear combination of the original variables in R, is the first principal component of the N variables in R. 8

9 Other Principal Components Let us use subscripts for the first principal component, i.e., p 1, a 1, λ 1, and similarly for the second, third,... principal component. Currently, our matrix is approximated by p 1 a 1. The residual matrix is R p 1 a 1, which in turn will be approximated by another principal component, p 2, with corresponding coefficient vector a 2. As before, for identification, put p 2p 2 = 1. Then we want to minimize S 2 = tr[(r p 1 a 1 p 2 a 2) (R p 1 a 1 p 2 a 2)]. It turns out that the second principal component p 2 is equal to the unit length eigenvector of RR corresponding to the second largest eigenvalue, λ 2, of RR, or, equivalently, of R R. 9

10 Moreover, a 2 R R, and is the corresponding eigenvector of p 2 = 1 λ 2 Ra 2. We can go on in this way by deriving principal components. The ith such component minimizes the sum of squares of the discrepancies that are left after the earlier components have done their work. The result is that p i is the unit length characteristic vector of RR corresponding to the ith largest eigenvalue, λ i. To find the length of vector a i, use p i = Ra i /λ i, which gives p ip i = 1 = a ir Ra i /λ 2 i = a ia i λ i /λ 2 i a i a i = λ i. 10

11 As R R and RR have the same nonzero eigenvalues, one may also work in terms of the sample 1 covariance matrix T 1 R R, which is of primary interest in our context. This means that we perform a PCA on the Variables R/ T 1, where R contains the centered (demeaned) returns. In general, if we use r principal components to approximate the variables under study, the approximation is given by R/ T 1 r p i a i = P A, i=1 where P = [p 1,..., p r ], A = [a 1,..., a r ], and an approximation for the covariance matrix is R R/(T 1) AP P A = AA, as P P = I. (10) 11

12 P P = I follows from our normalization p i p i = 1 and the fact that eigenvectors corresponding to different eigenvalues of symmetric matrices are orthogonal (see Appendix). Note that this means that the principal components are uncorrelated. Note that this approximation will be singular as long as r < N. A full rank covariance matrix can be obtained, however, and quite similar to the Single Index Model, by adding a diagonal matrix of asset specific error variance terms (which are assumed to be uncorrelated). The easiest way to do so is just to replace the diagonal elements of (10) with the sample variances of the individual assets. 12

13 The rationale behind this procedure is that we want to reduce the number of risk factors to a lower dimension. That is, we hope to capture the systematic part of asset covariation by using just a few principal components, while the covariation in the sample covariance matrix which is not captured by these first few principal components is due to random noise, i.e., it will not improve or even considerably deteriorate forecasts of future asset covariance. As this is a statistical factor model, the factors need not have an economic or financial interpretation. The discussion of principal component analysis given here closely follows Henri Theil (1971). Principles of Econometrics. Amsterdam: John Wiley & Sons. See, in particular, pp

14 Choosing the Number of Principal Components The eigenvalues may be used to measure the relative importance of the corresponding components. The argument is based on the criterion used: The sum of squares of all T N discrepancies. Before any component is used the discrepancies are the elements of R, and their sum of squares is N i=1 T rit 2 = tr(r R). t=1 14

15 The residual sum of discrepancies with r principal components is given by ( S = tr R = tr(r R) 2 = tr(r R) 2 ) ( r p i a i R i=1 r i) p i a i=1 r tr(r p i a i) + tr(a i p ip j a j) i j r r tr(r p i a i) + a ia i i=1 i=1 i=1 = tr(r R) 2 i p irr p i + i p irr p i = tr(r R) i p irr p i = tr(r R) i p ip i λ i = tr(r R) r λ i, i=1 where the third equality uses p i p j = 0 (1) for i j (i = j). 15

16 Thus, component i accounts for a reduction of the sum of squared discrepancies equal to λ i. For example, component i accounts for λ i tr(r R) = N λ i λ j j=1 percent of the total variation, and the first r principal components account for r λ j j=1 tr(r R) = r λ j j=1 N λ j j=1 percent of the total variation. 16

17 The following selection methods are frequently used in practical work: Percent of variance: For a fixed fraction δ, choose r such that it is the smallest number for which r λ j j=1 tr(r R) δ. Average Eigenvalue: Keep all principal components whose eigenvalues exceed the average eigenvalue, N 1 j λ j. Scree Graphs: This is named after the geological term scree (Geröllfeld), referring to the scree at the foot of a rocky cliff. Here, the relevant eigenvalues are the cliff and the unimportant components are represented by the smaller eigenvalues forming the scree. Clearly these methods do not represent formal statistical tests but rather rules of thumb. 17

18 Example Consider our 24 stocks from the DAX, monthly returns over the period , 60 observations for each stock. The average eigenvalue is given by Thus, when we use the Average Eigenvalue rule to determine the number of components, we will use the first 6 principal components. 1 When we want to employ the Percent of variance rule with, for example, δ = 0.75, we use the first 7 principal components. The Scree Graph also suggests something in this direction. (?) 1 The eigenvalues are shown in the table on the next page. 18

19 i λ i λ i / 24 j=1 λ j i j=1 λ i/ 24 j=1 λ j

20 800 Eigenvalues of Sample Covariance Matrix

21 Economic Interpretation of the Components Compared to approaches using financial or macroeconomic variables as factors, the factors extracted using a purely statistical procedure such as PCA are more difficult to interpret (at least for equity portfolios). An exception is the first factor, which is usually highly correlated with an appropriate market index. That is, the first principal component captures the common trend. For our example, suppose we use the first 6 principle components. Then the correlations between these 6 components and the DAX index are as follows: The first row of the table indicates the component, the second is the correlation with the DAX. 21

22 Appendix The Trace of a Square Matrix The trace of an n n matrix is the sum of its diagonal elements: tr(a) = n a i i. (11) i=1 Clearly tr(a + B) = tr(a) + tr(b). Moreover, for A m n and B n m, tr(ab) = tr(ba) = m i=1 n a ij b ji. (12) j=1 It follows from (12) that, for conformable matrices A, B and C (permutation rule), tr(abc) = tr(bca) = tr(cab). (13) 22

23 The sum of squares of all elements a ij of an m n matrix A can be written as the trace of A A: tr(a A) = m i=1 n a 2 ij. (14) j=1 23

24 Eigenvalues and Eigenvectors An eigenvalue (or root) of an n n matrix A is a real or complex scalar λ satisfying the equation Ax = λx (15) for some nonzero vector x, which is an eigenvector corresponding to λ. Note that an eigenvector is only determined up to a scalar multiple. Equation (15) can be written as (A λi)x = 0, which requires that matrix A λi is singular, or, equivalently, det(a λi) = 0. (16) 24

25 As det(a λi), which is known as the characteristic polynomial of matrix A, is a polynomial of degree n in λ, an n n matrix has n eigenvalues (counting multiplicities). For illustration, consider the 2 2 matrix [ ] a11 a A = 12. a 21 a 22 Matrix A s characteristic equation is [ ] λ a11 a P (λ) = det(λi 2 A) = det 12 a 21 λ a 22 = (λ a 11 )(λ a 22 ) a 12 a 21 = λ 2 (a 11 + a 22 )λ + a 11 a 22 a 12 a 21 = λ 2 tr(a)λ + det A = 0, which is polynomial of degree 2 in λ, i.e., a quadratic. Thus, A has eigenvalues λ 1 2 = tr(a) ± tr(a) 2 4 det A. (17) 2 25

26 A general property is that the sum λ λ n of the eigenvalues of an n n matrix A is equal to its trace, i.e., tr(a) = n a ii = i=1 n λ i. (18) i=1 For our example, from (17), it is directly observable that λ 1 + λ 2 = a 11 + a 22 = tr(a). In general, the eigenvalues of a matrix may be real or complex. However, for positive definite symmetric matrices (e.g., covariance matrices), we have the following results: i) The eigenvalues of a positive definite matrix are positive. To see this, recall that, for such as matrix, x Ax > 0, x 0. 26

27 Then, using the definition of an eigenvalue, 0 < x Ax = λx x for a positive definite matrix, thus λ > 0. ii) The eigenvectors of any symmetric matrix are orthogonal if they correspond to different roots: Write λ 1 and λ 2 (λ 1 λ 2 ) for the two roots, and x and y for the corresponding vectors: Ax = λ 1 x (19) Ay = λ 2 y. (20) Multiply (19) by y and (20) by x. Since A = A for symmetric matrix A, x Ay = y Ax, and it follows that 0 = y Ax x Ay = (λ 1 λ 2 )x y. Hence x y = 0. 27

28 (iii) For any n m matrix A, A A and AA have the same nonzero eigenvalues. (The number of nonzero eigenvalues is equal to the rank of A.) (Premultiplication by A shows that (AA λi)x = 0 implies (A A λi)a x = 0.) 28

Massachusetts Institute of Technology Department of Economics Statistics. Lecture Notes on Matrix Algebra

Massachusetts Institute of Technology Department of Economics Statistics. Lecture Notes on Matrix Algebra Massachusetts Institute of Technology Department of Economics 14.381 Statistics Guido Kuersteiner Lecture Notes on Matrix Algebra These lecture notes summarize some basic results on matrix algebra used

More information

STAT200C: Review of Linear Algebra

STAT200C: Review of Linear Algebra Stat200C Instructor: Zhaoxia Yu STAT200C: Review of Linear Algebra 1 Review of Linear Algebra 1.1 Vector Spaces, Rank, Trace, and Linear Equations 1.1.1 Rank and Vector Spaces Definition A vector whose

More information

Matrix Algebra, part 2

Matrix Algebra, part 2 Matrix Algebra, part 2 Ming-Ching Luoh 2005.9.12 1 / 38 Diagonalization and Spectral Decomposition of a Matrix Optimization 2 / 38 Diagonalization and Spectral Decomposition of a Matrix Also called Eigenvalues

More information

Introduction Eigen Values and Eigen Vectors An Application Matrix Calculus Optimal Portfolio. Portfolios. Christopher Ting.

Introduction Eigen Values and Eigen Vectors An Application Matrix Calculus Optimal Portfolio. Portfolios. Christopher Ting. Portfolios Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 November 4, 2016 Christopher Ting QF 101 Week 12 November 4,

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

Chapter 3. Matrices. 3.1 Matrices

Chapter 3. Matrices. 3.1 Matrices 40 Chapter 3 Matrices 3.1 Matrices Definition 3.1 Matrix) A matrix A is a rectangular array of m n real numbers {a ij } written as a 11 a 12 a 1n a 21 a 22 a 2n A =.... a m1 a m2 a mn The array has m rows

More information

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x =

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x = Linear Algebra Review Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1 x x = 2. x n Vectors of up to three dimensions are easy to diagram.

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Appendix A: Matrices

Appendix A: Matrices Appendix A: Matrices A matrix is a rectangular array of numbers Such arrays have rows and columns The numbers of rows and columns are referred to as the dimensions of a matrix A matrix with, say, 5 rows

More information

Systems of Algebraic Equations and Systems of Differential Equations

Systems of Algebraic Equations and Systems of Differential Equations Systems of Algebraic Equations and Systems of Differential Equations Topics: 2 by 2 systems of linear equations Matrix expression; Ax = b Solving 2 by 2 homogeneous systems Functions defined on matrices

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Introduction to Quantitative Techniques for MSc Programmes SCHOOL OF ECONOMICS, MATHEMATICS AND STATISTICS MALET STREET LONDON WC1E 7HX

Introduction to Quantitative Techniques for MSc Programmes SCHOOL OF ECONOMICS, MATHEMATICS AND STATISTICS MALET STREET LONDON WC1E 7HX Introduction to Quantitative Techniques for MSc Programmes SCHOOL OF ECONOMICS, MATHEMATICS AND STATISTICS MALET STREET LONDON WC1E 7HX September 2007 MSc Sep Intro QT 1 Who are these course for? The September

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson More Linear Algebra Edps/Soc 584, Psych 594 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University of Illinois

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

Dimension. Eigenvalue and eigenvector

Dimension. Eigenvalue and eigenvector Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, rank-nullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,

More information

Numerical Linear Algebra Homework Assignment - Week 2

Numerical Linear Algebra Homework Assignment - Week 2 Numerical Linear Algebra Homework Assignment - Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.

More information

MATRIX ALGEBRA. or x = (x 1,..., x n ) R n. y 1 y 2. x 2. x m. y m. y = cos θ 1 = x 1 L x. sin θ 1 = x 2. cos θ 2 = y 1 L y.

MATRIX ALGEBRA. or x = (x 1,..., x n ) R n. y 1 y 2. x 2. x m. y m. y = cos θ 1 = x 1 L x. sin θ 1 = x 2. cos θ 2 = y 1 L y. as Basics Vectors MATRIX ALGEBRA An array of n real numbers x, x,, x n is called a vector and it is written x = x x n or x = x,, x n R n prime operation=transposing a column to a row Basic vector operations

More information

Linear Algebra Formulas. Ben Lee

Linear Algebra Formulas. Ben Lee Linear Algebra Formulas Ben Lee January 27, 2016 Definitions and Terms Diagonal: Diagonal of matrix A is a collection of entries A ij where i = j. Diagonal Matrix: A matrix (usually square), where entries

More information

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p Math Bootcamp 2012 1 Review of matrix algebra 1.1 Vectors and rules of operations An p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the

More information

Lecture 1 Review: Linear models have the form (in matrix notation) Y = Xβ + ε,

Lecture 1 Review: Linear models have the form (in matrix notation) Y = Xβ + ε, 2. REVIEW OF LINEAR ALGEBRA 1 Lecture 1 Review: Linear models have the form (in matrix notation) Y = Xβ + ε, where Y n 1 response vector and X n p is the model matrix (or design matrix ) with one row for

More information

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis: Uses one group of variables (we will call this X) In

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Lecture 8: Linear Algebra Background

Lecture 8: Linear Algebra Background CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 8: Linear Algebra Background Lecturer: Shayan Oveis Gharan 2/1/2017 Scribe: Swati Padmanabhan Disclaimer: These notes have not been subjected

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

Principal Components Analysis. Sargur Srihari University at Buffalo

Principal Components Analysis. Sargur Srihari University at Buffalo Principal Components Analysis Sargur Srihari University at Buffalo 1 Topics Projection Pursuit Methods Principal Components Examples of using PCA Graphical use of PCA Multidimensional Scaling Srihari 2

More information

Common-Knowledge / Cheat Sheet

Common-Knowledge / Cheat Sheet CSE 521: Design and Analysis of Algorithms I Fall 2018 Common-Knowledge / Cheat Sheet 1 Randomized Algorithm Expectation: For a random variable X with domain, the discrete set S, E [X] = s S P [X = s]

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013 CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1 Prof. N. Harnew University of Oxford TT 2013 1 OUTLINE 1. Vector Algebra 2. Vector Geometry 3. Types of Matrices and Matrix Operations 4. Determinants

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

1 Principal component analysis and dimensional reduction

1 Principal component analysis and dimensional reduction Linear Algebra Working Group :: Day 3 Note: All vector spaces will be finite-dimensional vector spaces over the field R. 1 Principal component analysis and dimensional reduction Definition 1.1. Given an

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Chapter 1. Matrix Algebra

Chapter 1. Matrix Algebra ST4233, Linear Models, Semester 1 2008-2009 Chapter 1. Matrix Algebra 1 Matrix and vector notation Definition 1.1 A matrix is a rectangular or square array of numbers of variables. We use uppercase boldface

More information

Lecture 1 and 2: Random Spanning Trees

Lecture 1 and 2: Random Spanning Trees Recent Advances in Approximation Algorithms Spring 2015 Lecture 1 and 2: Random Spanning Trees Lecturer: Shayan Oveis Gharan March 31st Disclaimer: These notes have not been subjected to the usual scrutiny

More information

MA 1B ANALYTIC - HOMEWORK SET 7 SOLUTIONS

MA 1B ANALYTIC - HOMEWORK SET 7 SOLUTIONS MA 1B ANALYTIC - HOMEWORK SET 7 SOLUTIONS 1. (7 pts)[apostol IV.8., 13, 14] (.) Let A be an n n matrix with characteristic polynomial f(λ). Prove (by induction) that the coefficient of λ n 1 in f(λ) is

More information

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued) 1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix

More information

Repeated Eigenvalues and Symmetric Matrices

Repeated Eigenvalues and Symmetric Matrices Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

Recall the convention that, for us, all vectors are column vectors.

Recall the convention that, for us, all vectors are column vectors. Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists

More information

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT Math Camp II Basic Linear Algebra Yiqing Xu MIT Aug 26, 2014 1 Solving Systems of Linear Equations 2 Vectors and Vector Spaces 3 Matrices 4 Least Squares Systems of Linear Equations Definition A linear

More information

Chapter 5 Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n

More information

ANOVA: Analysis of Variance - Part I

ANOVA: Analysis of Variance - Part I ANOVA: Analysis of Variance - Part I The purpose of these notes is to discuss the theory behind the analysis of variance. It is a summary of the definitions and results presented in class with a few exercises.

More information

Ma/CS 6b Class 20: Spectral Graph Theory

Ma/CS 6b Class 20: Spectral Graph Theory Ma/CS 6b Class 20: Spectral Graph Theory By Adam Sheffer Eigenvalues and Eigenvectors A an n n matrix of real numbers. The eigenvalues of A are the numbers λ such that Ax = λx for some nonzero vector x

More information

Review problems for Math 511

Review problems for Math 511 Review problems for Math 511 A Eremenko Spring 018 1 Evaluate the determinants: 13547 13647 843 853, 46 47 37 1014 543 443 34 71 61 No electronic devices and no partial credit! Hint: you should not multiply

More information

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues.

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues. Similar Matrices and Diagonalization Page 1 Theorem If A and B are n n matrices, which are similar, then they have the same characteristic equation and hence the same eigenvalues. Proof Let A and B be

More information

Ma/CS 6b Class 20: Spectral Graph Theory

Ma/CS 6b Class 20: Spectral Graph Theory Ma/CS 6b Class 20: Spectral Graph Theory By Adam Sheffer Recall: Parity of a Permutation S n the set of permutations of 1,2,, n. A permutation σ S n is even if it can be written as a composition of an

More information

Mathematical Foundations of Applied Statistics: Matrix Algebra

Mathematical Foundations of Applied Statistics: Matrix Algebra Mathematical Foundations of Applied Statistics: Matrix Algebra Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/105 Literature Seber, G.

More information

Matrix Vector Products

Matrix Vector Products We covered these notes in the tutorial sessions I strongly recommend that you further read the presented materials in classical books on linear algebra Please make sure that you understand the proofs and

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

Solution Set 7, Fall '12

Solution Set 7, Fall '12 Solution Set 7, 18.06 Fall '12 1. Do Problem 26 from 5.1. (It might take a while but when you see it, it's easy) Solution. Let n 3, and let A be an n n matrix whose i, j entry is i + j. To show that det

More information

0.1 Eigenvalues and Eigenvectors

0.1 Eigenvalues and Eigenvectors 0.. EIGENVALUES AND EIGENVECTORS MATH 22AL Computer LAB for Linear Algebra Eigenvalues and Eigenvectors Dr. Daddel Please save your MATLAB Session (diary)as LAB9.text and submit. 0. Eigenvalues and Eigenvectors

More information

Singular Value Decomposition and Principal Component Analysis (PCA) I

Singular Value Decomposition and Principal Component Analysis (PCA) I Singular Value Decomposition and Principal Component Analysis (PCA) I Prof Ned Wingreen MOL 40/50 Microarray review Data per array: 0000 genes, I (green) i,i (red) i 000 000+ data points! The expression

More information

3.3 Eigenvalues and Eigenvectors

3.3 Eigenvalues and Eigenvectors .. EIGENVALUES AND EIGENVECTORS 27. Eigenvalues and Eigenvectors In this section, we assume A is an n n matrix and x is an n vector... Definitions In general, the product Ax results is another n vector

More information

Chapter 3. Determinants and Eigenvalues

Chapter 3. Determinants and Eigenvalues Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

3 Matrix Algebra. 3.1 Operations on matrices

3 Matrix Algebra. 3.1 Operations on matrices 3 Matrix Algebra A matrix is a rectangular array of numbers; it is of size m n if it has m rows and n columns. A 1 n matrix is a row vector; an m 1 matrix is a column vector. For example: 1 5 3 5 3 5 8

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

6 EIGENVALUES AND EIGENVECTORS

6 EIGENVALUES AND EIGENVECTORS 6 EIGENVALUES AND EIGENVECTORS INTRODUCTION TO EIGENVALUES 61 Linear equations Ax = b come from steady state problems Eigenvalues have their greatest importance in dynamic problems The solution of du/dt

More information

A Little Necessary Matrix Algebra for Doctoral Studies in Business & Economics. Matrix Algebra

A Little Necessary Matrix Algebra for Doctoral Studies in Business & Economics. Matrix Algebra A Little Necessary Matrix Algebra for Doctoral Studies in Business & Economics James J. Cochran Department of Marketing & Analysis Louisiana Tech University Jcochran@cab.latech.edu Matrix Algebra Matrix

More information

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another.

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another. Homework # due Thursday, Oct. 0. Show that the diagonals of a square are orthogonal to one another. Hint: Place the vertices of the square along the axes and then introduce coordinates. 2. Find the equation

More information

Linear Algebra: Characteristic Value Problem

Linear Algebra: Characteristic Value Problem Linear Algebra: Characteristic Value Problem . The Characteristic Value Problem Let < be the set of real numbers and { be the set of complex numbers. Given an n n real matrix A; does there exist a number

More information

LS.2 Homogeneous Linear Systems with Constant Coefficients

LS.2 Homogeneous Linear Systems with Constant Coefficients LS2 Homogeneous Linear Systems with Constant Coefficients Using matrices to solve linear systems The naive way to solve a linear system of ODE s with constant coefficients is by eliminating variables,

More information

Principal component analysis

Principal component analysis Principal component analysis Angela Montanari 1 Introduction Principal component analysis (PCA) is one of the most popular multivariate statistical methods. It was first introduced by Pearson (1901) and

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Exercise Sheet 1.

Exercise Sheet 1. Exercise Sheet 1 You can download my lecture and exercise sheets at the address http://sami.hust.edu.vn/giang-vien/?name=huynt 1) Let A, B be sets. What does the statement "A is not a subset of B " mean?

More information

Chapter 1. Matrix Calculus

Chapter 1. Matrix Calculus Chapter 1 Matrix Calculus 11 Definitions and Notation We assume that the reader is familiar with some basic terms in linear algebra such as vector spaces, linearly dependent vectors, matrix addition and

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Contents Eigenvalues and Eigenvectors. Basic Concepts. Applications of Eigenvalues and Eigenvectors 8.3 Repeated Eigenvalues and Symmetric Matrices 3.4 Numerical Determination of Eigenvalues and Eigenvectors

More information

q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis from any basis.

q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis from any basis. Exam Review Material covered by the exam [ Orthogonal matrices Q = q 1... ] q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis

More information

MATH 431: FIRST MIDTERM. Thursday, October 3, 2013.

MATH 431: FIRST MIDTERM. Thursday, October 3, 2013. MATH 431: FIRST MIDTERM Thursday, October 3, 213. (1) An inner product on the space of matrices. Let V be the vector space of 2 2 real matrices (that is, the algebra Mat 2 (R), but without the mulitiplicative

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015 Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

More information

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 21 Symmetric matrices An n n

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Linear Algebra Primer

Linear Algebra Primer Introduction Linear Algebra Primer Daniel S. Stutts, Ph.D. Original Edition: 2/99 Current Edition: 4//4 This primer was written to provide a brief overview of the main concepts and methods in elementary

More information

ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors

ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 34 The powers of matrix Consider the following dynamic

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 8 Lecture 8 8.1 Matrices July 22, 2018 We shall study

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Laurenz Wiskott Institute for Theoretical Biology Humboldt-University Berlin Invalidenstraße 43 D-10115 Berlin, Germany 11 March 2004 1 Intuition Problem Statement Experimental

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 51 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

3 (Maths) Linear Algebra

3 (Maths) Linear Algebra 3 (Maths) Linear Algebra References: Simon and Blume, chapters 6 to 11, 16 and 23; Pemberton and Rau, chapters 11 to 13 and 25; Sundaram, sections 1.3 and 1.5. The methods and concepts of linear algebra

More information

Eigenvalues and diagonalization

Eigenvalues and diagonalization Eigenvalues and diagonalization Patrick Breheny November 15 Patrick Breheny BST 764: Applied Statistical Modeling 1/20 Introduction The next topic in our course, principal components analysis, revolves

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

Chapter 6. Eigenvalues. Josef Leydold Mathematical Methods WS 2018/19 6 Eigenvalues 1 / 45

Chapter 6. Eigenvalues. Josef Leydold Mathematical Methods WS 2018/19 6 Eigenvalues 1 / 45 Chapter 6 Eigenvalues Josef Leydold Mathematical Methods WS 2018/19 6 Eigenvalues 1 / 45 Closed Leontief Model In a closed Leontief input-output-model consumption and production coincide, i.e. V x = x

More information

MAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to: MAC Module Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to: Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors

More information

B553 Lecture 5: Matrix Algebra Review

B553 Lecture 5: Matrix Algebra Review B553 Lecture 5: Matrix Algebra Review Kris Hauser January 19, 2012 We have seen in prior lectures how vectors represent points in R n and gradients of functions. Matrices represent linear transformations

More information

MAC Module 12 Eigenvalues and Eigenvectors

MAC Module 12 Eigenvalues and Eigenvectors MAC 23 Module 2 Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to:. Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors

More information

Quick Tour of Linear Algebra and Graph Theory

Quick Tour of Linear Algebra and Graph Theory Quick Tour of Linear Algebra and Graph Theory CS224W: Social and Information Network Analysis Fall 2014 David Hallac Based on Peter Lofgren, Yu Wayne Wu, and Borja Pelato s previous versions Matrices and

More information

Notes on Linear Algebra and Matrix Theory

Notes on Linear Algebra and Matrix Theory Massimo Franceschet featuring Enrico Bozzo Scalar product The scalar product (a.k.a. dot product or inner product) of two real vectors x = (x 1,..., x n ) and y = (y 1,..., y n ) is not a vector but a

More information