2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

Size: px
Start display at page:

Download "2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function"

Transcription

1 Chpter VII Speil Futios Otober 7, CHAPTER VII SPECIA FUNCTIONS Cotets: Heviside step futio, filter futio Dir delt futio, modelig of impulse proesses Sie itegrl futio 4 Error futio 5 Gmm futio E Epoetil itegrl futio 6 Bessel futios. Bessel equtio of order (BE). Sigulr poits. Frobeius method. Idiil equtio 4. First solutio Bessel futio of the st kid 5. Seod solutio Bessel futio of the d kid. Geerl solutio of Bessel equtio 6. Bessel futios of hlf orders spheril Bessel futios 7. Bessel futio of the omple vrible Bessel futio of the rd kid (Hkel futios) 8. Properties of Bessel futios: - osilltios - idetities - differetitio - itegrtio - dditio theorem 9. Geertig futios. Modified Bessel equtio (MBE) - modified Bessel futios of the st d the d kid. Equtios solvble i terms of Bessel futios - Air equtio, Air futios. Orthogolit of Bessel futios - self-djoit form of Bessel equtio - orthogol sets i irulr domi - orthogol sets i ulr fomi - Fourier-Bessel series 7 egedre Futios 8 Eerises

2 48 Chpter VII Speil Futios Otober 7, 8 VII. Heviside Futio (uit step futio) The Heviside step futio H( ) hs ol two vlues: d with jump t where futio is ot defied: < H () > Oliver Heviside ( 85-95) Grphill it be show s: > plot(heviside(),-..); H Shiftig of the step futio log the -is: < H ( ) () < > plot(heviside(-),-..4); H( ) filter futio The filter futio be ostruted i terms of the step futio: < F(,,b ) H H( b ) < < b > b () H H( ) It uts the vlues of futios to zero outside of the itervl [,b] > F(,,):Heviside(-)-Heviside(-); > plot(g()*f(,,),-..5); F (,,) g : The Heviside step futio is used for the modelig of sudde irese of some qutit i the sstem (for emple, uit voltge is suddel itrodued ito eletri iruit) we ll this sudde irese spoteous soure. The filter futio be used for represettio of the piee-wise otiuous futios.

3 Chpter VII Speil Futios Otober 7, 8 48 VII. Dir Futio (delt futio) The Dir delt futio δ is ot futio i the trditiol sese it is rther distributio lier opertor defied b two properties. The first desribes its vlues to be zero everwhere eept t Pul Dir ( 9-984) δ, (4) The seod propert provides the uit re uder the grph of the delt futio: h h δ d for h > (4b) The delt futio is vishigl rrow t but evertheless eloses fiite re. It is lso kow s the uit impulse futio. The Dir delt futio be treted s the limit (i orm ot poit b poit limit) of the sequee of the followig futios: ) retgulr futios: ( ) ( ) H h H h δ lim Sh ( ) lim h h h b) Guss distributio futios: δ lim Gσ lim e σ σ σ σ π ) trigle futios: δ limδ, δ ( ) h h d) Cuh desit (distributio) futios: δ lim D lim h ( ) π <h h< < h h < < h h h > h e) sie futios: δ si lim π

4 48 Chpter VII Speil Futios Otober 7, 8 Properties ) Etesio of the itervl of itegrtio to ll rel umbers still keeps the uit re uder the grph of the delt futio: δ d ) The Dir delt futio is geerlized derivtive of the Heviside step futio: δ dh d It be obtied from the osidertio of the itegrl from the defiitio of the delt futio with vrible upper limit. It is obvious, tht < δ ( t ) dt H H δ > Therefore, the step futio is formll tiderivtive of the delt futio whih ow be iterpreted s derivtive of disotiuous futio. δ ( ) ) Shiftig i : δ ( ) 4) Smmetr: δ d, > δ δ ( ) δ ( ) δ ( ) 5) Derivtives: δ δ The derivtive be defied s limit of trigle futios d iterpreted s pure torque i mehis. The higher order derivtives of the delt futio re: ( k ) k k! δ ( ) δ k,,... k 6) Slig: δ for δ 7) There re some importt properties of the delt futio whih reflet its pplitio to other futios. If f is otiuous t, the δ ( ) δ ( ) f f b δ ( ) f d f b < < δ ( ) f d f δ ( ) ( ) f t t dt f H

5 Chpter VII Speil Futios Otober 7, 8 48 Applitios Itegrtio with derivtives of the delt futio (itegrtio b prts): f δ ( ) d f δ f δ ( ) d f f δ ( ) d f δ f δ ( ) d f f 8) ple trsform: s { δ } δ e d s { δ } δ s > e d e 9) Fourier trsform: i iω > ω { δ } δ F e d e The delt futio is pplied for modelig of impulse proesses. For emple, the uit volumetri het soure pplied istteousl t time t is desribed i the Het Equtio b the delt futio: u k u δ ( t) t If the uit impulse soure is loted t the poit r r d releses ll eerg istteousl t time t t, the the Het Equtio hs soure u k u δ ( t t ) δ ( r r ) t Impulse models re used for lultio of the Gree s futio for o-homogeeous DE. The other iterprettio of the delt futio δ ( t t ) s fore pplied istteousl t time t t ieldig impulse of uit mgitude. Emple Cosider IVP: uit impulse is imposed o dmil sstem iitill t rest t t 5 : 9 δ ( t 5) Iitil oditios:,. Solutio: Appl the ple trsform to the give iitil vlue problem (use the propert of the ple trsform): 5s s 9 e Solve the lgebri equtio for : 5s e s 9 The iverse ple trsform ields solutio of IVP: ( t) H ( t 5) si ( t 5) The grph of the solutio shows tht the sstem ws t rest util the time t 5, whe impulse fore ws pplied ieldig udmped periodi osilltios.

6 484 Chpter VII Speil Futios Otober 7, 8 VII. Sie Itegrl Futio The sie itegrl futio is defied b the formul: sit dt t Si ( ) (, ) (5) The itegrd be epded i Tlor series d the itegrted term b term ieldig series represettio of the sie itegrl futio: Si() ( ) ( )( ) Si (6)! Grphill it be show s: > plot(si(),-5..5); Si The limitig vlues of the sie itegrl futio re determied b the Dirihlet itegrl (improper itegrl) siω π dω ω whih be obtied s prtiulr se of the Fourier trsformtio of the step futio. Ci() os t Ci( ) dt (6b) t! Gibbs pheome i the Fourier series pproimtios of futios with jumps re oeted to the properties of sie itegrl futio. si futio The futio si is defied s: siπt t si ( ) πt t j ( ) or si It is kow s the spheril Bessel futio of zero order j ( ) (see Setio VII.6.6, p.498, Eq.(5), see lso p.546.

7 Chpter VII Speil Futios Otober 7, VII.4 Error Futio The error futio is the itegrl of the Guss desit futio shded re π t erf ( ) e dt erf ( ) π t e dt (, ) (7) Guss desit e t π erf ( ) erf ( ) > plot(erf(),-4..4); t erf ( ) The omplimetr error futio is defied s erf( ) erf π e t dt ( ), (8) > plot(erf(),-4..4); erf( ) Power series epsio of the error futio: erf π ( )! ( ) Derivtives of the error futio: The me " error futio" d its bbrevitio erf were proposed b. W.. Glisheri i 87 d d d d erf erf e π 4 e π

8 486 Chpter VII Speil Futios Otober 7, 8 VII.5 Gmm Futio Defiitio The Gmm futio ppers i m itegrl or series represettios of speil futios. Gmm futio ws itrodued b eord Euler i 79 who ivestigted the itegrl futio p q ( ) d p,q whih for turl vlues p,q is equl to p!q! ( p q! ) With some trsformtio of this itegrl d tkig the limits, Euler eded up with the result ( l ) d! Γ ( ) ter, the gmm futio ws defied b the improper itegrl whih overges for ll eept of d egtive itegers (Euler, 78): t Γ e t dt (9) > plot (GAMMA(), -5..5); Γ Properties ) Γ ( ) Γ () Γ ( ) t ( ) e t dt e t t t dt de t t t t t e e dt lim t e t t e t dt Γ

9 Chpter VII Speil Futios Otober 7, b) Whe is turl umber the (! ) Γ,,,... Γ ( )!,,,... ( )! Γ,,,... provided tht! () digmm futio Ψ Γ The gmm futio is geerliztio to rel umbers of ftoril (whih is defied ol for o-egtive itegers). Proof: Γ ( ) the usig propert () Γ ( ) Γ ( ) Γ! Γ ( ) Γ ( ) Γ! the b mthemtil idutio ) The gmm futio does ot eist t zero d egtive itegers. d) The gmm futio is differetible everwhere eept t,,,.... It is differetible etesio of the ftoril. The derivtive of the gmm futio is lled the digmm futio. It is deoted b Ψ e) Stirlig formul (pproimtio for lrge, > 9 ) Γ ( ) π e f) Clultio of gmm futio: zos pproimtio i Fortr or C Numeril reipes. g) Biomil oeffiiets: Γ ( z ) Γ z z! w w! ( z w )! Γ w z w ()

10 488 Chpter VII Speil Futios Otober 7, 8 VII.5.E Epoetil itegrl futios The th order epoetil itegrl futio E µ is defied b equtio E µ e dµ,,,... (E-) or ltertivel, b hge of vrible t µ t, it is defied s E t e dt,,,... (E-) I prtiulr, for, the first epoetil itegrl is redued to oe of the followig ltertive forms µ E µ e dµ t e E dt t t e E dt t The th epoetil itegrl is defied s E e (E-) The grphs of the first three epoetil itegrls is show below. E E E E E E lim E E ( ),,,,,... lim E Vlues of epoetil itegrl t re E E E,,... Ei

11 Chpter VII Speil Futios Otober 7, Numeril lultio of the epoetil itegrls is ot so trivil. Differet series epsios, lieriztio, pproimtios d the reurree reltioships re used i prtie: E γ l... γ l (E-4)!!! Ei( ) E ( γ l )...!! E O γ (m estimtio bsed o E O E O( ) 4 E γ l..., where! 4! l ) Euler s ostt t e γ dt t futio Ei( ) is lled Euler s ostt (see lso VII.6.5, Eq.(7)) d the supplemetl epoetil itegrl futio is defied s t e Ei... dt!! (E-5) t Asmptoti epsio for lrge vlues of (i m FORTRAN ode, for > 5 ) ( ) ( )( ) e E... (E-6) Differetitio of epoetil itegrls d E e E d d E ( ) E ( ),,... d Itegrtio of the epoetil itegrls E d E C Reurree reltioship E A lgebri reurree reltioship betwee epoetil itegrls of oseutive orders be obtied b pplitio of itegrtio b prts rule to defiitio (E-) (eerise): e E,,,,... (E-7)

12 49 Chpter VII Speil Futios Otober 7, 8 Epoetil itegrls desribig rditio i prtiiptig medium E E τ des ver fst i optill thik medium τ des fst Momets of E ( ) Momets of epoetil itegrls: E E d E d d E d Algorithm Algorithm for umeril lultio of the epoetil itegrls E ( ) If 5 the smptoti epsio (Eq. E-6) is pplied < the ) the supplemetl epoetil itegrl If 5 If Ei is lulted first usig the series epsio (E-5): Ei...!! ) the the st order epoetil itegrl is lulted usig equtio E-4: the E γ l Ei( ) ) the et epoetil itegrls,,,..., re lulted usig the reurree reltioship (E-7): E e E E. some ver big umber E,,,... FORTRAN The FORTRAN subroutie bsed o this lgorithm:

13 Chpter VII Speil Futios Otober 7, 8 49 FORTRAN subroutie for lultio of the first three epoetil itegrls VPS odo, 5 o INPUT: OUTPUT: EEi(,), EEi(,), EEi(,) SUBROUTINE Ei(,E,E,E) IMPICIT NONE DOUBE PRECISION Euler DOUBE PRECISION,Eik,Ei,eps,eps DOUBE PRECISION E,E,E,EB,Ek,EB,EB,EB INTEGER i,k,kb,n Euler d eps.d-5 IF (.T..d) THEN write (*,*) ' is egtive' END IF IF (.GT..d) THEN IF (.T.5.d) THEN! series epsio of Ei Ei Eik k kk Eik-Eik*/k/k*(k-) IF (bs(eik).gt.eps) THEN EiEiEik GO TO ESE END IF E-dlog()-EulerEi! reurree reltioship E(dep(-)-*E) E(dep(-)-*E)/ ESE! smptoti epsio for >5 eps.5d! lultio of Ei(,) N k EB Ek Ek-Ek*(Nk)/ IF (bs(ek).gt.eps) THEN EBEBEk kk GO TO ESE kbk EEB*ep(-)/ END IF! reurree reltioship E(dep(-)-*E) E(dep(-)-*E)/ END IF ESE E.d E.d E.5d END IF RETURN END

14 49 Chpter VII Speil Futios Otober 7, 8 Itegro-Epoetil Futios E ( ) d E ( ) E ( ) E. From the Notes The Geerlized SW Method E e E ( ) E e E d E E d d E E d e E Atiderivtives of epoetil itegrls (the re used i ltil solutio of the Et SW model): AE E d e E AE E AE E d ( ) e E AE E 6 (? Chek) 4 AE AE

15 Chpter VII Speil Futios Otober 7, 8 49 VII.6 BESSE FUNCTIONS VII.6.. Bessel s Equtio Friedrih Bessel ( ) I the method of seprtio of vribles pplied to PDE i lidril oordites, the equtio of the followig form ppers: ( r) rr ( r) ( r ) R( r) r R r > This equtio is the seod order lier ordir differetil equtio with vrible oeffiiets. It iludes two prmeters d. It is ot of the Euler-Cuh tpe. C be solved b the Frobeius method. Simplif equtio b the hge of vribles to elimite prmeter : R( r) r dr d d dr d dr d R d dr d d d d d dr dr dr dr d d d dr The the differetil equtio beomes Bessel Equtio of order (4) Now the equtio is writte i trditiol vribles, d it iludes ol oe prmeter. This equtio is lled Bessel Equtio of order. Appl power-series solutio to this equtio. VII.6.. Sigulr Poit Sigulr poits of the differetil equtio with vrible oeffiiets re the poits t whih the first oeffiiet beomes zero: is the ol sigulr poit of the Bessel Equtio. Therefore, if we fid power-series solutio roud this poit, it will be overget for ll rel umbers. Determie the tpe of the sigulr poit. Divide the equtio b to rewrite it i the orml form: Idetif oeffiiets of the equtio i orml form: P d Q. Chek if the sigulrit is removble: P is lti p Q is lti q Therefore, is regulr sigulr poit, d the Frobeius theorem be used for solutio of the Bessel Equtio. VII.6.. Idiil Equtio Substitute oeffiiets p d q ito the idiil equtio: p r q r r There re two roots of this equtio: r r (hoose for oveiee, lter we bdo this ssumptio). The Frobeius pproh depeds o the form of the differee of roots of the idiil equtio: r r

16 494 Chpter VII Speil Futios Otober 7, 8 Two ses of the Frobeius theorem m be ivolved: ) r r iteger b) r r iteger this se iludes, N (positive itegers d zero) d (hlf of the odd iteger) I both ses, the first solutio, followig the Frobeius theorem, hs to be foud i the form: r, > (5) Proeed to this solutio, d the we will lze how it hdles the bovemetioed ses. VII.6.4. First Solutio Usig ssumed form of solutio (), lulte the derivtives ( ) ( ) d substitute them ito the Bessel Equtio (): ( ) Divide the equtio b ( ) Reme idies: i the first sum m m ( ) m m m m d ollet the terms m m m ; i the seod sum m Combie both series: m ( ) m( m ) m m (6) m Applig the Idetit Theorem to the term with summtio, we obti reurree reltioship: m for m,,... m m m ( ) Use this reltioship d the first two terms of the equtio (6): m rbitrr m ( ) (b ssumptio, ) m ( ) ( ) ( ) m ( ) m ( 4 ) ( )( ) ( )( ) m

17 m 6 Chpter VII Speil Futios Otober 7, ( 6 ) ( ) Bessel futio of the st kid! 6 4 All oeffiiets with odd idies re equl to zero. Reogizig the ptter, we determie the oeffiiets with eve idies: k k k,,,... k k! ( )( ) ( k ) This epressio m be writte i more elegt form if the gmm Γ : futio is used. Multipl d divide the epressio b k Γ ( ) k k k! Γ ( )( )( ) ( k ) Repetedl usig the propert () of the gmm futio, we squeeze the produt i the deomitor: Γ ( )( )( ) ( k ) Γ ( )( )( ) ( k ) Γ ( k ) The the epressio for the oeffiiets beomes: k k ( ) Γ ( ) k k! Γ ( k ) Choose the vlue for the rbitrr oeffiiet (, the Γ ) k ( ) k k k! Γ ( k ) The the solutio beomes k k k k ( ) k k! Γ k k! Γ k k k This series solutio overges bsolutel for ll beuse there re o other sigulr poits. The futio represeted b this powerseries solutio is lled the Bessel futio of the st kid of order d it is deoted b k k ( ) k! Γ ( k ) k (7) This formul is vlid for rel (iludig itegers d hlf of the odd itegers ). If is iteger (let ), the the gmm futio is repled b the ftoril Γ ( k ) ( k)! d the solutio simplifies to: k k ( ) k! ( k) k,,,... (8)! This is Bessel futio of the st kid of iteger order (iludig zero).

18 496 Chpter VII Speil Futios Otober 7, 8 VII.6.5. Seod Solutio Cse ) r it eger iludig ( ) Beuse ppers squred i the Bessel equtio, the seod solutio be obtied from the first b replemet of b i (8): k k k (9) k! Γ Futios d ( k ) re lierl idepedet. It be show tht the Wroski of Bessel futios (7) d (9) is: siπ W ( ), ( ) π () If is ot iteger, the the Wroski is ot zero d the Bessel futios d re lierl idepedet. The the geerl solutio of the Bessel Equtio m be writte s geerl solutio for it eger () Cse ) Whe is iteger, the Wroski () is equl to zero for >, therefore, Bessel futios of iteger orders d re lierl depedet. We show tht i this se futios d re just multiples of eh other. Ideed, write Bessel futio of egtive iteger order replig b i equtio (9): k k () k k! Γ( k ) d hge the ide of summtio k b s to mke substitutio i the epoetitio k s the k s, d equtio () beomes s s ( ) ( ) () s ( s )! Γ ( s ) Cosider ftor i the deomitor Γ( s ) : whe s (opositive iteger), the gmm futio is ubouded, therefore, the first terms from s to s i the summtio () re equl to zero, the tkig ito out tht for itegers, Γ ( s ) s!, we obti or s s s!s! s!s! s s ( ) s s ( ) So, futio is the futio (4) up to the sig.

19 Chpter VII Speil Futios Otober 7, Therefore, we eed to fid the seod lierl idepedet solutio. Aordig to the Frobeius Theorem., it be foud i the form: k d k k l or we use the redutio formul (setio V..9, p.59, Eq.()) to fid the seod solutio: d where log divisio d the Cuh produt should be used (whih is tedious but mgeble). Bessel futio of the d kid Trditioll, the seod idepedet solutio is itrodued b the defiitio of the Bessel futio of the d kid of order : d for itegers, s the limit osπ for ot iteger (5) siπ lim (6) whih pper to eist for ll, ±, ±,... (or Z ). The followig epressio be derived (see lso p.489): l γ... π (7) γ lim l m m m Euler s ostt Futios hve logrithmi sigulrit t zero, while futios re fiite t zero, tht leds to their lier idepedee. It be show tht the Wroski for these futios is give b W ( ), ( ) π (8) Geerl solutio of Bessel equtio Futios d re lierl idepedet for ll (iludig itegers), d be used for ostrutio of the geerl solutio of the Bessel equtio: for ll (9) Whe the order of the Bessel equtio is ot iteger, the omplete solutio m be lso give ol i the terms of Bessel futios of the first kid: it eger () The seod solutio ws derived mostl for iteger roots, so, we emphsize it b the followig sttemet: the omplete solutio of the Bessel equtio of iteger order is give b: iteger ()

20 498 Chpter VII Speil Futios Otober 7, 8 VII.6.6. Bessel futios of hlf orders It hppes tht futios of orders ± be epressed i terms of elemetr futios. Show it for ±. Cosider BE (4). Use substitutio u u u du d 5 du u 4 d the the equtio beomes 4 u u For ±, this equtio redues to lier ODE with ostt oeffiiets u u the geerl solutio of whih is give b Appl the bk substitutio os si os du d u, the the solutio beomes si If we hoose for ostts π to be osistet with defiitio (7), we obti tht Bessel futios of hlf orders re os π si π It be verified tht Bessel futios of ± re: () si os π os si π (5) spheril Bessel futios j j Other Bessel futios of hlf of odd iteger orders lso be epressed i terms of elemetr futios. These futios re used for ostrutio of spheril Bessel futios j ( ) ( ) π π d si d d os d (6) (7) whih re solutios of the Bessel equtio [ ( ) ], ±, ±,... (8) This equtio ppers s oe of the ODE i the seprtio of vribles of the pli i spheril oordites [Abrmowitz d Stegu].

21 Chpter VII Speil Futios Otober 7, VII.6.7. Bessel futios of the rd kid A lier ombitio i the geerl solutio (9) ssumes tht oeffiiets d re rel umbers. We lso osidered the vrible to be rel umber too. But the obtied equtios d futios re vlid lso for omple umbers. Two prtiulr ombitios of Bessel futios v ( z) d ( z) with omple oeffiiets led to the itrodutio of the omple versio of Bessel futios, whih lso re the solutios of the Bessel equtio but i the field of omple umbers z Z : We defie two Bessel futios of the rd kid of order (the re lso lled Hkel futios) s H H ( ) ( z) ( z) i ( z) ( ) ( z) ( z) i ( z) (9) (4) or we epress them i terms of the Bessel futio ( z) ol if futio ( z) is repled i this defiitio b omple versio of equtio (5): H H ( ) ( z) ( ) ( z) Defiitios (4) d (4) re for πi ( z) e ( z) (4) isiπ πi ( z) e ( z) (4) i siπ v iteger. For,,,,..., we tke the limits: H H ( ) ( z) ( ) ( z) πi e lim (4) isiπ lim πi e i siπ (44) Beuse Hkel futios H z d H z re lier ombitios of Bessel futios of the st d the d tpe, the hve the similr properties. The Wroski of Hkel futios ( ) ( [ ( z), H ) ( z) ] W H H 4i πz ( z) d ( z) H is therefore futios H z d H z form fudmetl set for the Bessel equtio; d the geerl solutio of the Bessel equtio be writte s ( ) ( H ( z) H ) ( z) for order of the Bessel equtio (iludig itegers).

22 5 Chpter VII Speil Futios Otober 7, 8 VII.6.8. Properties of Bessel futios Futios d m roots for > : 4 re both osilltor; the hve ifiitel. The sme properties hold both for d Idetities (45) (46) d d [ ] Differetil idetities ( ) ( ) (47) d d [ ] (48) (49) (5) Itegrl idetities d d (5) (5) k k Additio theorem ( ) ( ) (5) k t VII.6.9. Geertig futios t (55) e t os 4 6 si (Wht if?) 5 7 Epsios of 4 k 5 ( k ) 5 k ( ) 4 4 ( ) 9 6 ( ) k k ( ) 8

23 Chpter VII Speil Futios Otober 7, 8 5 VII.6.. Modified Bessel equtio The modified Bessel equtio is give b ( ) (56) whih be writte i the form of Bessel equtio (4) with the seod prmeter i : ( i ) (57) whih hs geerl solutio give b equtio (9) with repled b i: i i (58) Equtio (58) provides solutio of the modified Bessel equtio (9) i omple form. But it is desirble to hve rel form of solutio. Cosider k k k i i i (59) k k! Γ k k k! Γ( k ) beuse: k k k k k k k k k ( i) ( i) i ( i ) i i i i. The defie futio whih is lled the modified Bessel futio of the st kid of order : k k I i ( i) (6) k! Γ ( k ) whih is rel futio d whih is solutio of the modified Bessel equtio (56). Nottio I for this futio reflets the method of its defiitio, d it mes the futio of imgir rgumet. For egtive vlues of prmeter, defie seod solutio of the modified Bessel equtio s I i ( i) k (6) k k! Γ ( k ) The Wroski of futios I d W I [ I, I ] be lulted s siπ for v iteger π therefore, futios I d I re lierl idepedet d form fudmetl set, the the geerl solutio of the modified Bessel equtio of o-iteger order is give b I I iteger v (6)

24 5 Chpter VII Speil Futios Otober 7, 8 I the se of iteger orders, futio I is the sme s futio I. Ideed, whe is hged for i equtio (6) I [ ] i ( i) i ( ) ( i) i i i ( i) ( i ) I ( ) I I For iteger orders,,,,,, the seod solutio of the modified Bessel equtio is defied with the help of the modified Bessel futio of the d kid of order : K I π I siπ (6) s the limit K K lim (64) Geerl solutio i se v I K v iteger Futios I d I I I K re ot osilltor I ( ) I ( ) I K ( ) K ( ) K

25 Chpter VII Speil Futios Otober 7, 8 5 VII.6.. Equtios solvble i terms of Bessel futios Cosider some geerliztios of the Bessel equtio whih lso be solved i terms of the Bessel futio. ) The geerlized Bessel differetil equtio is writte i the form m α p p If α α ( m ) m p is solutio of the Bessel equtio, the the futio e m α p ( ) is solutio of the geerlized equtio. For iste, for rel (iludig itegers), the geerl solutio be writte s e m α p [ ( ) ( )] p or for o-iteger orders, geerl solutio be writte s p [ ( ) ( )] p m α e Proof of this sttemet be mde b the pproprite hge of vribles d b redutio of the differetil equtio to the Bessel equtio. Emple Chek tht the modified Bessel equtio ( ) is prtiulr se of the geerlized equtio. Rewrite it i the form of the geerlized equtio: from whih we idetif m, α, p, d d, therefore, solutios of the modified Bessel equtio should ilude futios ( i), ( i), d ( i) wht we kow from Setio. Air equtio Emple Cosider the Air equtio whih is the simplest se of the lier d order ODE with vrible oeffiiets. This equtio hs pplitios i dmis (osilltio of gig sprig), qutum mehis d optis. Rewrite the Air equtio i the form of the geerlized equtio Goerge Biddell Air ( 8-89)

26 54 Chpter VII Speil Futios Otober 7, 8 Difrtio o irulr perture is disribed b Air futios from whih we idetif 4 m, α, p,, d 9 9 from the lst equtio we determie the order of the equtio ± The solutios of the Air equtio be writte s i i ( ) If we rewrite Bessel futios of the st kid of omple rgumets i terms of modified Bessel futios usig equtio (95), the the solutios beome I I These two lierl idepedet solutios (ote, tht order of modified Bessel futios is ot iteger) m be used for ostrutio of the trditiol form of solutios Ai I I Bi I I whih re lled Air futios. The et plot shows the grph of Air futios. plot({airai(),airbi()},..); Bi Ai

27 Chpter VII Speil Futios Otober 7, 8 55 b) The et equtio is prtiulr se of the Air equtio, but it is more oveiet for pplitios i simpler ses: p solutios of this equtio hve the forms p p p p p p Solutios of the Air equtio be obtied i this se muh fster. ) Equtio ( e p ) hs solutios ( ) p ( e ) ( ) ( e ) p ( ) p ( e ) Air futios of the omple rgumet

28 56 Chpter VII Speil Futios Otober 7, 8. Orthogolit of Bessel futios We kow from Sturm-iouville theor tht solutios of the self-djoit differetil equtio stisfig homogeeous boudr oditios form omplete set of futios orthogol with some weight futio (Sturm-iouville theorem). Cosider pplitio of this theor to solutios of BVP for BE. Self-djoit form of BE The Bessel equtio of order with prmeter ( ) (65) be redued to self-djoit form with the help of multiplig ftor µ e d e d e After multiplitio of (65) b it be redued to self-djoit form p l where the weight futio be idetified s p. The, the Sturm-iouville Problem i the itervl [, ] produes ifiitel m vlues of the prmeter (eigevlues) for whih there eist o-trivil solutios (eigefutios). Aordig to the Sturm-iouville theorem, the obtied eigefutios re orthogol with the weight futio p : m d for m Sigulr Sturm-iouville Problem We studied regulr Sturm-iouville Problem i whih the ordir differetil equtio is set i the fiite itervl d both boudr oditios do ot vish. I sigulr Sturm-iouville problem ot ll of these oditios hold. Usull, the itervl is ot fiite, d oe or both boudr oditios re missig. Isted of boudr oditios, whe the solutio m ot eist t the boudries, the eigefutios should stisf some limitig oditios. Oe of suh requiremets be the followig: et d be eigefutios orrespodig to two distit eigevlues d, orrespodigl. The the hve to stisf the followig oditio: [ ] lim p [ ] lim p I the other ses the bsee of boudr oditios is beuse of the periodil or led domi, whe we demd tht the solutio should be otiuous d smooth ( ) d ( ) I this se, it is still possible to hve the orthogol set of solutios,. { } o [ ]

29 Chpter VII Speil Futios Otober 7, 8 57 Orthogol sets for irulr domi Cosider BE i the fiite irle. The geerl solutio is give b The phsil sese of solutio of lssil PDE requires fiite vlue of solutio i ll poits of [,]. Bessel futios of the seod kid re ubouded t, therefore, to stisf this oditio we hve to put rbitrr ostt equl to zero. The solutio of BE ( ) Boudr oditios Cosider the homogeeous boudr oditios t : I Dirihlet II Neum III Robi [ H ] Equtios for eigevlues I We re lookig for the vlues of the prmeter whih provide otrivil solutios stisfig boudr oditios I-III. These vlues be foud b substitutio of the solutio ito the boudr oditios I-III s the positive roots of the followig equtios:, d whe II d d hi rule H III Proof: H d H H d H H I the prtiulr se, whe the Bessel futio is of zero order,, equtios for eigevlues re: I ( ) II d whe III H

30 58 Chpter VII Speil Futios Otober 7, 8 Orthogolit Obtied equtios geerte ifiitel m eigevlues,,,,... For whih the orrespodig eigefutios re: { } ( ) The orrespodig set of solutios { ( ) } respet to the weight futio p : is orthogol with ( ) ( ) m d N m m Norm of eigefutios where the squred orm of eigefutios is determied s [Ozisik N. Het Trsfer, p.; Mhl Bessel Futios for Egieers, p.]: N, ( ) d ( ) ( ) or itegrtig with Mple: N, ( ) d ( ) ( ) ( ) The derivtive be epressed s (use hi rule d idetit (5)) d ( ) ( ) d ( ) ( ) or if we use the other idetit for lower order the d ( ) ( ) d The tkig ito out tht eigevlues stisf equtios I-III (tht simplifies epressios), the squred orm for speifi boudr oditios is give: I II III N ( ) or ( ),, N, H N N,

31 Chpter VII Speil Futios Otober 7, 8 59 SOID CINDER se of Equtio obtied b seprtio of vribles i the Het Equtio: R R µ R rr rr rr µ rr Boudr Coditios: R < R( r ) Sturm-iouville Theorem: bouded solutio r r rr r R self-djoit form ( µ ) Eigevlues: Weight Futio: p( r) µ,,... r For solutio, rewrite eq i the form of the Bessel Equtio of order : r R rr r R Geerl Solutio: R ( r) ( r) ( r),, Bouded Solutio: R ( r) ( r) I II Dirihlet problem R( r ) Neum problem R r Eigefutios: R ( r) ( r) Eigevlues: re positive roots of hrteristi equtio: r r Squred Norm: R r ( r) rdr ( r) Eigefutios: R R r r Eigevlues: re positive roots of hrteristi equtio: r r Squred Norm: R r r rdr r r R r r rdr r ( ) ( ) III Robi problem R r HR r Eigefutios: R ( r) ( r) Eigevlues: re positive roots of hrteristi equtio: r H r r H r Squred Norm: R r ( r) rdr ( r)

32 5 Chpter VII Speil Futios Otober 7, 8 Bessel-Fourier Series The obtied orthogol sstems be used for ostrutig the futio epsio i geerlized Fourier series ( ) f where oeffiiets re determied from the equtio ( ) f d ( ) d ( ) f d N, Emple (I Dirihlet boudr oditio) Cosider orthogol set obtied s solutio of Dirihlet problem with Bessel futios where ( { ) ( )} eigevlues re positive roots of equtio ( ) The squred orm of eigefutios be lulted s N, ( ) The epsio of futio f i Fourier-Bessel series hs the form ( ) f d f, where (it is lso kow s the Hkel-Fourier series (869)). Cosider ow epsio of the futio f H ( ), [,] Cse i the Hkel series of order. Coeffiiets re ( ) d N, N, d the epsio beomes f ( ) ( ) ( ) 9 ( ) ( ) This emple be illustrted with Mple presettio (SF-.mws)

33 Chpter VII Speil Futios Otober 7, 8 5 SF-.mws Emple Fourier-Bessel series > u:; > :; I Dirihlet boudr oditio order of Bessel Futios : : > f():-heviside(-); f( ) : Heviside ( ) Chrteristi equtio > w():bessel(u,*); w( ) : Bessel (, ) > plot(w(),..); Eigevlues > d:.5; d :.5 > ::for m from to 4 do :fsolve(w(),m*d..(m)*d):if tpe (,flot) the lmbd[]:: : fi od: > for i to do lmbd[i] od; Eigefutios Squred Norm of eigefutios > N:-;:'':i:'i':m:'m'::''::'': N : 4 > []:Bessel(u,lmbd[]*); : Bessel (, ) >N[]:it(*[]^,..): N[]:subs(Bessel(u,*lmbd[]),N[]): Fourier-Bessel oeffiiets Fourier-Bessel series > []:it(*[]*f(),..)/n[]; : 9 Bessel (, ) Bessel (, ) > u():sum([]*[],..n); 4 u( ) : Bessel (, ) Bessel (, ) 9 Bessel (, ) > u():sum([]*[],..n): > plot({f(),u()},..);

34 5 Chpter VII Speil Futios Otober 7, 8 Emple 4 (II Neum boudr oditio) Cosider orthogol set obtied s solutio of the Neum where eigevlues problem with Bessel futios re positive roots of the equtio ( is lso eigevlue for ) The squred orm of eigefutios be lulted s N, d N, Fourier-Bessel series: ( f ), where > f, where ( ) f d N, f d ( ) f d N, Cse Cosider ow epsio of the futio f H ( ), [,] d 9 N, ( ) d ( ) ( ) N, 9 Mple solutios: SF---.mws SF---.mws

35 Chpter VII Speil Futios Otober 7, 8 5 Emple 5 (III Robi boudr oditio) H Cosider orthogol set obtied s solutio of the Robi problem with Bessel futios ( ) ( ) positive roots of equtio H where eigevlues re The squred orm of eigefutios be lulted s H N, ( ) Mple solutio (for ) SF--.mws Cse Fourier-Bessel series: f ( ) where ( ) f d N,, H Cosider epsio of futio f H ( ), [,]

36 54 Chpter VII Speil Futios Otober 7, 8 ANNUAR DOMAIN Equtio obtied b seprtio of vribles i the Het Equtio: R R µ R rr [ ] r r [ ] r r R R Sturm-iouville Theorem: ( rr ) ( µ ) r R (self-djoit form) r r r Eigevlues: Weight Futio: p( r) µ,,... r For solutio, rewrite it i the form of Bessel Equtio of order : r R rr r R Geerl Solutio: R ( r) ( r) ( r),, I Dirihlet-Dirihlet Problem: R( r ) R( r ) Eigefutios: R ( r) Eigevlues: ( ) ( ) ( ) ( ) r r r r re positive roots of hrteristi equtio: ( ) ( ) ( ) ( ) r r r r Norm: r r R r R r rdr

37 Chpter VII Speil Futios Otober 7, 8 55 STURM-IOUVIE PROBEM Bessel Equtio of order : r R rr r R Cosider BE i the ulr domi ( ), with homogeeous boudr oditios: d h k h d H k k d h d, h H k The geerl solutio is give b The derivtive of the geerl solutio: A BVP for BE i the fiite domi ordig to the Sturm-iouville theorem geertes ifiite set of eigevlues d orrespodig eigefutios orthogol with the weight futio p. A prtiulr form of the orthogol set depeds o the tpe of boudr oditios. I I Dirihlet-Dirihlet [ ] [ ] d II I Neum-Dirihlet d [ ] I II Dirihlet-Neum [ ] d d d 4 II II Neum-Neum d d d 5 I III Dirihlet-Robi [ ] k h d d d 6 II III Neum-Robi d d 7 III I Robi-Dirihlet k h d d k h d [ ] d 8 III II Robi-Neum k h d d d d 9 III III Robi-Robi k h d d k h d

38 56 Chpter VII Speil Futios Otober 7, 8 I - I Dirihlet-Dirihlet Cosider BE i the ulr domi ( ), (, ) Boudr oditios: (Dirihlet) (Dirihlet) Appl boudr oditios to the geerl solutio of BE: ( ) ( ) ( ) ( ) This is homogeeous sstem of two lier lgebri equtios for d. Rewrite it i the mtri form ( ) ( ) We re lookig for o-trivil solutio of BVP, i.e. both oeffiiets i geerl solutio ot be zero A homogeeous lier sstem hs o-trivil solutio ol if the determit of the sstem mtri is equl to zero: Equtio for eigevlues : det ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) The roots of this equtio ield the eigevlues for whih BVP hs o-trivil solutios (eigefutios). Osilltor propert of Bessel futios provides ifiite set of eigevlues d orrespodig eigefutios re,, Determie ow the oeffiiets, d, from sstem where eigevlues re substituted ( ) ( ),, Beuse lier sstem hs sigulr mtri, solutios for, d, re lierl depedet d be determied just from oe equtio, let it be the seod oe, ( ), ( ) oe of the ukows i this equtio is free prmeter, hoose,, the, The eigefutios hve the form: Eigefutios ( ) ( )

39 Chpter VII Speil Futios Otober 7, 8 57 The orm of eigefutios is give b: N, d ( ) ( ) ( ) ( ) d d d ( ) ( ) ( )... epress i terms of, ( ) ( ) ( ) d Summr For ulr domi with boudr oditios: Eigevlues re positive roots of the hrteristi equtio ( ) ( ) ( ) ( ) The eigefutios re ( ) ( ) Fourier-Bessel series: f where f d d ( ) f N, d Mple emples: SF-AD--.mws SF-AD--.mws, 5 f H ( )

40 58 Chpter VII Speil Futios Otober 7, 8 II - I Neumt-Dirihlet [igu Wei] Cosider BE i the ulr domi ( ) Boudr oditios: d d, (, ) The geerl solutio is give b (Neum) (Dirihlet) The derivtive of the geerl solutio (use hi rule d differetil idetities) d ( ) ( ) ( ) ( ) ( ) d Appl boudr oditios to the geerl solutio of BE: Deote: ( ) ( ) ( ) ( ) ( ) ( ) The sstem for oeffiiets hs the followig mtri form: A eessr oditio for sstem to hve o-trivil solutio is det it ields hrteristi equtio for vlues of the prmeter for whih the BVP hs o-trivil solutio: Equtio for eigevlues ( ) ( ) ( )

41 Chpter VII Speil Futios Otober 7, 8 59 The positive roots of this equtio provide ifiite set of eigevlues. The for the determied eigevlues, oeffiiets, d, be foud from oe of the equtios of the sstem (hoose the seod oe): Oe of the oeffiiets be tke s free prmeter, hoose, the With determied oeffiiets, solutios of the BVP (eigefutios) hve the form: Eigefutios: ( ) ( ),, ( ) ( ) ( ) ( ) The orm of the eigefutios is determied b the itegrl N, d, Fourier-Bessel Series: N, d ( ) ( ) ( ) ( ) d f where f d f d N, d

42 5 Chpter VII Speil Futios Otober 7, 8 I -II Dirihlet-Neum [Crig Peterso] Cosider BE i the ulr domi ( ), (, ) Boudr oditios: (Dirihlet) d (Neum) d The derivtive of the geerl solutio (use hi rule d differetil idetities) d ( ) ( ) ( ) ( ) ( ) d The geerl solutio is give b Equtio for eigevlues : Appl boudr oditios to the geerl solutio of BE: Deote: ( ) ( ) ( ) ( ) ( ) The sstem for oeffiiets hs the followig mtri form: A eessr oditio for sstem to hve o-trivil solutio is det it ields hrteristi equtio for vlues of the prmeter for whih the BVP hs o-trivil solutio: ( ) ( ) ( ) ( ) ( ) ( )

43 Chpter VII Speil Futios Otober 7, 8 5 The positive roots of this equtio provide ifiite set of eigevlues. The for the determied eigevlues, oeffiiets, d, be foud from oe of the equtios of the sstem (hoose the first oe): Oe of the oeffiiets be tke s free prmeter, hoose, the With determied oeffiiets, solutios of the BVP (eigefutios) hve the form: Eigefutios: ( ) ( ),, ( ) ( ) ( ) ( ) The orm of eigefutios is give b: N, d ( ) ( ) ( ) ( ) ( ) d d ( ) ( ) ( ) ( ) ( ) d ( ) d Summr: For ulr domi with boudr oditios: (Dirihlet) d (Neum) d Eigevlues re positive roots of the hrteristi equtio [ ( )] ( ) ( ) The eigefutios re ( ) ( ) [ ] ( ) ( ) ( ) ( )

44 5 Chpter VII Speil Futios Otober 7, 8 4 II - II Neum-Neum Cosider BE i the ulr domi ( ), (, ) with homogeeous boudr oditios: d d d d The geerl solutio is give b (Neum) (Neum) The derivtive of the geerl solutio (use hi rule d differetil idetities) d ( ) ( ) ( ) ( ) ( ) d Substitute ito boudr oditios: ( ) ( ) ( ) ( ) Deote: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) The sstem for oeffiiets hs the followig mtri form: A eessr oditio for sstem to hve o-trivil solutio is det it ields hrteristi equtio for vlues of the prmeter for whih the BVP hs o-trivil solutio:

45 Chpter VII Speil Futios Otober 7, 8 5 Equtio for eigevlues ( ) ( ) Eigefutios: The positive roots of this equtio provide ifiite set of eigevlues (ote for Neum boudr oditios, is lso eigevlue for ). The for the determied eigevlues, oeffiiets, d, be foud from oe of the equtios of the sstem (hoose the seod oe): Oe of the oeffiiets be tke s free prmeter, hoose, the With determied oeffiiets, solutios of the BVP (eigefutios) hve the form: for ( ) ( ),, ( ) ( ) The orm of the eigefutios is determied b the itegrl N, d, N, d d Fourier-Bessel series: f where d d f for f d f d f d N, d d f d f d N, d for

46 54 Chpter VII Speil Futios Otober 7, 8 5 I - III Dirihlet-Robi [Bri ieht] Cosider BE i the ulr domi ( ), (, ) with homogeeous boudr oditios: [ ] (Dirihlet) d k h d k The geerl solutio is give b h H (Robi) The derivtive of the geerl solutio (use hi rule d differetil idetities) d ( ) ( ) ( ) ( ) ( ) d Substitute ito boudr oditios: ( ) ( ) ( ) ( ) ( ) ( ) H ( ) H ( ) Collet terms ( ) H ( ) H ( ) Deote: ( ) ( ) ( ) H ( ) H ( ) The sstem for oeffiiets hs the followig mtri form: A eessr oditio for sstem to hve o-trivil solutio is det it ields hrteristi equtio for vlues of the prmeter for whih the BVP hs o-trivil solutio:

47 Chpter VII Speil Futios Otober 7, 8 55 Equtio for eigevlues ( ) ( ) H ( ) ( ) H ( ) The positive roots of this equtio provide ifiite set of eigevlues. The for the determied eigevlues, oeffiiets, d, be foud from oe of the equtios of the sstem (hoose the seod oe): Oe of the oeffiiets be tke s free prmeter, hoose, the With determied oeffiiets, solutios of the BVP (eigefutios) hve the form: Eigefutios: ( ) ( ) The orm of the eigefutios is determied b the itegrl N, d Fourier-Bessel series: f where f d d f N, d Mple emple: SF-AD-5-.mws SF-AD-5-.mws, 5 H f H

48 56 Chpter VII Speil Futios Otober 7, 8 6 II - III Neum-Robi [ur Hse] Cosider BE i the ulr domi ( ), (, ) with homogeeous boudr oditios: d d d k h d k The geerl solutio is give b (Neum) h H (Robi) The derivtive of the geerl solutio (use hi rule d differetil idetities) d ( ) ( ) ( ) ( ) ( ) d Substitute ito boudr oditios: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) H ( ) H ( ) Collet terms H H Deote: for : ( ) ( ) ( ) ( ) ( ) ( ) H ( ) H H ( ) H The sstem for oeffiiets hs the followig mtri form: A eessr oditio for sstem to hve o-trivil solutio is det

49 Chpter VII Speil Futios Otober 7, 8 57 This ields hrteristi equtio for vlues of the prmeter for whih the BVP hs o-trivil solutio: Equtio for eigevlues ( ) H ( ) ( ) H ( ) The positive roots of this equtio provide ifiite set of eigevlues. The for the determied eigevlues, oeffiiets d, be foud from oe of the equtios of the sstem (hoose the seod oe): Oe of the oeffiiets be tke s free prmeter, hoose, the With determied oeffiiets, solutios of the BVP (eigefutios) hve the form:, Eigefutios: ( ) ( ),, ( ) ( ) ( ) H ( ) H The orm of the eigefutios is determied b the itegrl N, d Fourier-Bessel series: f where f d d f N, d

50 58 Chpter VII Speil Futios Otober 7, 8 7 III - I Robi-Dirihlet [Adrew Eldredge] Cosider BE i the ulr domi ( ), (, ) with homogeeous boudr oditios: d k h d [ ] k h H (Robi) (Dirihlet) The geerl solutio is give b The derivtive of the geerl solutio (use hi rule d differetil idetities) d ( ) ( ) ( ) ( ) ( ) d Substitute ito boudr oditios: ( ) ( ) ( ) ( ) H ( ) H ( ) Collet terms ( ) H ( ) ( ) H ( ) Deote: ( ) H ( ) ( ) ( ) ( ) H ( ) The sstem for oeffiiets hs the followig mtri form: A eessr oditio for sstem to hve o-trivil solutio is det it ields hrteristi equtio for vlues of the prmeter for whih the BVP hs o-trivil solutio:

51 Chpter VII Speil Futios Otober 7, 8 59 Equtio for eigevlues H ( ) ( ) H ( ) The positive roots of this equtio provide ifiite set of eigevlues. The for the determied eigevlues, oeffiiets, d, be foud from oe of the equtios of the sstem (hoose the seod oe): Oe of the oeffiiets be tke s free prmeter, hoose, the With determied oeffiiets, solutios of the BVP (eigefutios) hve the form: Eigefutios: ( ) ( ),, ( ) ( ) ( ) ( ) The orm of the eigefutios is determied b the itegrl N, d Fourier-Bessel series: f where f d d f N, d Mple emple: SF-AD-7-.mws SF-AD-7-.mws, 5 H,

52 Chpter VII Speil Futios Otober 7, III - II Robi-Neum [so Thoms & Tim Pollok] Cosider BE i the ulr domi,, with homogeeous boudr oditios: h d d k k h H (Robi) d d (Neum) The geerl solutio is give b The derivtive of the geerl solutio (use hi rule d differetil idetities) d d Substitute ito boudr oditios: H H Collet terms H H Deote: H H The sstem for oeffiiets hs the followig mtri form: A eessr oditio for sstem to hve o-trivil solutio is det it ields hrteristi equtio for vlues of the prmeter for whih the BVP hs o-trivil solutio:

53 Chpter VII Speil Futios Otober 7, 8 5 Equtio for eigevlues H ( ) H ( ) Eigefutios: The positive roots of this equtio provide ifiite set of eigevlues. The for the determied eigevlues, oeffiiets, d, be foud from oe of the equtios of the sstem (hoose the seod oe): Oe of the oeffiiets be tke s free prmeter, hoose, the With determied oeffiiets, solutios of the BVP (eigefutios) hve the form: ( ) ( ),, ( ) ( ) ( ) ( ) ( ) The orm of the eigefutios is determied b the itegrl N, d Fourier-Bessel series: f where f d d f N, Mple emple: SF-AD-8-.mws SF-AD-8-.mws, 5 H, H f H d

54 Chpter VII Speil Futios Otober 7, III - III Robi-Robi Cosider BE i the ulr domi,, with homogeeous boudr oditios: h d d k k h H (Robi) h d d k k h H (Robi) The geerl solutio is give b The derivtive of the geerl solutio (use hi rule d differetil idetities) d d Substitute ito boudr oditios: H H H H H H H H Deote: H H H H The sstem for oeffiiets hs the followig mtri form: A eessr oditio for sstem to hve o-trivil solutio is det it ields hrteristi equtio for vlues of the prmeter for whih the BVP hs o-trivil solutio:

55 Chpter VII Speil Futios Otober 7, 8 5 Equtio for eigevlues H ( ) ( ) H ( ) H ( ) ( ) H ( ) The positive roots of this equtio provide ifiite set of eigevlues. The for the determied eigevlues, oeffiiets, d, be foud from oe of the equtios of the sstem (hoose the seod oe): Oe of the oeffiiets be tke s free prmeter, hoose, the With determied oeffiiets, solutios of the BVP (eigefutios) hve the form: Eigefutios: ( ) ( ),, ( ) H ( ) ( ) ( ) H ( ) The orm of the eigefutios is determied b the itegrl N, d Fourier-Bessel series: f where f d d f N, d Mple emple: SF-AD-9-.mws SF-AD-9-.mws, 5 H, H f H

56 54 Chpter VII Speil Futios Otober 7, 8 VII.7 egedre Polomils egedre Equtio Adrie-Mrie egedre ( 75 8) Seprtio of vribles of the pli i spheril oordite sstem ields group of ODEs oe of whih hs the form m [( ) ] ( ) where m d re seprtio ostts. This equtio is lled egedre s ssoited differetil equtio. Solutio of this equtio iludes egedre s ssoited futios of degree d of order m P m Q m. of the st d the d kid d Whe m (i se whe the pli does ot deped o the vrible φ ), equtio is lled the egedre differetil equtio Solutio of this equtio iludes egedre s futios of degree of Q. the st d the d kid P d Solutio of egedre Equtio Cosider the egedre differetil equtio rewritte i stdrd form ( ) ( ) R This equtio hs two sigulr poits ±, ll other poits re ordir poits. We will ppl power-series solutio method roud the ordir poit. The itervl of overgee for this solutio is gurteed to be (, ). Assume tht the solutio is represeted b power series hge k b k k k k the derivtives of the solutio re k k k k k k ( k ) k k Substitute them ito equtio k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k i the first term k k k k k ( ) ( ) { [ k( k ) k ( ) ] ( k )( k ) k } { } k k ( ) ( ) { [ ( ) k( k ) ] ( k )( k ) k } k k

57 Chpter VII Speil Futios Otober 7, 8 55 Usig the ompriso theorem, determie the reltio for oeffiiets: ( ) ( ) ( )( ) k ( k ) ( ) ( k ) ( k ) ( k)( k ) k ( k ) ( k ) k k k,,... Coeffiiets d re rbitrr, osider them to be the prmeters for the geerl solutio d ollet the terms orrespodig to these oeffiiets. The the power series solutio of the egedre Equtio beomes ( ) ( )( )( ) ( )( )( )( )( ) 4 5! 4! 6! ( )( ) ( )( )( 4) ( )( 5)( )( 4)( 6)! 5! 7! et us deote the power series solutio s,, Choose sequee of o-egtive vlues of,,,... Note, tht i the solutio ll terms eept for fiite umber ltertigl dispper: if k is eve the i the first series ll terms with multiple ( k) dispper, if k is odd the i the seod series ll terms with multiple ( k ) dispper, d the beome the fiite polomils. Write these terms epliitl:,, ( ), ubouded t 4 5,..., 5,! 5! [ see Asmr, p.] ( )! (! )!! Choose ( ), ( )!!! The egedre futios of the st kid for differet vlues of prmeter geerte the followig set of polomils

58 56 Chpter VII Speil Futios Otober 7, 8 egedre Polomils P P P P P P P4 P5 P 5 P P whih re lled egedre polomils. Beuse egedre polomils re solutios of the seprted ple equtio i spheril oordites, the re lso lled spheril hrmois (d the method of solutio i terms of egedre futios is lled orrespodigl the Method of Spheril Hrmois). Rell tht this sstem of polomils up to slr multiple ws lso obtied from orthogoliztio of the lier idepedet set of,,,,... o the itervl [,] mooms { }. Reurree formul ( ) P ( ) P P d! d Rodrigues formul P Orthogolit of egedre polomils egedre polomils re orthogol i the itervl [,] with the weight futio p m Pm P d m Fourier-egedre series egedre polomils be used for epsio of the futio f, [, ] i the Fourier-egedre series: f P where epsio oeffiiets re f P P d d f P d

59 Chpter VII Speil Futios Otober 7, 8 57 Itegrl trsform The egedre itegrl trsform is bsed o the Fourier-egedre epsio f f K d with iverse trsform f f K where the kerel of the itegrl trsform K ormlized egedre futio K P is defied s Emple 8 (epsio i Fourier-egedre series (spheril hrmois)) f H [, ] f P dp SF-8.mws Emple 8 Fourier-egedre Series > restrt; > with(orthopol); [ G, H,, P, T, U ] > for from to 6 do P(,) od;

60 58 Chpter VII Speil Futios Otober 7, 8 > f():heviside(); f( ) : Heviside ( ) Fourier-egedre oeffiiets > []:(/)*it(f()*p(,),-..); : P (, ) d Fourier-egedre series: > u():sum([]*p(,),..); 895 u( ) : > plot({f(),u()},-..); 9 > u():sum([]*p(,),..): > plot({f(),u()},-..); oseph Fourier ( 768 8)

61 Chpter VII Speil Futios Otober 7, 8 59 The Best Approimtio b Polomils Cosider vetor spe of squre itegrble futios [,] ll polomils of order is subspe of [,] π. et f [,] d let f P k be the i [,].. Cll it. The sp of th prtil sum of the Fourier-egedre epsio of the futio f ( ) The f ( ) provides the best pproimtio of the futio f ( ) b the th order polomils. Tht mes tht futio f ( ) is the losest to the futio f ( ) mog the futios i π i the sese tht it miimizes the diste ( ) ( ) f p f p,f p f p d for ll f f f p p π

62 54 Chpter VII Speil Futios Otober 7, 8 Grphs of egedre polomils egedre-.mws egedre polomils > restrt; > with(orthopol): > plot({p(,),p(,),p(,)},-..); P P P > plot({p(,),p(4,),p(5,)},-..); P P 5 P 4 > plot({p(6,),p(7,),p(8,)},-..); P 6 P7 P8

63 Chpter VII Speil Futios Otober 7, 8 54 SHIFTED EGENDRE PONOMIAS. Shifted egedre Polomils defied o the itervl [,] re obtied b orthogoliztio (Grm-Shmidt proess) of the power futios (mooms):,,,... (Grm determits) k k k P b,,,... ( k)! ( ) k b k k k! k!,,,...,! k k! ( k)! P P P 6 6 P P P P P ( m) P, P if m orthogol, P P P egedre-fourier series: f ( ) P, k k k ( f, P ) P, P f P d k k ( k ) f P k ( ) d P k d

64 54 Chpter VII Speil Futios Otober 7, 8. Normlized Shifted egedre Polomils defied o the itervl [,] k k k P b,,,... b k ( k) ( )! k! k! k k,,,..., P ( ) P P P P P ( ) P P P ( P, P ) P d (, ) P P δ orthoorml m m egedre-fourier series: f ( ) P, k k k (, ) f P f P d k k k

65 Chpter VII Speil Futios Otober 7, 8 54 Guss-egedre Qudrtures of Itegrtio See [Chihr, p., Theorem 6.], [Guthi], [otes o momets], [otes SW Optimiztio ] grge iterpoltio polomil polomil of degree t most - whose grph psses through the presribed poits (ti,i). Roots of egedre polomils, their properties b [ f ] f w d k f ( k ) [ f ] qudrture k If the formul is et wheever f is polomil of degree m, the qudrture is of preisio m. Defiitio: Guss qudrture is qudrture of degree of preisio -, i whih k re zeroes of the pproprite orthogol polomils (i ft, uique qudrture with odes whih hs degree of preisio -). [ f ] [ f ]

66 544 Chpter VII Speil Futios Otober 7, 8 VII. 8 EXERCISES: ) Show δ ( π) si si δ π δ ( π) Hit: multipl both sides b rbitrr differetible futio d itegrte. ) Solve the IVP d sketh the solutio urves (use Mple d ple trsform): ) ( t ) H ( t ) b) δ ( t ) ) Show δ ( 6) f d f ( ) Prove tht, i geerl, f ( ) δ g ( ) f ( ) d, where g( ) g ( ) 4) Sig futio is defied s sg > < ) Epress sg i terms of Heviside step futio H b) Epress Heviside step futio H i terms of sg d d ) Clulte sg d) Sketh the grph of sg( ) 5) Usig mthemtil idutio (Setio I.4, p.49), prove Equtio (), p.487: Γ ( )! 6) Use term-b-term differetitio (wh we do it?) to show d d 7) Solve i terms of Bessel futios (see VII.6., p.5) ( ) 8) Fiish Emple 5 i setio 6., p.5 for the se

67 Chpter VII Speil Futios Otober 7, ) Use mthemtil softwre of our hoie to sketh the grph of the futio d fid the first five positive roots: ) w( t) 4 ( t) ( t) b), t t t w t os si, t Ptheo, Pris

68 546 Chpter VII Speil Futios Otober 7, 8 The first spheril Bessel futio j () is lso kow s the (uormlized) si futio. Pul Dir

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

THE THEORY OF DISTRIBUTIONS APPLIED TO DIVERGENT INTEGRALS OF THE FORM

THE THEORY OF DISTRIBUTIONS APPLIED TO DIVERGENT INTEGRALS OF THE FORM THE THEOY OF DISTIBUTIONS APPLIED TO DIVEGENT INTEGALS OF THE FOM ( ) u ( b) Jose Jvier Gri Moret Grdute studet of Physis t the UPV/EHU (Uiversity of Bsque outry) I Solid Stte Physis Address: Address:

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution Chapter V ODE V.4 Power Series Solutio Otober, 8 385 V.4 Power Series Solutio Objetives: After the ompletio of this setio the studet - should reall the power series solutio of a liear ODE with variable

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz,

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz, MAT337H Itrodutio to Rel Alysis The Rel Numers RATIONAL FIELD Tke rtiols s give { m, m, R, } is field with dditio d multiplitio defied Additio: y= y, y z= yz, There eists Q suh tht = For eh Q there eists

More information

Ch. 12 Linear Bayesian Estimators

Ch. 12 Linear Bayesian Estimators h. Lier Byesi stimtors Itrodutio I hpter we sw: the MMS estimtor tkes simple form whe d re joitly Gussi it is lier d used oly the st d d order momets (mes d ovries). Without the Gussi ssumptio, the Geerl

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

CH 19 SOLVING FORMULAS

CH 19 SOLVING FORMULAS 1 CH 19 SOLVING FORMULAS INTRODUCTION S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

CH 20 SOLVING FORMULAS

CH 20 SOLVING FORMULAS CH 20 SOLVING FORMULAS 179 Itrodutio S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

Abel Resummation, Regularization, Renormalization & Infinite Series

Abel Resummation, Regularization, Renormalization & Infinite Series Prespcetime Jourl August 3 Volume 4 Issue 7 pp. 68-689 Moret, J. J. G., Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series 68 Article Jose

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

DIGITAL SIGNAL PROCESSING LECTURE 5

DIGITAL SIGNAL PROCESSING LECTURE 5 DIGITAL SIGNAL PROCESSING LECTURE 5 Fll K8-5 th Semester Thir Muhmmd tmuhmmd_7@yhoo.com Cotet d Figures re from Discrete-Time Sigl Processig, e by Oppeheim, Shfer, d Buck, 999- Pretice Hll Ic. The -Trsform

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

Chapter 5. Integration

Chapter 5. Integration Chpter 5 Itegrtio Itrodutio The term "itegrtio" hs severl meigs It is usully met s the reverse proess to differetitio, ie fidig ti-derivtive to futio A ti-derivtive of futio f is futio F suh tht its derivtive

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents Algebr II, Chpter 7 Hrdig Chrter Prep 06-07 Dr. Michel T. Lewchuk Test scores re vilble olie. I will ot discuss the test. st retke opportuit Sturd Dec. If ou hve ot tke the test, it is our resposibilit

More information

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1 SECTION 5. PGE 78.. DMS: CLCULUS.... 5. 6. CHPTE 5. Sectio 5. pge 78 i + + + INTEGTION Sums d Sigm Nottio j j + + + + + i + + + + i j i i + + + j j + 5 + + j + + 9 + + 7. 5 + 6 + 7 + 8 + 9 9 i i5 8. +

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

ON n-fold FILTERS IN BL-ALGEBRAS

ON n-fold FILTERS IN BL-ALGEBRAS Jourl of Alger Numer Theor: Adves d Applitios Volume 2 Numer 29 Pges 27-42 ON -FOLD FILTERS IN BL-ALGEBRAS M. SHIRVANI-GHADIKOLAI A. MOUSSAVI A. KORDI 2 d A. AHMADI 2 Deprtmet of Mthemtis Trit Modres Uiversit

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media Wves i dieletri medi d wveguides Setio 5. I this leture, we will osider the properties of wves whose propgtio is govered by both the diffrtio d ofiemet proesses. The wveguides re result of the ble betwee

More information

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem CHAPTER : Boudr-Vlue Problems i Electrosttics: I Applictios of Gree s theorem .6 Gree Fuctio for the Sphere; Geerl Solutio for the Potetil The geerl electrosttic problem (upper figure): ( ) ( ) with b.c.

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang

CS 331 Design and Analysis of Algorithms. -- Divide and Conquer. Dr. Daisy Tang CS 33 Desig d Alysis of Algorithms -- Divide d Coquer Dr. Disy Tg Divide-Ad-Coquer Geerl ide: Divide problem ito subproblems of the sme id; solve subproblems usig the sme pproh, d ombie prtil solutios,

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY MA635-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES Deprtmet of Mthemtics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY MADURAI 65, Tmildu, Idi Bsic Formule DIFFERENTIATION &INTEGRATION

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probbility for mthemticis INDEPENDENCE TAU 2013 21 Cotets 2 Cetrl limit theorem 21 2 Itroductio............................ 21 2b Covolutio............................ 22 2c The iitil distributio does

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers Mthemticl Nottios d Symbols i MATHEMATICAL NOTATIONS AND SYMBOLS Cotets:. Symbols. Fuctios 3. Set Nottios 4. Vectors d Mtrices 5. Costts d Numbers ii Mthemticl Nottios d Symbols SYMBOLS = {,,3,... } set

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES Jose Jvier Grci Moret Grdute studet of Physics t the UPV/EHU (Uiversity of Bsque coutry) I Solid Stte Physics Addres: Prctictes Ad

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by AIEEE CBSE ENG. A futio f from the set of turl umers to itegers defied y, whe is odd f (), whe is eve is (A) oe oe ut ot oto (B) oto ut ot oe oe (C) oe oe d oto oth (D) either oe oe or oto. Let z d z e

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

9.5. Alternating series. Absolute convergence and conditional convergence

9.5. Alternating series. Absolute convergence and conditional convergence Chpter 9: Ifiite Series I this Chpter we will be studyig ifiite series, which is just other me for ifiite sums. You hve studied some of these i the pst whe you looked t ifiite geometric sums of the form:

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

8.3 Sequences & Series: Convergence & Divergence

8.3 Sequences & Series: Convergence & Divergence 8.3 Sequeces & Series: Covergece & Divergece A sequece is simply list of thigs geerted by rule More formlly, sequece is fuctio whose domi is the set of positive itegers, or turl umbers,,,3,. The rge of

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

denominator, think trig! Memorize the following two formulas; you will use them often!

denominator, think trig! Memorize the following two formulas; you will use them often! 7. Bsic Itegrtio Rules Some itegrls re esier to evlute th others. The three problems give i Emple, for istce, hve very similr itegrds. I fct, they oly differ by the power of i the umertor. Eve smll chges

More information

Discrete Mathematics I Tutorial 12

Discrete Mathematics I Tutorial 12 Discrete Mthemtics I Tutoril Refer to Chpter 4., 4., 4.4. For ech of these sequeces fid recurrece reltio stisfied by this sequece. (The swers re ot uique becuse there re ifiitely my differet recurrece

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information