AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by

Size: px
Start display at page:

Download "AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by"

Transcription

1 AIEEE CBSE ENG. A futio f from the set of turl umers to itegers defied y, whe is odd f (), whe is eve is (A) oe oe ut ot oto (B) oto ut ot oe oe (C) oe oe d oto oth (D) either oe oe or oto. Let z d z e two roots of the equtio z + z +, z eig omple. Further, ssume tht the origi, z d z form equilterl trigle, the (A) (B) (C) (D). If z d re two o zero omple umers suh tht z, d Arg (z) Arg () π, the z is equl to (A) (B) (C) i (D) i + i. If, the i (A), where is y positive iteger (B), where is y positive iteger (C) +, where is y positive iteger (D) +, where is y positive iteger 5. If d vetors (,, ) (,, ) d (,, ) re o oplr, the the produt equls (A) (B) (C) (D) 6. If the system of lier equtios + y + z + y + z + y + z hs o zero solutio, the,, (A) re i A. P. (B) re i G.P. (C) re i H.P. (D) stisfy If the sum of the roots of the qudrti equtio + + is equl to the sum of the squres of their reiprols, the, d re i (A) rithmeti progressio (B) geometri progressio (C) hrmoi progressio (D) rithmeti geometri progressio 8. The umer of rel solutios of the equtio + is (A) (B) (C) (D)

2 9. The vlue of for whih oe root of the qudrti equtio ( 5 + ) + ( ) + is twie s lrge s the other, is (A) (B) (C) (D) I. If A d A α β, the β α (A) α +, β (B) α +, β (C) α +, β (D) α, β +. A studet is to swer out of questios i emitio suh tht he must hoose t lest from the first five questios. The umer of hoies ville to him is (A) (B) 96 (C) 8 (D) 6. The umer of wys i whih 6 me d 5 wome die t roud tle if o two wome re to sit together is give y (A) 6! 5! (B) (C) 5!! (D) 7! 5!. If,, re the ue roots of uity, the is equl to (A) (B) (C) (D). If C r deotes the umer of omitios of thigs tke r t time, the the epressio C r+ + C r + C r equls (A) + C r (B) + C r+ (C) + C r (D) + C r+ 5. The umer of itegrl terms i the epsio of ( 8 + 5) is (A) (B) (C) (D) 5 6. If is positive, the first egtive term i the epsio of ( + ) 7/5 is (A) 7 th term (B) 5 th term (C) 8 th term (D) 6 th term 7. The sum of the series + upto is equl to (A) log e (B) log (C) log e (D) log e e 8. Let f () e polyomil futio of seod degree. If f () f ( ) d,, re i A. P., the f (), f () d f () re i (A) A.P. (B) G.P. (C) H. P. (D) rithmeti geometri progressio 56

3 9. If,, d y, y, y re oth i G.P. with the sme ommo rtio, the the poits (, y ) (, y ) d (, y ) (A) lie o stright lie (B) lie o ellipse (C) lie o irle (D) re verties of trigle. The sum of the rdii of isried d irumsried irles for sided regulr polygo of side, is π π (A) ot (B) ot π π (C) ot (D) ot. If i trigle ABC os C + os A, the the sides, d (A) re i A.P. (B) re i G.P. (C) re i H.P. (D) stisfy +. I trigle ABC, medis AD d BE re drw. If AD, DAB 6 π d ABE π, the the re of the ABC is (A) 8 (C) 6 (B) 6 (D). The trigoometri equtio si si, hs solutio for (A) < < (B) ll rel vlues of (C) < (D). The upper th portio of vertil pole suteds gle t t poit i the horizotl 5 ple through its foot d t diste m from the foot. A possile height of the vertil pole is (A) m (B) m (C) 6 m (D) 8 m 5. The rel umer whe dded to its iverse gives the miimum vlue of the sum t equl to (A) (B) (C) (D) 6. If f : R R stisfies f ( + y) f () + f (y), for ll, y R d f () 7, the f (r) is 7 (A) (C) 7 ( + ) 7 ( + ) (B) 7 ( + ) (D) r

4 7. If f () f () f () f () ( ) f (), the the vlue of f () !!!! (A) (B) (C) (D) is 8. Domi of defiitio of the futio f () + log ( ), is (A) (, ) (B) (, ) (, ) (C) (, ) (, ) (D) (, ) (, ) (, ) 9. t lim π / + t (A) 8 [ si] [ π ] is (B) (C) (D). log( + ) log( ) If lim k, the vlue of k is (A) (B) (C) (D). Let f () g () k d their th derivtives f (), g () eist d re ot equl for some. f()g() f() g()f() + g() Further if lim g() f(), the the vlue of k is (A) (B) (C) (D). The futio f () log ( + + ), is (A) eve futio (C) periodi futio (B) odd futio (D) either eve or odd futio +. If f () e, the f () is, (A) otiuous s well s differetile for ll (B) otiuous for ll ut ot differetile t (C) either differetile or otiuous t (D) disotiuous everywhere. If the futio f () 9 + +, where >, ttis its mimum d miimum t p d q respetively suh tht p q, the equls (A) (B) (C) (D)

5 t 5. If f (y) e y, g (y) y; y > d F (t) f (t y) g (y) dy, the (A) F (t) e t ( + t) (B) F (t) e t ( + t) (C) F (t) t e t (D) F (t) t e t 6. If f ( + ) f (), the f () d is equl to (A) f( )d (C) + f()d (B) + + f()d (D) f( + )d se t dt 7. The vlue of lim si is (A) (B) (C) (D) 8. The vlue of the itegrl I (A) + (C) + + ( ) d is (B) (D) lim lim is 5 5 (A) (B) zero (C) (D) 5. d e Let F () d si, >. If e d F (k) F (), the oe of the possile vlues of k, is (A) 5 (B) 6 (C) 6 (D) 6. The re of the regio ouded y the urves y d y is (A) sq uits (B) sq uits (C) sq uits (D) 6 sq uits. Let f () e futio stisfyig f () f () with f () d g () e futio tht stisfies f () + g (). The the vlue of the itegrl f () g () d, is

6 e 5 (A) e (B) e + e (C) e (D) e + e e +. The degree d order of the differetil equtio of the fmily of ll prols whose is is is, re respetively (A), (B), (C), (D), 5. The solutio of the differetil equtio ( + y ) + ( t y (A) ( ) k e (B) e t y (C) e t y + k (D) e t y dy e ), is d t y t y + k t y e + k 5. If the equtio of the lous of poit equidistt from the poits (, ) d (, ) is ( ) + ( ) y +, the the vlue of is (A) ( + ) (B) + + (C) ( + ) (D) + 6. Lous of etroid of the trigle whose verties re ( os t, si t), ( si t, os t) d (, ), where t is prmeter, is (A) ( ) + (y) (B) ( ) + (y) + (C) ( + ) + (y) + (D) ( + ) + (y) 7. If the pir of stright lies py y d qy y e suh tht eh pir isets the gle etwee the other pir, the (A) p q (B) p q (C) pq (D) pq 8. squre of side lies ove the is d hs oe verte t the origi. The side pssig through the origi mkes gle α ( < α < π ) with the positive diretio of is. The equtio of its digol ot pssig through the origi is (A) y (os α si α) (si α os α) (B) y (os α + si α) + (si α os α) (C) y (os α + si α) + (si α + os α) (D) y (os α + si α) + (os α si α) 9. If the two irles ( ) + (y ) r d + y 8 + y + 8 iterset i two distit poits, the (A) < r < 8 (B) r < (C) r (D) r > 5. The lies y 5 d y 7 re dimeters of irle hvig re s 5 sq uits. The the equtio of the irle is (A) + y + y 6 (B) + y + y 7 (C) + y + y 7 (D) + y + y 6 5. The orml t the poit (t, t ) o prol meets the prol gi i the poit (t, t ), the

7 (A) t t t (D) t t t (B) t t + t (D) t t + t 5. y y The foi of the ellipse + d the hyperol oiide. The the vlue of is (A) (B) 5 (C) 7 (D) 9 5. A tetrhedro hs verties t O (,, ), A (,, ), B (,, ) d C (,, ). The the gle etwee the fes OAB d ABC will e (A) os 9 (B) os 7 5 (C) (D) 9 5. The rdius of the irle i whih the sphere + y + z + y z 9 is ut y the ple + y + z + 7 is (A) (B) (C) (D) 55. y z y z 5 The lies d k k re oplr if (A) k or (B) k or (C) k or (D) k or 56. The two lies y +, z y + d d y +, z y + d will e perpediulr, if d oly if (A) (B) + + (C) ( + ) ( + ) + ( + ) (D) The shortest diste from the ple + y + z 7 to the sphere + y + z + y 6z 55 is (A) 6 (B) (C) (D) Two systems of retgulr es hve the sme origi. If ple uts them t distes,, d,, from the origi, the (A) (C) r r r r r r r r r r r r r r r r,, re vetors, suh tht + +,,,, the + + is equl to (A) (B) 7 (C) 7 (D) 6. If u, v r r r r r r r u + v w) (u v) (v w ) equls r r r (A) (B) u v w

8 r r r r r r (C) u w v (D) u v w 6. Cosider poits A, B, C d D with positio vetors 7 î ĵ + 7kˆ, î 6ĵ + kˆ, î ĵ + kˆ d 5 î ĵ + 5kˆ respetively. The ABCD is (A) squre (B) rhomus (C) retgle (D) prllelogrm ut ot rhomus 6. The vetors AB î + kˆ, d AC 5î ĵ + kˆ re the sides of trigle ABC. The legth of the medi through A is (A) 8 (B) 7 (C) (D) A prtile ted o y ostt fores î + ĵ kˆ d î + ĵ kˆ is displed from the poit î + ĵ + kˆ to the poit 5 î + ĵ + kˆ. The totl work doe y the fores is (A) uits (B) uits (C) uits (D) 5 uits r r 6. Let u î + ĵ, v î ĵ d the w r ˆ is equl to r w î + ĵ + kˆ (A) (B) (C) (D) r. If ˆ is uit vetor suh tht u ˆ r d v ˆ 65. The medi of set of 9 distit oservtios is.5. If eh of the lrgest oservtios of the set is iresed y, the the medi of the ew set (A) is iresed y (B) is deresed y (C) is two times the origil medi (D) remis the sme s tht of the origil set 66. I eperimet with 5 oservtios o, the followig results were ville: 8, 7 Oe oservtio tht ws ws foud to e wrog d ws repled y the orret vlue. The the orreted vrie is (A) 78. (B) (C) 77. (D) Five horses re i re. Mr. A selets two of the horses t rdom d ets o them. The proility tht Mr. A seleted the wiig horse is (A) (B) 5 5, (C) 5 (D) Evets A, B, C re mutully elusive evets suh tht P (A), P (B) P (C). The set of possile vlues of re i the itervl (A), (B), (C), (D) [, ] d

9 69. The me d vrie of rdom vrile hvig iomil distriutio re d respetively, the P (X ) is (A) (B) 6 (C) 8 (D) 7. The resultt of fores P r d Q r is R r. If Q r is douled the R r is douled. If the diretio of Q r is reversed, the R r is gi douled. The P : Q : R is (A) : : (B) : : (C) : : (D) : : 7. Let R d R respetively e the mimum rges up d dow ilied ple d R e the mimum rge o the horizotl ple. The R, R, R re i (A) rithmeti geometri progressio (B) A.P. (C) G.P. (D) H.P. 7. A ouple is of momet G r d the fore formig the ouple is P r. If P r is tured through right gle, the momet of the ouple thus formed is H r. If isted, the fores P r re tured through gle α, the the momet of ouple eomes (A) G r si α H r os α (B) H r os α + G r si α (C) G r os α H r si α (D) H r si α G r os α 7. Two prtiles strt simulteously from the sme poit d move log two stright lies, oe with uiform veloity u r d the other from rest with uiform elertio r f. Let α e the gle etwee their diretios of motio. The reltive veloity of the seod prtile with respet to the first is lest fter time usiα f osα (A) (B) f u uosα (C) u si α (D) f 7. Two stoes re projeted from the top of liff h meters high, with the sme speed u so s to hit the groud t the sme spot. If oe of the stoes is projeted horizotlly d the other is projeted t gle θ to the horizotl the t θ equls u u (A) (B) g gh h (C) h g u (D) u gh 75. A ody trvels distes s i t seods. It strts from rest d eds t rest. I the first prt of the jourey, it moves with ostt elertio f d i the seod prt with ostt retrdtio r. The vlue of t is give y s (A) s + (B) f r + f r (C) s(f + r) (D) s + f r

10 Solutios. Clerly oth oe oe d oto Beuse if is odd, vlues re set of ll o egtive itegers d if is eve, vlues re set of ll egtive itegers. Hee, (C) is the orret swer.. z + z z z (z + z ) z z. Hee, (C) is the orret swer ( + ). Hee, (B) is the orret swer. + i (+ i) i i + i i i. Hee, (A) is the orret swer. 6. Coeffiiet determit +. Hee, (C) is the orret swer 8. + ( ) ( ) ±, ±. Hee, (B) is the orret swer 7. Let α, β e the roots α + β + α β α + β α + β αβ ( α + β) ( + )

11 ,, re i H.P. Hee, (C) is the orret swer. A A + + α +, β. Hee, (B) is the orret swer. 9. β α α 5 + α ( ) ( 5 + ) Hee, (A) is the orret swer. Clerly 5! 6! (A) is the orret swer. Numer of hoies 5 C 8 C C 5 8 C Hee, (B) is the orret swer Sie, + +, if is ot multiple of Therefore, the roots re idetil. Hee, (A) is the orret swer. 7. C r+ + C r + C r + C r + C r+ + + C r + C r+. Hee, (B) is the orret swer + + +

12 log log e log. e Hee, (D) is the orret swer. 5. Geerl term 56 C r ( ) 56 r [(5) /8 ] r From itegrl terms, or should e 8k k to. Hee, (B) is the orret swer. 8. f () + + f () + + f ( ) lso + f () + f () f () f () AP. Hee, (A) is the orret swer. 9. Result (A) is orret swer.. (B) + osc + os A Hee, (A) is the orret swer 6. f () 7 f ( + ) f () + f () f () 7 oly f () 7 r 7 5. (B) f (r) 7 ( ) ( + ). π si π. π si π ()

13 . Hee, (D) is the orret swer 7. LHS! ( ) ( )( ) + +!! C + C. Hee, (C) is the orret swer. + lim +. Hee, (C) is the orret swer. 8. ± > ( + ) ( ) >. Hee (D) is the orret swer. 9. lim π /. π t ( si) π ( π ) Hee, (C) is the orret swer.. f ( ) f () Hee, (B) is the orret swer.. si (θ + α) si. Hee, (B) is the orret swer θ t (/) / /. f () t p, q 6p + 8p + 6q + 8q + f () < t p d f () > t q.. Applyig L. Hospitl s Rule f()g () g()f () lim g () f ()

14 k(g () ff ()) (g () f ()) k. Hee, (A) is the orret swer. 6. f () d ( + ) f ( + ) d. Hee, (B) is the orret swer.. f () f ( h) f ( + h) LHD RHD. Hee, (B) is the orret swer. 7. t( ) lim si t( ) lim si. Hee (C) is the orret swer. 8. ( ) d ( ) + ( ). + + Hee, (C) is the orret swer. t 5. F (t) f (t y) f (y) dy t f (y) f (t y) dy t y e (t y) dy t ( + t). Hee, (B) is the orret swer.. Clerly f () > for q < for p or p q. Hee, (C) is the orret swer. si e. F ()

15 e 6 e si si d F (k) F () d F (k) F () 6 F () d F (k) F () F (6) F () F (k) F () k 6. Hee, (D) is the orret swer.. Clerly re sq uits (,) (,) (,) 5. Let p (, y) ( ) + (y ) ( ) + (y ) ( ) + ( ) y + ( + ). Hee, (A) is the orret swer. os t + sit + sit os t + 6., y + y +. 9 Hee, (B) is the orret swer.. Equtio y 9 h) yy yy yy y. Hee (B) is the orret swer.. f () [ f ()] d solvig this y puttig f () f (). Hee, (B) is the orret swer. 5. Itersetio of dimeter is the poit (, ) πs 5 s 9 ( ) + (y + ) 9 Hee, (C) is the orret swer. 7. (D) 9. d ( + y dy ) si y (e )

16 d + dy α + y e su y + y y e 5. (C) e 6 7. Hee, (C) is the orret swer p pq q, p 8 p ( ) 8 C 8. Hee, (A) is the orret swer. 9. ( ) + (y ) r ( ) + (y + ) ( ) + (y + ). 67. Selet out of 5 5. Hee, (D) is the orret swer Hee, (C) is the orret swer.

17 z π. Arg z z i or + i.

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Spain Park Math Team Formula Sheet

Spain Park Math Team Formula Sheet Spi Prk Mth Tem Formul Sheet 04-05 Tle of Cotets Geometry Bsis Are Surfe Are Volume Trigles Polygos Cirles Triks Miselleous Alger d PreClulus Epoet Rules Mtri Formuls Coordite Geometry: Polyomil Formuls:

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule). IIT-JEE 6-MA- FIITJEE Solutios to IITJEE 6 Mthemtics Time: hours Note: Questio umber to crries (, -) mrks ech, to crries (5, -) mrks ech, to crries (5, -) mrks ech d to crries (6, ) mrks ech.. For >, lim

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

+2 MATH COME BOOK CREATIVE ONE MARK QUESTIONS

+2 MATH COME BOOK CREATIVE ONE MARK QUESTIONS + MATH COME BOOK CREATIVE ONE MARK QUESTIONS COME BOOK CREATIVE ONE MARK QUESTIONS 1. The rk of the mtrix 1 CHAPTER I ( MATRICES AND DETERMINANTS) ) 1 ) ) 8 1. The rk of the mtrix 1 ) 9 ) ) 1. If A d B

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Name of the Student:

Name of the Student: Egieerig Mthemtics 5 NAME OF THE SUBJECT : Mthemtics I SUBJECT CODE : MA65 MATERIAL NAME : Additiol Prolems MATERIAL CODE : HGAUM REGULATION : R UPDATED ON : M-Jue 5 (Sc the ove QR code for the direct

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

VECTOR ALGEBRA. Syllabus :

VECTOR ALGEBRA. Syllabus : MV VECTOR ALGEBRA Syllus : Vetors nd Slrs, ddition of vetors, omponent of vetor, omponents of vetor in two dimensions nd three dimensionl spe, slr nd vetor produts, slr nd vetor triple produt. Einstein

More information

Synopsis Grade 12 Math Part II

Synopsis Grade 12 Math Part II Syopsis Grde 1 Mth Prt II Chpter 7: Itegrls d Itegrtio is the iverse process of differetitio. If f ( ) g ( ), the we c write g( ) = f () + C. This is clled the geerl or the idefiite itegrl d C is clled

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17 CS 70 Discrete Mthemtics d Proility Theory Sprig 206 Ro d Wlrd Lecture 7 Vrice We hve see i the previous ote tht if we toss coi times with is p, the the expected umer of heds is p. Wht this mes is tht

More information

G8-11 Congruence Rules

G8-11 Congruence Rules G8-11 ogruee Rules If two polgos re ogruet, ou ple the oe o top of the other so tht the th etl. The verties tht th re lled orrespodig verties. The gles tht th re lled orrespodig gles. The sides tht th

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Mathematical Induction (selected questions)

Mathematical Induction (selected questions) Mtheticl Iductio (selected questios). () Let P() e the propositio : For P(), L.H.S. R.H.S., P() is true. Assue P() is true for soe turl uer, tht is, () For P( ),, y () By the Priciple of Mtheticl Iductio,

More information

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz,

The Real Numbers. RATIONAL FIELD Take rationals as given. is a field with addition and multiplication defined. BOUNDS. Addition: xy= yx, xy z=x yz, MAT337H Itrodutio to Rel Alysis The Rel Numers RATIONAL FIELD Tke rtiols s give { m, m, R, } is field with dditio d multiplitio defied Additio: y= y, y z= yz, There eists Q suh tht = For eh Q there eists

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Objective Mathematics

Objective Mathematics . o o o o {cos 4 cos 9 si cos 65 } si 7º () cos 6º si 8º. If x R oe of these, the mximum vlue of the expressio si x si x.cos x c cos x ( c) is : () c c c c c c. If ( cos )cos cos ; 0, the vlue of 4. The

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,...

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,... Appedices Of the vrious ottios i use, the IB hs chose to dopt system of ottio bsed o the recommedtios of the Itertiol Orgiztio for Stdrdiztio (ISO). This ottio is used i the emitio ppers for this course

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

1. Algebra 1 The properties of powers. iv) y xy y. c c. ii) vi) c c c. 2 Manipulating expressions. a b b a. ab ba. 3 Some useful algebraic identities.

1. Algebra 1 The properties of powers. iv) y xy y. c c. ii) vi) c c c. 2 Manipulating expressions. a b b a. ab ba. 3 Some useful algebraic identities. . Alger The properties of powers 0 i) ii) y y y iii) iv) y y y v) vi) y y y y Mipultig epressios. ( ) ( ) ( ) ( ) ( ) ( ) 3 Soe useful lgeri idetities. ( )( ) or, ore geerlly, ( ) 4 Solutio of d order

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY AH Ntiol Quli ctios SPECIMEN ONLY SQ/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite workig.

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: APPENDEX I. THE RAW ALGEBRA IN STATISTICS A I-1. THE INEQUALITY Exmple A I-1.1. Solve ech iequlity. Write the solutio i the itervl ottio..) 2 p - 6 p -8.) 2x- 3 < 5 Solutio:.). - 4 p -8 p³ 2 or pî[2, +

More information

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range.

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range. -. ALGEBRA () Fuctios A reltioship etwee two vriles tht ssigs to ech elemet i the domi ectly oe elemet i the rge. () Fctorig Aother ottio for fuctio of is f e.g. Domi: The domi of fuctio Rge: The rge of

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Mathematics Last Minutes Review

Mathematics Last Minutes Review Mthemtics Lst Miutes Review 60606 Form 5 Fil Emitio Dte: 6 Jue 06 (Thursdy) Time: 09:00-:5 (Pper ) :45-3:00 (Pper ) Veue: School Hll Chpters i Form 5 Chpter : Bsic Properties of Circles Chpter : Tgets

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

ALGEBRA II CHAPTER 7 NOTES. Name

ALGEBRA II CHAPTER 7 NOTES. Name ALGEBRA II CHAPTER 7 NOTES Ne Algebr II 7. th Roots d Rtiol Expoets Tody I evlutig th roots of rel ubers usig both rdicl d rtiol expoet ottio. I successful tody whe I c evlute th roots. It is iportt for

More information

Chapter 5. Integration

Chapter 5. Integration Chpter 5 Itegrtio Itrodutio The term "itegrtio" hs severl meigs It is usully met s the reverse proess to differetitio, ie fidig ti-derivtive to futio A ti-derivtive of futio f is futio F suh tht its derivtive

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

Set 3 Paper 2. Set 3 Paper 2. 1 Pearson Education Asia Limited 2017

Set 3 Paper 2. Set 3 Paper 2. 1 Pearson Education Asia Limited 2017 Set Pper Set Pper. D. A.. D. 6. 7. B 8. D 9. B 0. A. B. D. B.. B 6. B 7. D 8. A 9. B 0. A. D. B.. A. 6. A 7. 8. 9. B 0. D.. A. D. D. A 6. 7. A 8. B 9. D 0. D. A. B.. A. D Sectio A. D ( ) 6. A b b b ( b)

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

ENGINEERING PROBABILITY AND STATISTICS

ENGINEERING PROBABILITY AND STATISTICS ENGINEERING PROBABILITY AND STATISTICS DISPERSION, MEAN, MEDIAN, AND MODE VALUES If X, X,, X represet the vlues of rdom smple of items or oservtios, the rithmetic me of these items or oservtios, deoted

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

CH 19 SOLVING FORMULAS

CH 19 SOLVING FORMULAS 1 CH 19 SOLVING FORMULAS INTRODUCTION S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

Repeated Root and Common Root

Repeated Root and Common Root Repeted Root d Commo Root 1 (Method 1) Let α, β, γ e the roots of p(x) x + x + 0 (1) The α + β + γ 0, αβ + βγ + γα, αβγ - () (α - β) (α + β) - αβ (α + β) [ (βγ + γα)] + [(α + β) + γ (α + β)] +γ (α + β)

More information

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media Wves i dieletri medi d wveguides Setio 5. I this leture, we will osider the properties of wves whose propgtio is govered by both the diffrtio d ofiemet proesses. The wveguides re result of the ble betwee

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

CH 20 SOLVING FORMULAS

CH 20 SOLVING FORMULAS CH 20 SOLVING FORMULAS 179 Itrodutio S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

Mathematics Extension 2

Mathematics Extension 2 04 Bored of Studies Tril Emitios Mthemtics Etesio Writte b Crrotsticks & Trebl Geerl Istructios Totl Mrks 00 Redig time 5 miutes. Workig time 3 hours. Write usig blck or blue pe. Blck pe is preferred.

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY MD THREE DIMENSIONAL GEOMETRY CA CB C Coordintes of point in spe There re infinite numer of points in spe We wnt to identif eh nd ever point of spe with the help of three mutull perpendiulr oordintes es

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

The Exponential Function

The Exponential Function The Epoetil Fuctio Defiitio: A epoetil fuctio with bse is defied s P for some costt P where 0 d. The most frequetly used bse for epoetil fuctio is the fmous umber e.788... E.: It hs bee foud tht oyge cosumptio

More information

m A 1 1 A ! and AC 6

m A 1 1 A ! and AC 6 REVIEW SET A Using sle of m represents units, sketh vetor to represent: NON-CALCULATOR n eroplne tking off t n ngle of 8 ± to runw with speed of 6 ms displement of m in north-esterl diretion. Simplif:

More information