neural networks Balázs B Ujfalussy 17 october, 2016 idegrendszeri modellezés 2016 október 17.

Size: px
Start display at page:

Download "neural networks Balázs B Ujfalussy 17 october, 2016 idegrendszeri modellezés 2016 október 17."

Transcription

1 neural networks Balázs B Ujfalussy 17 october, 2016

2 Hierarchy of the nervous system behaviour idegrendszeri modellezés 1m CNS 10 cm systems 1 cm maps 1 mm networks 100 μm neurons 1 μm synapses 10 nm molecules 2016 október 17.

3 example II - Churchland et al neural dynamics underlying motor control

4 example II - Churchland et al neural dynamics underlying motor control large trial-to-trial variability internally generated activity with rich temporal structure!

5 external input networks - overview model neurons feed-forward connectivity recurrent connectivity the dynamics of the network defines the computation input computation response time input integration (working memory) many different dynamics - huge variety of computation time

6 how to model neural networks? bottom-up approach: include every detail where to stop? dendrites? stochastic channels? molecular dynamics? are we going to understand the model? - analysis is difficult! simulations are computationally expensive! how to fit the model s 1000s of parameters? top-down approach: analyse simple networks input is so strong that the detailed dynamics of individual neurons can be less important than the network level interaction between neurons what are the important features we want to reproduce? how to choose our simplified model? binary? firing rate? IF?

7 from spikes to rates neurons: implementing a mapping from input spike trains to a single output spike train: 1 (t) 2 (t) n (t) averaging argument: averaging over many independent neurons X N i (t) = apple X N Std i (t) X N (t) =F i (t) NX h i (t)i = / p N X N (t) F X N r (t) =F NX r i (t) / N r i (t) r i (t) (t) averaging over time would lead to the same result std is small compared to the mean what if inputs can have different sign?

8 firing rate dynamics: Wr : synaptic weight matrix symmetric (no self-connections) recurrent network models r dr dt = r + F (h + Wr) r = external input recurrent input 0 r 1 r 2... r n 1 C A non-linear recurrent networks: complex dynamics can perform difficult computations difficult to analyse linear recurrent networks: simple dynamics only trivial computations easy to analyse not realistic (e.g., negative rates) first step towards nonlinear

9 firing rate dynamics: Wr : synaptic weight matrix symmetric no self-connections linear recurrent network models X solution: eigenvalue decomposition c µ (t) =e T µ r(t) r dr dt = r + h + Wr external input We µ = µ e µ e T µ e = µ = recurrent input ( 1 ifµ = 0 otherwise r(t) = NX c µ (t) e µ eigenmodes evolve independently! µ=1 for normal matrices (loosely when W is symmetric), eigenvectors are orthogonal

10 firing rate dynamics: Wr : synaptic weight matrix symmetric µ = r = 1 µ no self-connections linear recurrent network models X dr r dt = solution: eigenvalue decomposition c µ (t) =e T µ r(t) 8 >< r + h + Wr µ < 0 µ < r! fast dynamics 0 < µ < 1 µ > r! slow dynamics >: 1 < µ µ < 0! unstable dynamics We µ = µ e µ e T µ e = µ = ( 1 ifµ = 0 otherwise r(t) = NX c µ (t) e µ eigenmodes evolve independently! µ=1 for normal matrices (loosely when W is symmetric), eigenvectors are orthogonal

11 the value of the eigenvalues determine the dynamics W = W11 W 21 W 22 W 12 dr 1 =0.7 r dt = r + h + Wr 2 =0.2 µ = r = 1 µ = 8 >< µ < 0 µ < r! fast dynamics 0 < µ < 1 µ > r! slow dynamics >: 1 < µ µ < 0! unstable dynamics c (t) c µ (t) =c µ (0) e t/( r/(1 µ)) connectivity causes slowing connected unconnected c (t) r (t) connected unconnected cell 1 cell 2 r (t) h (t) time (s) time (s)

12 the value of the eigenvalues determine the dynamics W = W11 W 21 W 22 W 12 dr 1 =0.7 r dt = r + h + Wr 2 =0.2 µ = r = 1 µ = 8 >< µ < 0 µ < r! fast dynamics 0 < µ < 1 µ > r! slow dynamics >: 1 < µ µ < 0! unstable dynamics c (t) c µ (t) =c µ (0) e t/( r/(1 µ)) connectivity causes slowing connected unconnected c (t) r (t) connected unconnected cell 1 cell 2 r (t) h (t) time (s) time (s)

13 the value of the eigenvalues determine the dynamics 1 = 1 dr r dt = r + h + Wr 2 = 2 µ = r c (t) W = W11 W 21 W 22 W 12 c µ (t) =c µ (0) e t/( r/(1 µ)) = 1 µ = 8 >< µ < 0 µ < r! fast dynamics 0 < µ < 1 µ > r! slow dynamics >: 1 < µ µ < 0! unstable dynamics c (t) r (t) connected unconnected r (t) connected unconnected cell 1 cell h (t) time (s) time (s)

14 homework problem W = W11 W 21 W 22 W 12 = p p 4/5 3/5 3/5 2/5 r dr dt = r + h + Wr Milyen aktivitást mutat a hálózat bemenetek hiányában tetszőleges kezdeti feltétel esetén, és hogyan reagál a külső bemenetekre? (4p) Miként változik meg a hálózat dinamikája, hogyha a súlymátrix jobb alsó elemét megváltoztatom (pl. W22 = 1/5 vagy W22 = 3/5)? (2p) Hogyan értelmeznéd ezeket az eredményeket? Milyen számításokat végéznek az egyes a neuronhálózatok? Milyen biológiai vagy komputációs problémát vetnek fel a megfigyelt aktivitásmintázatok? (4p)

15 symmetric, linear nets data c (t) r (t) connected unconnected time (s)

16 excitatory - inhibitory (EI) networks Previous assumption: symmetric W: Wij = W = Wji Dale s law: neurons are either excitatory or inhibitory WEE W IE W EI W II EI networks: Eigenvectors of non-normal matrices are not orthogonal! can NOT be the same eigenmodes do not give an intuitive picture about the dynamics of the network

17 W = example of a non-normal network W11 W 21 W 22 W 12 = r dr dt = r + h + Wr large initial eigenmodes c (t) 1 = = eigenmodes decay exponentially as before transient activity 1.5 connected unconnected r (t) time (s)

18 structured EI nets are able to generate rich transients

19 is the large variability of spikes consistent with the large number of synapses? Consistency argument: incoming and outgoing rates should be matched N ~ 10,000 incoming synapses: r XNX gr i ; E[r i ]=r; Var[r i ]= 2 NX r r, g X r i (t) O(1) g 1 N E[r ]= 1 N Var[r ]= 1 N 2 NX E[r i (t)] = r NX Var[r i (t)] = 1 N gets the mean but misses the variance 2 0

20 is the large variability of spikes consistent with the large number of synapses? Consistency argument: incoming and outgoing rates should be matched N ~ 10,000 incoming synapses: r XNX gr i ; E[r i ]=r; Var[r i ]= 2 NX r r, g X r i (t) O(1) g 1 N E[r ]= 1 N Var[r ]= 1 N 2 NX E[r i (t)] = r NX Var[r i (t)] = 1 N gets the mean but misses the variance 2 0 g 1 p N E[r ]= 1 p N X misses the mean but gets the variance right! Var[r ]= 1 N X N X E[r i (t)] = p Nr NX Var[r i (t)] 2

21 excitatory - inhibitory (EI) networks internally generated activity with rich temporal structure! large trial-to-trial variability excitatory sum inhibitory CV: std/mean, ~1 for a Poisson process

22 what we learned: activity dynamics in linear symmetric networks eigenvalues and eigenvectors rich transients in non-normal networks balance of excitation and inhibition is responsible for irregular firing what we missed: computation nonlinear networks spiking networks slides are based on David Barrett s slides (University of Cambridge) Dayan and Abbott: Theoretical Neuroscience (2001) Guillaume Hennequin s (U Cam) tutorial and papers (Hennequin et al., 2009) Murphy and Miller, 2009, Vogels et al., 2005

Biological Modeling of Neural Networks:

Biological Modeling of Neural Networks: Week 14 Dynamics and Plasticity 14.1 Reservoir computing - Review:Random Networks - Computing with rich dynamics Biological Modeling of Neural Networks: 14.2 Random Networks - stationary state - chaos

More information

How do synapses transform inputs?

How do synapses transform inputs? Neurons to networks How do synapses transform inputs? Excitatory synapse Input spike! Neurotransmitter release binds to/opens Na channels Change in synaptic conductance! Na+ influx E.g. AMA synapse! Depolarization

More information

Leo Kadanoff and 2d XY Models with Symmetry-Breaking Fields. renormalization group study of higher order gradients, cosines and vortices

Leo Kadanoff and 2d XY Models with Symmetry-Breaking Fields. renormalization group study of higher order gradients, cosines and vortices Leo Kadanoff and d XY Models with Symmetry-Breaking Fields renormalization group study of higher order gradients, cosines and vortices Leo Kadanoff and Random Matrix Theory Non-Hermitian Localization in

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5869/1543/dc1 Supporting Online Material for Synaptic Theory of Working Memory Gianluigi Mongillo, Omri Barak, Misha Tsodyks* *To whom correspondence should be addressed.

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

Dynamic Working Memory in Recurrent Neural Networks

Dynamic Working Memory in Recurrent Neural Networks Dynamic Working Memory in Recurrent Neural Networks Alexander Atanasov Research Advisor: John Murray Physics 471 Fall Term, 2016 Abstract Recurrent neural networks (RNNs) are physically-motivated models

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Neurophysiology of a VLSI spiking neural network: LANN21

Neurophysiology of a VLSI spiking neural network: LANN21 Neurophysiology of a VLSI spiking neural network: LANN21 Stefano Fusi INFN, Sezione Roma I Università di Roma La Sapienza Pza Aldo Moro 2, I-185, Roma fusi@jupiter.roma1.infn.it Paolo Del Giudice Physics

More information

Synchrony in Neural Systems: a very brief, biased, basic view

Synchrony in Neural Systems: a very brief, biased, basic view Synchrony in Neural Systems: a very brief, biased, basic view Tim Lewis UC Davis NIMBIOS Workshop on Synchrony April 11, 2011 components of neuronal networks neurons synapses connectivity cell type - intrinsic

More information

Neural variability and Poisson statistics

Neural variability and Poisson statistics Neural variability and Poisson statistics January 15, 2014 1 Introduction We are in the process of deriving the Hodgkin-Huxley model. That model describes how an action potential is generated by ion specic

More information

Fast neural network simulations with population density methods

Fast neural network simulations with population density methods Fast neural network simulations with population density methods Duane Q. Nykamp a,1 Daniel Tranchina b,a,c,2 a Courant Institute of Mathematical Science b Department of Biology c Center for Neural Science

More information

CN2 1: Introduction. Paul Gribble. Sep 10,

CN2 1: Introduction. Paul Gribble. Sep 10, CN2 1: Introduction Paul Gribble http://gribblelab.org Sep 10, 2012 Administrivia Class meets Mondays, 2:00pm - 3:30pm and Thursdays, 11:30am - 1:00pm, in NSC 245A Contact me with any questions or to set

More information

Artificial Intelligence Hopfield Networks

Artificial Intelligence Hopfield Networks Artificial Intelligence Hopfield Networks Andrea Torsello Network Topologies Single Layer Recurrent Network Bidirectional Symmetric Connection Binary / Continuous Units Associative Memory Optimization

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Computational Explorations in Cognitive Neuroscience Chapter 2

Computational Explorations in Cognitive Neuroscience Chapter 2 Computational Explorations in Cognitive Neuroscience Chapter 2 2.4 The Electrophysiology of the Neuron Some basic principles of electricity are useful for understanding the function of neurons. This is

More information

Model neurons!!poisson neurons!

Model neurons!!poisson neurons! Model neurons!!poisson neurons! Suggested reading:! Chapter 1.4 in Dayan, P. & Abbott, L., heoretical Neuroscience, MI Press, 2001.! Model neurons: Poisson neurons! Contents: Probability of a spike sequence

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Neural Networks. Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994

Neural Networks. Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994 Neural Networks Neural Networks Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994 An Introduction to Neural Networks (nd Ed). Morton, IM, 1995 Neural Networks

More information

Mid Year Project Report: Statistical models of visual neurons

Mid Year Project Report: Statistical models of visual neurons Mid Year Project Report: Statistical models of visual neurons Anna Sotnikova asotniko@math.umd.edu Project Advisor: Prof. Daniel A. Butts dab@umd.edu Department of Biology Abstract Studying visual neurons

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Neural Networks Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

1 Balanced networks: Trading speed for noise

1 Balanced networks: Trading speed for noise Physics 178/278 - David leinfeld - Winter 2017 (Corrected yet incomplete notes) 1 Balanced networks: Trading speed for noise 1.1 Scaling of neuronal inputs An interesting observation is that the subthresold

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Model of a Biological Neuron as a Temporal Neural Network

Model of a Biological Neuron as a Temporal Neural Network Model of a Biological Neuron as a Temporal Neural Network Sean D. Murphy and Edward W. Kairiss Interdepartmental Neuroscience Program, Department of Psychology, and The Center for Theoretical and Applied

More information

Divisive Inhibition in Recurrent Networks

Divisive Inhibition in Recurrent Networks Divisive Inhibition in Recurrent Networks Frances S. Chance and L. F. Abbott Volen Center for Complex Systems and Department of Biology Brandeis University Waltham MA 2454-911 Abstract Models of visual

More information

Phase Response. 1 of of 11. Synaptic input advances (excitatory) or delays (inhibitory) spiking

Phase Response. 1 of of 11. Synaptic input advances (excitatory) or delays (inhibitory) spiking Printed from the Mathematica Help Browser 1 1 of 11 Phase Response Inward current-pulses decrease a cortical neuron's period (Cat, Layer V). [Fetz93] Synaptic input advances (excitatory) or delays (inhibitory)

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Systems Neuroscience How the nervous system performs computations How groups of neurons work together to achieve intelligence Professor Daniel Leeds dleeds@fordham.edu JMH

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Artificial neural networks

Artificial neural networks Artificial neural networks Chapter 8, Section 7 Artificial Intelligence, spring 203, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 8, Section 7 Outline Brains Neural

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Contraction Properties of VLSI Cooperative Competitive Neural Networks of Spiking Neurons

Contraction Properties of VLSI Cooperative Competitive Neural Networks of Spiking Neurons Contraction Properties of VLSI Cooperative Competitive Neural Networks of Spiking s Emre Neftci 1, Elisabetta Chicca 1, Giacomo Indiveri 1, Jean-Jacques Slotine 2, Rodney Douglas 1 1 Institute of Neuroinformatics,

More information

Infinite systems of interacting chains with memory of variable length - a stochastic model for biological neural nets

Infinite systems of interacting chains with memory of variable length - a stochastic model for biological neural nets Infinite systems of interacting chains with memory of variable length - a stochastic model for biological neural nets Antonio Galves Universidade de S.Paulo Fapesp Center for Neuromathematics Eurandom,

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin.

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin. Activity Driven Adaptive Stochastic Resonance Gregor Wenning and Klaus Obermayer Department of Electrical Engineering and Computer Science Technical University of Berlin Franklinstr. 8/9, 187 Berlin fgrewe,obyg@cs.tu-berlin.de

More information

Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons

Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons Dileep George a,b Friedrich T. Sommer b a Dept. of Electrical Engineering, Stanford University 350 Serra Mall, Stanford,

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon Neuron Detector Model 1 The detector model. 2 Biological properties of the neuron. 3 The computational unit. Each neuron is detecting some set of conditions (e.g., smoke detector). Representation is what

More information

Contraction Properties of VLSI Cooperative Competitive Neural Networks of Spiking Neurons

Contraction Properties of VLSI Cooperative Competitive Neural Networks of Spiking Neurons Contraction Properties of VLSI Cooperative Competitive Neural Networks of Spiking s Emre Neftci 1, Elisabetta Chicca 1, Giacomo Indiveri 1, Jean-Jacques Slotine 2, Rodney Douglas 1 1 Institute of Neuroinformatics,

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870

Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870 Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870 Jugal Kalita University of Colorado Colorado Springs Fall 2014 Logic Gates and Boolean Algebra Logic gates are used

More information

Synaptic Plasticity. Introduction. Biophysics of Synaptic Plasticity. Functional Modes of Synaptic Plasticity. Activity-dependent synaptic plasticity:

Synaptic Plasticity. Introduction. Biophysics of Synaptic Plasticity. Functional Modes of Synaptic Plasticity. Activity-dependent synaptic plasticity: Synaptic Plasticity Introduction Dayan and Abbott (2001) Chapter 8 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Activity-dependent synaptic plasticity: underlies learning and memory, and plays

More information

TIME-SEQUENTIAL SELF-ORGANIZATION OF HIERARCHICAL NEURAL NETWORKS. Ronald H. Silverman Cornell University Medical College, New York, NY 10021

TIME-SEQUENTIAL SELF-ORGANIZATION OF HIERARCHICAL NEURAL NETWORKS. Ronald H. Silverman Cornell University Medical College, New York, NY 10021 709 TIME-SEQUENTIAL SELF-ORGANIZATION OF HIERARCHICAL NEURAL NETWORKS Ronald H. Silverman Cornell University Medical College, New York, NY 10021 Andrew S. Noetzel polytechnic University, Brooklyn, NY 11201

More information

An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding

An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding NOTE Communicated by Michael Hines An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding A. Destexhe Z. F. Mainen T. J. Sejnowski The Howard Hughes Medical

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

Finding a Basis for the Neural State

Finding a Basis for the Neural State Finding a Basis for the Neural State Chris Cueva ccueva@stanford.edu I. INTRODUCTION How is information represented in the brain? For example, consider arm movement. Neurons in dorsal premotor cortex (PMd)

More information

3 Detector vs. Computer

3 Detector vs. Computer 1 Neurons 1. The detector model. Also keep in mind this material gets elaborated w/the simulations, and the earliest material is often hardest for those w/primarily psych background. 2. Biological properties

More information

/639 Final Solutions, Part a) Equating the electrochemical potentials of H + and X on outside and inside: = RT ln H in

/639 Final Solutions, Part a) Equating the electrochemical potentials of H + and X on outside and inside: = RT ln H in 580.439/639 Final Solutions, 2014 Question 1 Part a) Equating the electrochemical potentials of H + and X on outside and inside: RT ln H out + zf 0 + RT ln X out = RT ln H in F 60 + RT ln X in 60 mv =

More information

Plasticity and Learning

Plasticity and Learning Chapter 8 Plasticity and Learning 8.1 Introduction Activity-dependent synaptic plasticity is widely believed to be the basic phenomenon underlying learning and memory, and it is also thought to play a

More information

Sampling-based probabilistic inference through neural and synaptic dynamics

Sampling-based probabilistic inference through neural and synaptic dynamics Sampling-based probabilistic inference through neural and synaptic dynamics Wolfgang Maass for Robert Legenstein Institute for Theoretical Computer Science Graz University of Technology, Austria Institute

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Biological Modeling of Neural Networks

Biological Modeling of Neural Networks Week 4 part 2: More Detail compartmental models Biological Modeling of Neural Networks Week 4 Reducing detail - Adding detail 4.2. Adding detail - apse -cable equat Wulfram Gerstner EPFL, Lausanne, Switzerland

More information

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5 Artificial Neural Networks Q550: Models in Cognitive Science Lecture 5 "Intelligence is 10 million rules." --Doug Lenat The human brain has about 100 billion neurons. With an estimated average of one thousand

More information

REAL-TIME COMPUTING WITHOUT STABLE

REAL-TIME COMPUTING WITHOUT STABLE REAL-TIME COMPUTING WITHOUT STABLE STATES: A NEW FRAMEWORK FOR NEURAL COMPUTATION BASED ON PERTURBATIONS Wolfgang Maass Thomas Natschlager Henry Markram Presented by Qiong Zhao April 28 th, 2010 OUTLINE

More information

Hebb rule book: 'The Organization of Behavior' Theory about the neural bases of learning

Hebb rule book: 'The Organization of Behavior' Theory about the neural bases of learning PCA by neurons Hebb rule 1949 book: 'The Organization of Behavior' Theory about the neural bases of learning Learning takes place in synapses. Synapses get modified, they get stronger when the pre- and

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics Synaptic dynamics John D. Murray A dynamical model for synaptic gating variables is presented. We use this to study the saturation of synaptic gating at high firing rate. Shunting inhibition and the voltage

More information

Consider the way we are able to retrieve a pattern from a partial key as in Figure 10 1.

Consider the way we are able to retrieve a pattern from a partial key as in Figure 10 1. CompNeuroSci Ch 10 September 8, 2004 10 Associative Memory Networks 101 Introductory concepts Consider the way we are able to retrieve a pattern from a partial key as in Figure 10 1 Figure 10 1: A key

More information

Neural Encoding: Firing Rates and Spike Statistics

Neural Encoding: Firing Rates and Spike Statistics Neural Encoding: Firing Rates and Spike Statistics Dayan and Abbott (21) Chapter 1 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Background: Dirac δ Function Dirac δ function has the following

More information

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET Unit-. Definition Neural network is a massively parallel distributed processing system, made of highly inter-connected neural computing elements that have the ability to learn and thereby acquire knowledge

More information

Math in systems neuroscience. Quan Wen

Math in systems neuroscience. Quan Wen Math in systems neuroscience Quan Wen Human brain is perhaps the most complex subject in the universe 1 kg brain 10 11 neurons 180,000 km nerve fiber 10 15 synapses 10 18 synaptic proteins Multiscale

More information

Computational Intelligence Winter Term 2009/10

Computational Intelligence Winter Term 2009/10 Computational Intelligence Winter Term 2009/10 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund Plan for Today Organization (Lectures / Tutorials)

More information

Integer weight training by differential evolution algorithms

Integer weight training by differential evolution algorithms Integer weight training by differential evolution algorithms V.P. Plagianakos, D.G. Sotiropoulos, and M.N. Vrahatis University of Patras, Department of Mathematics, GR-265 00, Patras, Greece. e-mail: vpp

More information

Large-scale neural modeling

Large-scale neural modeling Large-scale neural modeling We re acquiring brain data at an unprecedented rate Dendritic recording Serial Scanning EM Ca ++ imaging Kwabena Boahen Stanford Bioengineering boahen@stanford.edu Goal: Link

More information

Computational Intelligence

Computational Intelligence Plan for Today Computational Intelligence Winter Term 29/ Organization (Lectures / Tutorials) Overview CI Introduction to ANN McCulloch Pitts Neuron (MCP) Minsky / Papert Perceptron (MPP) Prof. Dr. Günter

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

A gradient descent rule for spiking neurons emitting multiple spikes

A gradient descent rule for spiking neurons emitting multiple spikes A gradient descent rule for spiking neurons emitting multiple spikes Olaf Booij a, Hieu tat Nguyen a a Intelligent Sensory Information Systems, University of Amsterdam, Faculty of Science, Kruislaan 403,

More information

9 Generation of Action Potential Hodgkin-Huxley Model

9 Generation of Action Potential Hodgkin-Huxley Model 9 Generation of Action Potential Hodgkin-Huxley Model (based on chapter 12, W.W. Lytton, Hodgkin-Huxley Model) 9.1 Passive and active membrane models In the previous lecture we have considered a passive

More information

How Complex Cells Are Made in a Simple Cell Network

How Complex Cells Are Made in a Simple Cell Network How Complex Cells Are Made in a Simple Cell Network Louis Tao Courant Institute, New York University Collaborators: Michael Shelley (Courant, NYU) Robert Shapley (CNS, NYU) David McLaughlin (Courant, NYU)

More information

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern.

Exercises. Chapter 1. of τ approx that produces the most accurate estimate for this firing pattern. 1 Exercises Chapter 1 1. Generate spike sequences with a constant firing rate r 0 using a Poisson spike generator. Then, add a refractory period to the model by allowing the firing rate r(t) to depend

More information

Fast and exact simulation methods applied on a broad range of neuron models

Fast and exact simulation methods applied on a broad range of neuron models Fast and exact simulation methods applied on a broad range of neuron models Michiel D Haene michiel.dhaene@ugent.be Benjamin Schrauwen benjamin.schrauwen@ugent.be Ghent University, Electronics and Information

More information

Outline. NIP: Hebbian Learning. Overview. Types of Learning. Neural Information Processing. Amos Storkey

Outline. NIP: Hebbian Learning. Overview. Types of Learning. Neural Information Processing. Amos Storkey Outline NIP: Hebbian Learning Neural Information Processing Amos Storkey 1/36 Overview 2/36 Types of Learning Types of learning, learning strategies Neurophysiology, LTP/LTD Basic Hebb rule, covariance

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Decorrelation of neural-network activity by inhibitory feedback

Decorrelation of neural-network activity by inhibitory feedback Decorrelation of neural-network activity by inhibitory feedback Tom Tetzlaff 1,2,#,, Moritz Helias 1,3,#, Gaute T. Einevoll 2, Markus Diesmann 1,3 1 Inst. of Neuroscience and Medicine (INM-6), Computational

More information

Neuron, Volume 63. Supplemental Data. Generating Coherent Patterns of Activity. from Chaotic Neural Networks. David Sussillo and L.F.

Neuron, Volume 63. Supplemental Data. Generating Coherent Patterns of Activity. from Chaotic Neural Networks. David Sussillo and L.F. Neuron, Volume 63 Supplemental Data Generating Coherent Patterns of Activity from Chaotic Neural Networks David Sussillo and L.F. Abbott Supplementary Material FORCE Learning without RLS It is possible

More information

Abstract. Author Summary

Abstract. Author Summary 1 Self-organization of microcircuits in networks of spiking neurons with plastic synapses Gabriel Koch Ocker 1,3, Ashok Litwin-Kumar 2,3,4, Brent Doiron 2,3 1: Department of Neuroscience, University of

More information

Processing of Time Series by Neural Circuits with Biologically Realistic Synaptic Dynamics

Processing of Time Series by Neural Circuits with Biologically Realistic Synaptic Dynamics Processing of Time Series by Neural Circuits with iologically Realistic Synaptic Dynamics Thomas Natschläger & Wolfgang Maass Institute for Theoretical Computer Science Technische Universität Graz, ustria

More information

Revision: Neural Network

Revision: Neural Network Revision: Neural Network Exercise 1 Tell whether each of the following statements is true or false by checking the appropriate box. Statement True False a) A perceptron is guaranteed to perfectly learn

More information

Information Theory and Neuroscience II

Information Theory and Neuroscience II John Z. Sun and Da Wang Massachusetts Institute of Technology October 14, 2009 Outline System Model & Problem Formulation Information Rate Analysis Recap 2 / 23 Neurons Neuron (denoted by j) I/O: via synapses

More information

A General Framework for Neurobiological Modeling: An Application to the Vestibular System 1

A General Framework for Neurobiological Modeling: An Application to the Vestibular System 1 A General Framework for Neurobiological Modeling: An Application to the Vestibular System 1 Chris Eliasmith, a M. B. Westover, b and C. H. Anderson c a Department of Philosophy, University of Waterloo,

More information

Lecture 13: Introduction to Neural Networks

Lecture 13: Introduction to Neural Networks Lecture 13: Introduction to Neural Networks Instructor: Aditya Bhaskara Scribe: Dietrich Geisler CS 5966/6966: Theory of Machine Learning March 8 th, 2017 Abstract This is a short, two-line summary of

More information

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995)

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995) Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten Lecture 2a The Neuron - overview of structure From Anderson (1995) 2 Lect_2a_Mathematica.nb Basic Structure Information flow:

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

Synaptic Input. Linear Model of Synaptic Transmission. Professor David Heeger. September 5, 2000

Synaptic Input. Linear Model of Synaptic Transmission. Professor David Heeger. September 5, 2000 Synaptic Input Professor David Heeger September 5, 2000 The purpose of this handout is to go a bit beyond the discussion in Ch. 6 of The Book of Genesis on synaptic input, and give some examples of how

More information

arxiv: v1 [q-bio.nc] 13 Apr 2012

arxiv: v1 [q-bio.nc] 13 Apr 2012 onnormal amplification in random balanced neuronal networks Guillaume Hennequin Tim P. Vogels Wulfram Gerstner School of Computer and Communication Sciences and Brain Mind Institute Ecole Polytechnique

More information

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Jack Cowan Mathematics Department and Committee on Computational Neuroscience University of Chicago 1 A simple Markov

More information

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 Dynamical systems in neuroscience Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 What do I mean by a dynamical system? Set of state variables Law that governs evolution of state

More information

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 part 3a :Three definitions of rate code Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 5 Variability and Noise: The question of the neural code Wulfram Gerstner EPFL, Lausanne,

More information

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 121 125 c International Academic Publishers Vol. 42, No. 1, July 15, 2004 Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized

More information

arxiv: v1 [q-bio.nc] 1 Jun 2014

arxiv: v1 [q-bio.nc] 1 Jun 2014 1 arxiv:1406.0139v1 [q-bio.nc] 1 Jun 2014 Distribution of Orientation Selectivity in Recurrent Networks of Spiking Neurons with Different Random Topologies Sadra Sadeh 1, Stefan Rotter 1, 1 Bernstein Center

More information

Introduction Biologically Motivated Crude Model Backpropagation

Introduction Biologically Motivated Crude Model Backpropagation Introduction Biologically Motivated Crude Model Backpropagation 1 McCulloch-Pitts Neurons In 1943 Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, published A logical calculus of the

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks 鮑興國 Ph.D. National Taiwan University of Science and Technology Outline Perceptrons Gradient descent Multi-layer networks Backpropagation Hidden layer representations Examples

More information

Probabilistic Models in Theoretical Neuroscience

Probabilistic Models in Theoretical Neuroscience Probabilistic Models in Theoretical Neuroscience visible unit Boltzmann machine semi-restricted Boltzmann machine restricted Boltzmann machine hidden unit Neural models of probabilistic sampling: introduction

More information

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November.

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. COGS Q250 Fall 2012 Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. For the first two questions of the homework you will need to understand the learning algorithm using the delta

More information

Simulating Neural Networks. Lawrence Ward P465A

Simulating Neural Networks. Lawrence Ward P465A Simulating Neural Networks Lawrence Ward P465A 1. Neural network (or Parallel Distributed Processing, PDP) models are used for a wide variety of roles, including recognizing patterns, implementing logic,

More information

Exploring a Simple Discrete Model of Neuronal Networks

Exploring a Simple Discrete Model of Neuronal Networks Exploring a Simple Discrete Model of Neuronal Networks Winfried Just Ohio University Joint work with David Terman, Sungwoo Ahn,and Xueying Wang August 6, 2010 An ODE Model of Neuronal Networks by Terman

More information

Sparse Coding as a Generative Model

Sparse Coding as a Generative Model Sparse Coding as a Generative Model image vector neural activity (sparse) feature vector other stuff Find activations by descending E Coefficients via gradient descent Driving input (excitation) Lateral

More information