Rational Gauss-Radau and rational Szegő-Lobatto quadrature on the interval and the unit circle respectively

Size: px
Start display at page:

Download "Rational Gauss-Radau and rational Szegő-Lobatto quadrature on the interval and the unit circle respectively"

Transcription

1 Rational Gauss-Radau and rational Szegő-Lobatto quadrature on the interval and the unit circle respectively Francisco Perdomo-Pio Departament of Mathematical Analysis. La Laguna University La Laguna. Tenerife. Canary Islands. Spain. Joint work with: Adhemar Bultheel and Karl Deckers

2 Aim of the talk Present relation between Rational Gauss-Radau and Rational Szegő-Lobatto quadrature formulas. Motivation interchange properties, analytic computations, reduces computational effort,...

3 Aim of the talk Present relation between Rational Gauss-Radau and Rational Szegő-Lobatto quadrature formulas. Motivation interchange properties, analytic computations, reduces computational effort,...

4 Preliminaries Interval I = [ 1, 1] C I = (C { }) \ I {α 1, α{ 2,...} C I p L n = n(x) n k=1 (1 x/α k) : p n P n }, n = 1, 2,... Unit circle T = {z C : z = 1} D = {z C : z < 1} {β 1, β 2 {,...} D p L n = n(z) : p n k=1 (1 β k z) n P n }, n = 1, 2,... Quadrature rules J µ (f) := K n f(t)dµ(t) λ j f(t j ) =: J n (f), j=1 {t j } n j=1 K where K = I or K = T, and t = x or t = z.

5 Preliminaries Interval I = [ 1, 1] C I = (C { }) \ I {α 1, α{ 2,...} C I p L n = n(x) n k=1 (1 x/α k) : p n P n }, n = 1, 2,... Unit circle T = {z C : z = 1} D = {z C : z < 1} {β 1, β 2 {,...} D p L n = n(z) : p n k=1 (1 β k z) n P n }, n = 1, 2,... Quadrature rules J µ (f) := K n f(t)dµ(t) λ j f(t j ) =: J n (f), j=1 {t j } n j=1 K where K = I or K = T, and t = x or t = z.

6 positive rational interpolatory quadrature rule on I µ a positive bounded Borel measure on I, {λ j } n j=1 R+ 0, J µ (f) = J n (f) at least for all f L n 1. Special cases Rational Gaussian quadrature formula, which has maximal domain of exactness: L n L c n 1 = {f(x) g(x) : f L n, g L n 1 }. Rational Gauss-Radau quadrature formula (i.e, one node x α fixed in advance), with domain of exactness: L n 1 L c n 1.

7 Construction quadratures Rational Gaussian quadrature nodes x k = zeros of ϕ n L n \ L n 1, where ϕ n µ L n 1 w.r.t. the inner product f, g µ = 1 1 f(x)g(x)dµ(x). λ k = { n 1 j=0 ϕ j(x k ) 2 } 1. Rational Gauss-Radau quadrature nodes x k = zeros of the quasi-orthogonal rational function (qorf) Q n,τn = ϕ n (x) + τ n 1 x/α n 1 1 x/α n ϕ n 1 (x), τ n C. λ k = { n 1 j=0 ϕ j(x k ) 2 } 1. In remainder we assume α n R I.

8 positive rational interpolatory quadrature rule on T µ a positive bounded Borel measure on T, { λ j } n j=1 R+ 0, J µ ( f) = J n ( f) for all f L p L p = {f(z) g(1/z) : f, g L p }, (n 1)/2 p n 1. Special cases Rational Szegő quadrature formula, which has maximal domain of exactness: L n 1 L (n 1). Rational Szegő-Lobatto quadrature formula (i.e., two nodes z α and z β fixed in advance) with domain of exactness: L n 2 L (n 2).

9 Construction quadratures Rational Szegő quadrature nodes z k = zeros of a para-orthogonal rational function (porf) Q n,ξn (z) = z β n 1 1 β n z φ n 1(z) + ξ n 1 β n 1 z 1 β n z φ n 1(z), where φ n µ Ln 1 w.r.t. the inner product f, g = π f(z) g(1/z)d µ(θ), µ π φ n(z) = φ n (1/z) n j=1 λk = { n 1 j=0 φ j(z k ) 2 } 1. z β k 1 β k z, and ξ n T.

10 Construction quadratures Rational Szegő-Lobatto quadrature nodes z k = zeros of a porf Q n, ξn (z) = z β n 1 φ 1 β n z n 1 (z) + ξ 1 β n 1 z n 1 β n z ( φ n 1 (z) = c z βn 2 k φ 1 β n 1 z n 2(z) + δ 1 β n 2 z n 1 δ n 1 D, and ξ n T. λk = { n 1 j=0 φ j (x k ) 2 } 1. In remainder we assume β n ( 1, 1). φ n 1 (z), where ) 1 β n 1 z φ n 2 (z),

11 Connection between I and T Joukowski transformation x = J(z) = 1 2 (z + z 1 ). {α 1, α 2,...} C I { ˆβ 1, ˆβ 2,... } D. ˆβ 2k = ˆβ 2k 1 = β k, α k = J(β k ). The measures µ on I µ on T a symmetric measure µ(e) = µ({cos θ, θ E [0, π)}) + µ({cos θ, θ E [ π, 0)}), The integrals I f(x)dµ(x) = 1 2 T f(z)d µ(z), f = f J.

12 Connection between I and T Theorem Sym {β 1,..., β n 1 } real or complex conjugate pairs, and µ positive symmetric Borel measure on T. Then, 1 zeros of Q n,ξn appear in complex conjugate pairs iff ξ n = ±1. 2 z = 1 is zero iff ξ n = 1 and z = 1 iff ξ n = ( 1) n+1. 3 Let J n ( f) be an n-point rational Szegő-Lobatto quadrature formula based on zeros of Q n,±1. Then for k = 1,..., n, the weight λ k = λ j if z j = z k. Theorem Rel µ related with µ by Joukowski transform, then ) ϕ k (x) = F (φ 2k (z), φ 2k (z) ( ) = G φ 2k 1 (z), φ 2k 1(z).

13 Relating rational Szegő-Lobatto and Gauss-Radau rules Theorem SL-GR µ and µ related by Joukowski transform. Let J 2n ( f) = λ α (z α ) f(z α ) + λ β f(zα ) + 2n 2 k=1 λ k f(zk ) be a 2n-point rational Szegő-Lobatto quadrature formula with fixed nodes {z α, z α } T \ { 1, +1} for J µ ( f). Set x α = J(z α ), λ α = λ α, x k = J(z k ) and λ k = λ k. Then the formula J n (f) = λ α f(x α ) + n 1 j=1 λ jf(x j ) coincides with the n-point rational Gauss-Radau formula based on the zeros of the qorf where τ n depends of x α Q n,τn (x) = H(z) Q2n,1 (z)

14 Relating rational Szegő-Lobatto and Gauss-Radau rules Proof From Theorem Sym it follows that Q2n,1 has 2n zeros (all different from 1 and 1), appearing in complex conjugate pairs, and λ α = λ β, λ n 1+k = λ k. If f L n 1 L c n 1 then f(z) = (f J)(z) ˆ L2n 2 ˆ L(2n 2) n 1 J n (f) = λ α f(x α ) + λ k f(x k ) = 1 2 { k=1 λα (z α ) f(z α ) + λ β f(zα ) + = 1 2 J 2n( f) = 1 2 J µ( f) = J µ (f). 2n 2 k=1 λk f(zk ) }

15 Relating rational Gauss-Radau and Szegő-Lobatto rules Theorem GR-SL Let µ and µ related by the Joukowski transformation. Let J n (f) = λ α f(x α ) + n j=1 λ kf(x k ) be an n-point rational Gauss-Radau quadrature formula with fixed node x α for J µ (f), based on the zeros of the qorf Q n,τn. Set x k = cos θ k, x α = cos θ α, and define z k = z n 1+k = e iθ k, λ k = λ n 1+k = λ k, k = 1,..., n 1. z α = e iθα, λ α = λ α. Then J 2n ( f) = λ α f(zα ) + λ 2n 2 α f(zα ) + λk f(zk ) k=1 coincides with the 2n-point rational Szegő-Lobatto quadrature formula with fixed nodes {z α, z α } for J µ ( f) based on the zeros of the porf Q2n, ξ2n with ξ 2n = 1, and with δ 2n 1 depending on τ n.

16 Relating rational Gauss-Radau and Szegő-Lobatto rules Outline of the proof It is known that the qorf is orthogonal to L n 1 w.r.t. a measure µ (not necessarily supported in I). We can express Q n,τn (x) in terms of ˆφ 2n 2 (z) and ˆφ 2n 2 (z) in two ways: by assuming that Q n,τn (x) = H(z) Q2n,1 (z), which is equivalent with assuming that the measure µ is supported on I; by making use of the definition of Q n,τn (x) together with Theorem Rel. By comparison we then obtain a relation between δ 2n 1 and τ n.

17 Relating rational Gauss-Radau and Szegő-Lobatto rules Next, we need the following lemma. Lemma {β 1,..., β n 1 } real or complex conjugate pairs, and µ positive symmetric Borel measure on T. φ c n 1(z) = b n z β n 1 z β n 1 φ n 1 (z) + a n 1 β n 1 z z β n 1 φ n 1 (1/z) a n and b n can be expressed in terms of δ n. Since φ c n 1 (z) is independent of δ n, so are a n and b n. Hence, the expressions for a n and b n remains the same when replacing δ n with δ n. As a result, we find that δ n C D, a n 0 δ n L D, a n = 0 with C a circle and L a line that depends of a n and b n.

18 Relating rational Gauss-Radau and Szegő-Lobatto rules Finally, we have the following lemma. Lemma Let τ n be such that Q n,τn (x) has all its zeros in ( 1, 1). Then the corresponding δ 2n 1 satisfies the condition given in the previous lemma.

19 Bibliography A. Bultheel, L. Daruis, P. González-Vera, A connection between quadrature formulas on the unit circle and the interval [ 1, 1] Journal of Computational and Applied Mathematics, 132 (1) (2001) A. Bultheel, P. González-Vera, E. Hendriksen, O. Njåstad, Orthogonal Rational Functions, volume 5 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, A. Bultheel, P. González-Vera, E. Hendriksen, O. Njåstad, Computation of rational Szegő-Lobatto quadrature formulas, Applied Numerical Mathematics, (2010). Submitted. K. Deckers, A. Bultheel, R. Cruz-Barroso, F. Perdomo-Pío, Positive rational interpolatory quadrature formulas on the unit circle and the interval, Applied Numerical Mathematics, Publish online 30 March K. Deckers, A. Bultheel, J. Van Deun, A generalized eigenvalue problem for quasi-orthogonal rational functions, Numerische Mathematik, (2010). Submitted. K. Deckers, J. van Deun, A. Bultheel, An extended relation between orthogonal rational functions on the unit circle and the interval [ 1, 1], Journal of Mathematical Analysis and Applications, 334 (2) (2007) J. van Deun, A. Bultheel, Orthogonal rational functions and quadrature on an interval, Journal of Computational and Applied Mathematics, 153 (1-2) (2003)

Computation of Rational Szegő-Lobatto Quadrature Formulas

Computation of Rational Szegő-Lobatto Quadrature Formulas Computation of Rational Szegő-Lobatto Quadrature Formulas Joint work with: A. Bultheel (Belgium) E. Hendriksen (The Netherlands) O. Njastad (Norway) P. GONZÁLEZ-VERA Departament of Mathematical Analysis.

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Separation of zeros of para-orthogonal rational functions A. Bultheel, P. González-Vera, E. Hendriksen, O. Njåstad Report TW 402, September 2004 Katholieke Universiteit Leuven Department of Computer Science

More information

Szegő-Lobatto quadrature rules

Szegő-Lobatto quadrature rules Szegő-Lobatto quadrature rules Carl Jagels a,, Lothar Reichel b,1, a Department of Mathematics and Computer Science, Hanover College, Hanover, IN 47243, USA b Department of Mathematical Sciences, Kent

More information

Rational bases for system identification

Rational bases for system identification Rational bases for system identification Adhemar Bultheel, Patrick Van gucht Department Computer Science Numerical Approximation and Linear Algebra Group (NALAG) K.U.Leuven, Belgium adhemar.bultheel.cs.kuleuven.ac.be

More information

On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line

On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line Adhemar Bultheel, Ruymán Cruz-Barroso,, Marc Van Barel Department of Computer Science, K.U.Leuven, Celestijnenlaan 2 A,

More information

A matricial computation of rational quadrature formulas on the unit circle

A matricial computation of rational quadrature formulas on the unit circle A matricial computation of rational quadrature formulas on the unit circle Adhemar Bultheel and Maria-José Cantero Department of Computer Science. Katholieke Universiteit Leuven. Belgium Department of

More information

formulas with complex poles

formulas with complex poles Computing rational Gauss-Chebyshev quadrature formulas with complex poles Karl Deckers Joris Van Deun Adhemar Bultheel Department of Computer Science K.U.Leuven Augustus 7, 2006 Rational Gauss-Chebyshev

More information

Matrix methods for quadrature formulas on the unit circle. A survey

Matrix methods for quadrature formulas on the unit circle. A survey Matrix methods for quadrature formulas on the unit circle A survey Adhemar Bultheel a, María José Cantero b,1,, Ruymán Cruz-Barroso c,2 a Department of Computer Science, KU Leuven, Belgium b Department

More information

Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle

Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle Symmetry, Integrability and Geometry: Methods and Applications SIGMA 13 (27), 090, 49 pages Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle Adhemar BULTHEEL,

More information

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals 1/31 Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals Dr. Abebe Geletu May, 2010 Technische Universität Ilmenau, Institut für Automatisierungs- und Systemtechnik Fachgebiet

More information

On the remainder term of Gauss Radau quadratures for analytic functions

On the remainder term of Gauss Radau quadratures for analytic functions Journal of Computational and Applied Mathematics 218 2008) 281 289 www.elsevier.com/locate/cam On the remainder term of Gauss Radau quadratures for analytic functions Gradimir V. Milovanović a,1, Miodrag

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 9, 1999, pp. 39-52. Copyright 1999,. ISSN 1068-9613. ETNA QUADRATURE FORMULAS FOR RATIONAL FUNCTIONS F. CALA RODRIGUEZ, P. GONZALEZ VERA, AND M. JIMENEZ

More information

NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS. Sheehan Olver NA Group, Oxford

NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS. Sheehan Olver NA Group, Oxford NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS Sheehan Olver NA Group, Oxford We are interested in numerically computing eigenvalue statistics of the GUE ensembles, i.e.,

More information

Quadrature Rules With an Even Number of Multiple Nodes and a Maximal Trigonometric Degree of Exactness

Quadrature Rules With an Even Number of Multiple Nodes and a Maximal Trigonometric Degree of Exactness Filomat 9:10 015), 39 55 DOI 10.98/FIL151039T Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Quadrature Rules With an Even Number

More information

PARA-ORTHOGONAL POLYNOMIALS IN FREQUENCY ANALYSIS. 1. Introduction. By a trigonometric signal we mean an expression of the form.

PARA-ORTHOGONAL POLYNOMIALS IN FREQUENCY ANALYSIS. 1. Introduction. By a trigonometric signal we mean an expression of the form. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 33, Number 2, Summer 2003 PARA-ORTHOGONAL POLYNOMIALS IN FREQUENCY ANALYSIS LEYLA DARUIS, OLAV NJÅSTAD AND WALTER VAN ASSCHE 1. Introduction. By a trigonometric

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

OSTROWSKI S THEOREM. Contents

OSTROWSKI S THEOREM. Contents OSTROWSKI S THEOREM GEUNHO GIM Contents. Ostrowski s theorem for Q 2. Ostrowski s theorem for number fields 2 3. Ostrowski s theorem for F T ) 4 References 5. Ostrowski s theorem for Q Definition.. A valuation

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Growth properties of Nevanlinna matrices for rational moment problems Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, Olav Njåstad eport TW 56, February 200 Katholieke Universiteit Leuven Department

More information

STIELTJES-TYPE POLYNOMIALS ON THE UNIT CIRCLE

STIELTJES-TYPE POLYNOMIALS ON THE UNIT CIRCLE STIELTJES-TYPE POLYNOMIALS ON THE UNIT CIRCLE B. DE LA CALLE YSERN, G. LÓPEZ LAGOMASINO, AND L. REICHEL Abstract. Stieltjes-type polynomials corresponding to measures supported on the unit circle T are

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 35, pp. 148-163, 2009. Copyright 2009,. ISSN 1068-9613. ETNA SPHERICAL QUADRATURE FORMULAS WITH EQUALLY SPACED NODES ON LATITUDINAL CIRCLES DANIELA

More information

Instructions for Matlab Routines

Instructions for Matlab Routines Instructions for Matlab Routines August, 2011 2 A. Introduction This note is devoted to some instructions to the Matlab routines for the fundamental spectral algorithms presented in the book: Jie Shen,

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part IB Thursday 7 June 2007 9 to 12 PAPER 3 Before you begin read these instructions carefully. Each question in Section II carries twice the number of marks of each question in Section

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

A numerical solution of the constrained weighted energy problem and its relation to rational Lanczos iterations

A numerical solution of the constrained weighted energy problem and its relation to rational Lanczos iterations A numerical solution of the constrained weighted energy problem and its relation to rational Lanczos iterations Karl Deckers, Andrey Chesnokov, and Marc Van Barel Department of Computer Science, Katholieke

More information

Simultaneous Gaussian quadrature for Angelesco systems

Simultaneous Gaussian quadrature for Angelesco systems for Angelesco systems 1 KU Leuven, Belgium SANUM March 22, 2016 1 Joint work with Doron Lubinsky Introduced by C.F. Borges in 1994 Introduced by C.F. Borges in 1994 (goes back to Angelesco 1918). Introduced

More information

Example 9 Algebraic Evaluation for Example 1

Example 9 Algebraic Evaluation for Example 1 A Basic Principle Consider the it f(x) x a If you have a formula for the function f and direct substitution gives the indeterminate form 0, you may be able to evaluate the it algebraically. 0 Principle

More information

Orthogonal rational functions and modified approximants

Orthogonal rational functions and modified approximants Numerical Algorithms 11(1996)57-69 57 Orthogonal rational functions and modified approximants A. Bultheel Department of Computer Science, K.U. Leuven, B-3001 Leuven, Belgium P. Gonzfilez-Vera Facultad

More information

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations MTH6111 Complex Analysis 2009-10 Lecture Notes c Shaun Bullett 2009 IV. Conformal Maps 1. Geometric interpretation of differentiability We saw from the definition of complex differentiability that if f

More information

Chapter 7 Polynomial Functions. Factoring Review. We will talk about 3 Types: ALWAYS FACTOR OUT FIRST! Ex 2: Factor x x + 64

Chapter 7 Polynomial Functions. Factoring Review. We will talk about 3 Types: ALWAYS FACTOR OUT FIRST! Ex 2: Factor x x + 64 Chapter 7 Polynomial Functions Factoring Review We will talk about 3 Types: 1. 2. 3. ALWAYS FACTOR OUT FIRST! Ex 1: Factor x 2 + 5x + 6 Ex 2: Factor x 2 + 16x + 64 Ex 3: Factor 4x 2 + 6x 18 Ex 4: Factor

More information

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018 Numerical Analysis Preliminary Exam 0.00am.00pm, January 9, 208 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

(x x 0 )(x x 1 )... (x x n ) (x x 0 ) + y 0.

(x x 0 )(x x 1 )... (x x n ) (x x 0 ) + y 0. > 5. Numerical Integration Review of Interpolation Find p n (x) with p n (x j ) = y j, j = 0, 1,,..., n. Solution: p n (x) = y 0 l 0 (x) + y 1 l 1 (x) +... + y n l n (x), l k (x) = n j=1,j k Theorem Let

More information

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n.

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n. Scientiae Mathematicae Japonicae Online, e-014, 145 15 145 A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS Masaru Nagisa Received May 19, 014 ; revised April 10, 014 Abstract. Let f be oeprator monotone

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

Complex Analysis, Stein and Shakarchi The Fourier Transform

Complex Analysis, Stein and Shakarchi The Fourier Transform Complex Analysis, Stein and Shakarchi Chapter 4 The Fourier Transform Yung-Hsiang Huang 2017.11.05 1 Exercises 1. Suppose f L 1 (), and f 0. Show that f 0. emark 1. This proof is observed by Newmann (published

More information

5.3 The Upper Half Plane

5.3 The Upper Half Plane Remark. Combining Schwarz Lemma with the map g α, we can obtain some inequalities of analytic maps f : D D. For example, if z D and w = f(z) D, then the composition h := g w f g z satisfies the condition

More information

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that.

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that. Lecture 15 The Riemann mapping theorem Variables MATH-GA 2451.1 Complex The point of this lecture is to prove that the unit disk can be mapped conformally onto any simply connected open set in the plane,

More information

Fourth Week: Lectures 10-12

Fourth Week: Lectures 10-12 Fourth Week: Lectures 10-12 Lecture 10 The fact that a power series p of positive radius of convergence defines a function inside its disc of convergence via substitution is something that we cannot ignore

More information

Method of Finite Elements I

Method of Finite Elements I Method of Finite Elements I PhD Candidate - Charilaos Mylonas HIL H33.1 and Boundary Conditions, 26 March, 2018 Institute of Structural Engineering Method of Finite Elements I 1 Outline 1 2 Penalty method

More information

Outline. 1 Numerical Integration. 2 Numerical Differentiation. 3 Richardson Extrapolation

Outline. 1 Numerical Integration. 2 Numerical Differentiation. 3 Richardson Extrapolation Outline Numerical Integration Numerical Differentiation Numerical Integration Numerical Differentiation 3 Michael T. Heath Scientific Computing / 6 Main Ideas Quadrature based on polynomial interpolation:

More information

Trivariate polynomial approximation on Lissajous curves 1

Trivariate polynomial approximation on Lissajous curves 1 Trivariate polynomial approximation on Lissajous curves 1 Stefano De Marchi DMV2015, Minisymposium on Mathematical Methods for MPI 22 September 2015 1 Joint work with Len Bos (Verona) and Marco Vianello

More information

Solution. (i) Find a minimal sufficient statistic for (θ, β) and give your justification. X i=1. By the factorization theorem, ( n

Solution. (i) Find a minimal sufficient statistic for (θ, β) and give your justification. X i=1. By the factorization theorem, ( n Solution 1. Let (X 1,..., X n ) be a simple random sample from a distribution with probability density function given by f(x;, β) = 1 ( ) 1 β x β, 0 x, > 0, β < 1. β (i) Find a minimal sufficient statistic

More information

GENERALIZED GAUSS RADAU AND GAUSS LOBATTO FORMULAE

GENERALIZED GAUSS RADAU AND GAUSS LOBATTO FORMULAE BIT 0006-3835/98/3804-0101 $12.00 2000, Vol., No., pp. 1 14 c Swets & Zeitlinger GENERALIZED GAUSS RADAU AND GAUSS LOBATTO FORMULAE WALTER GAUTSCHI 1 1 Department of Computer Sciences, Purdue University,

More information

The Hardy-Littlewood Function

The Hardy-Littlewood Function Hardy-Littlewood p. 1/2 The Hardy-Littlewood Function An Exercise in Slowly Convergent Series Walter Gautschi wxg@cs.purdue.edu Purdue University Hardy-Littlewood p. 2/2 OUTLINE The Hardy-Littlewood (HL)

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2.

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2. ANALYSIS QUALIFYING EXAM FALL 27: SOLUTIONS Problem. Determine, with justification, the it cos(nx) n 2 x 2 dx. Solution. For an integer n >, define g n : (, ) R by Also define g : (, ) R by g(x) = g n

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration.

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration. Unit IV Numerical Integration and Differentiation Numerical integration and differentiation quadrature classical formulas for equally spaced nodes improper integrals Gaussian quadrature and orthogonal

More information

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016 Part IB Geometry Theorems Based on lectures by A. G. Kovalev Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Quasi-conformal maps and Beltrami equation

Quasi-conformal maps and Beltrami equation Chapter 7 Quasi-conformal maps and Beltrami equation 7. Linear distortion Assume that f(x + iy) =u(x + iy)+iv(x + iy) be a (real) linear map from C C that is orientation preserving. Let z = x + iy and

More information

Assignment 1: From the Definition of Convexity to Helley Theorem

Assignment 1: From the Definition of Convexity to Helley Theorem Assignment 1: From the Definition of Convexity to Helley Theorem Exercise 1 Mark in the following list the sets which are convex: 1. {x R 2 : x 1 + i 2 x 2 1, i = 1,..., 10} 2. {x R 2 : x 2 1 + 2ix 1x

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Cyclic Vector of the Weighted Mean Matrix Operator

Cyclic Vector of the Weighted Mean Matrix Operator Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 50(1)(2018) pp. 79-88 Cyclic Vector of the Weighted Mean Matrix Operator Ebrahim Pazouki Mazandaran Management and Planning Organization P.

More information

Introduction. Chapter One

Introduction. Chapter One Chapter One Introduction The aim of this book is to describe and explain the beautiful mathematical relationships between matrices, moments, orthogonal polynomials, quadrature rules and the Lanczos and

More information

Matrices and Moments: Least Squares Problems

Matrices and Moments: Least Squares Problems Matrices and Moments: Least Squares Problems Gene Golub, SungEun Jo, Zheng Su Comparative study (with David Gleich) Computer Science Department Stanford University Matrices and Moments: Least Squares Problems

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

ON SPECTRAL METHODS FOR VOLTERRA INTEGRAL EQUATIONS AND THE CONVERGENCE ANALYSIS * 1. Introduction

ON SPECTRAL METHODS FOR VOLTERRA INTEGRAL EQUATIONS AND THE CONVERGENCE ANALYSIS * 1. Introduction Journal of Computational Mathematics, Vol.6, No.6, 008, 85 837. ON SPECTRAL METHODS FOR VOLTERRA INTEGRAL EQUATIONS AND THE CONVERGENCE ANALYSIS * Tao Tang Department of Mathematics, Hong Kong Baptist

More information

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series

The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series Walter Gautschi Department of Computer Sciences Purdue University West Lafayette, IN 4797-66 U.S.A. Dedicated to Olav Njåstad on the

More information

On rational approximation of algebraic functions. Julius Borcea. Rikard Bøgvad & Boris Shapiro

On rational approximation of algebraic functions. Julius Borcea. Rikard Bøgvad & Boris Shapiro On rational approximation of algebraic functions http://arxiv.org/abs/math.ca/0409353 Julius Borcea joint work with Rikard Bøgvad & Boris Shapiro 1. Padé approximation: short overview 2. A scheme of rational

More information

ZERO DISTRIBUTION OF POLYNOMIALS ORTHOGONAL ON THE RADIAL RAYS IN THE COMPLEX PLANE* G. V. Milovanović, P. M. Rajković and Z. M.

ZERO DISTRIBUTION OF POLYNOMIALS ORTHOGONAL ON THE RADIAL RAYS IN THE COMPLEX PLANE* G. V. Milovanović, P. M. Rajković and Z. M. FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. 12 (1997), 127 142 ZERO DISTRIBUTION OF POLYNOMIALS ORTHOGONAL ON THE RADIAL RAYS IN THE COMPLEX PLANE* G. V. Milovanović, P. M. Rajković and Z. M. Marjanović

More information

LECTURE 18: NONLINEAR MODELS

LECTURE 18: NONLINEAR MODELS LECTURE 18: NONLINEAR MODELS The basic point is that smooth nonlinear models look like linear models locally. Models linear in parameters are no problem even if they are nonlinear in variables. For example:

More information

Problem 1A. Suppose that f is a continuous real function on [0, 1]. Prove that

Problem 1A. Suppose that f is a continuous real function on [0, 1]. Prove that Problem 1A. Suppose that f is a continuous real function on [, 1]. Prove that lim α α + x α 1 f(x)dx = f(). Solution: This is obvious for f a constant, so by subtracting f() from both sides we can assume

More information

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014 Math 3 - Spring 4 Solutions to Assignment # 8 ompletion Date: Friday May 3, 4 Question. [p 49, #] By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the

More information

Recurrence Relations and Fast Algorithms

Recurrence Relations and Fast Algorithms Recurrence Relations and Fast Algorithms Mark Tygert Research Report YALEU/DCS/RR-343 December 29, 2005 Abstract We construct fast algorithms for decomposing into and reconstructing from linear combinations

More information

Polynomial interpolation on the sphere, reproducing kernels and random matrices

Polynomial interpolation on the sphere, reproducing kernels and random matrices Polynomial interpolation on the sphere, reproducing kernels and random matrices Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at MASCOS Workshop on Stochastics

More information

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables Lecture 14 Conformal Mapping MATH-GA 2451.001 Complex Variables 1 Conformality 1.1 Preservation of angle The open mapping theorem tells us that an analytic function such that f (z 0 ) 0 maps a small neighborhood

More information

A PROOF OF CARLESON S THEOREM BASED ON A NEW CHARACTERIZATION OF THE LORENTZ SPACES L(p, 1) FOR 1 < p < AND OTHER APPLICATIONS

A PROOF OF CARLESON S THEOREM BASED ON A NEW CHARACTERIZATION OF THE LORENTZ SPACES L(p, 1) FOR 1 < p < AND OTHER APPLICATIONS PROOF OF CRLESON S THEOREM BSED ON NEW CHRCTERIZTION OF THE LORENTZ SPCES L(p, ) FOR < p < ND OTHER PPLICTIONS GERLDO SORES DE SOUZ bstract. In his 95 nnals of Mathematics paper entitled Some New Functional

More information

A MOMENT PROBLEM ASSOCIATED TO RATIONAL SZEGO FUNCTIONS

A MOMENT PROBLEM ASSOCIATED TO RATIONAL SZEGO FUNCTIONS A MOMENT PROBLEM ASSOCIATED TO RATIONAL SZEGO FUNCTIONS A. Bultheel Department of Comput.er Science, K.U. Leuven, B-3001 Leuven, Belgium. P. Gonzalez-Vera Facultad de Matematicas. Universidad de La Laguna,

More information

GENERALIZED STIELTJES POLYNOMIALS AND RATIONAL GAUSS-KRONROD QUADRATURE

GENERALIZED STIELTJES POLYNOMIALS AND RATIONAL GAUSS-KRONROD QUADRATURE GENERALIZED STIELTJES POLYNOMIALS AND RATIONAL GAUSS-KRONROD QUADRATURE M. BELLO HERNÁNDEZ, B. DE LA CALLE YSERN, AND G. LÓPEZ LAGOMASINO Abstract. Generalized Stieltjes polynomials are introduced and

More information

8 The Gelfond-Schneider Theorem and Some Related Results

8 The Gelfond-Schneider Theorem and Some Related Results 8 The Gelfond-Schneider Theorem and Some Related Results In this section, we begin by stating some results without proofs. In 1900, David Hilbert posed a general problem which included determining whether

More information

Complex Analytic Functions and Differential Operators. Robert Carlson

Complex Analytic Functions and Differential Operators. Robert Carlson Complex Analytic Functions and Differential Operators Robert Carlson Some motivation Suppose L is a differential expression (formal operator) N L = p k (z)d k, k=0 D = d dz (0.1) with p k (z) = j=0 b jz

More information

12.0 Properties of orthogonal polynomials

12.0 Properties of orthogonal polynomials 12.0 Properties of orthogonal polynomials In this section we study orthogonal polynomials to use them for the construction of quadrature formulas investigate projections on polynomial spaces and their

More information

The Szego matrix recurrence and its associated linear non-autonomous area-preserving map

The Szego matrix recurrence and its associated linear non-autonomous area-preserving map Electronic Journal of Linear Algebra Volume 24 Volume 24 2012/2013 Article 13 2012 The Szego matrix recurrence and its associated linear non-autonomous area-preserving map J Abderraman Marrero jcabderraman@upmes

More information

Generalizations of orthogonal polynomials

Generalizations of orthogonal polynomials WOG project J. Comput. Appl. Math., Preprint 28 June 2004 Generalizations of orthogonal polynomials A. Bultheel Dept. Computer Science (NALAG), K.U.Leuven, Celestijnenlaan 200 A, B-300 Leuven, Belgium.

More information

B8.1 Martingales Through Measure Theory. Concept of independence

B8.1 Martingales Through Measure Theory. Concept of independence B8.1 Martingales Through Measure Theory Concet of indeendence Motivated by the notion of indeendent events in relims robability, we have generalized the concet of indeendence to families of σ-algebras.

More information

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14 Final Exam A Name First, write the value(s) that make the denominator(s) zero. Then solve the equation. 1 1) x + 3 + 5 x - 3 = 30 (x + 3)(x - 3) 1) A) x -3, 3; B) x -3, 3; {4} C) No restrictions; {3} D)

More information

Algebraic aspects of the Dirichlet problem

Algebraic aspects of the Dirichlet problem Algebraic aspects of the Dirichlet problem P. Ebenfelt, D. Khavinson, and H. S. Shapiro. Introction Our aim in this paper is to make some remarks about certain algebraic aspects of the classical Dirichlet

More information

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich Measures, orthogonal polynomials, and continued fractions Michael Anshelevich November 7, 2008 MEASURES AND ORTHOGONAL POLYNOMIALS. MEASURES AND ORTHOGONAL POLYNOMIALS. µ a positive measure on R. 2 MEASURES

More information

Bounded point derivations on R p (X) and approximate derivatives

Bounded point derivations on R p (X) and approximate derivatives Bounded point derivations on R p (X) and approximate derivatives arxiv:1709.02851v3 [math.cv] 21 Dec 2017 Stephen Deterding Department of Mathematics, University of Kentucky Abstract It is shown that if

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

On Optimal Stopping Problems with Power Function of Lévy Processes

On Optimal Stopping Problems with Power Function of Lévy Processes On Optimal Stopping Problems with Power Function of Lévy Processes Budhi Arta Surya Department of Mathematics University of Utrecht 31 August 2006 This talk is based on the joint paper with A.E. Kyprianou:

More information

GAUSS-KRONROD QUADRATURE FORMULAE A SURVEY OF FIFTY YEARS OF RESEARCH

GAUSS-KRONROD QUADRATURE FORMULAE A SURVEY OF FIFTY YEARS OF RESEARCH Electronic Transactions on Numerical Analysis. Volume 45, pp. 371 404, 2016. Copyright c 2016,. ISSN 1068 9613. ETNA GAUSS-KRONROD QUADRATURE FORMULAE A SURVEY OF FIFTY YEARS OF RESEARCH SOTIRIOS E. NOTARIS

More information

CESÁRO TYPE OPERATORS ON SPACES OF ANALYTIC FUNCTIONS. S. Naik

CESÁRO TYPE OPERATORS ON SPACES OF ANALYTIC FUNCTIONS. S. Naik Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Filomat 25:4 2, 85 97 DOI:.2298/FIL485N CESÁRO TYPE OPERATORS ON SPACES OF ANALYTIC FUNCTIONS

More information

Adaptive Fourier series a variation of greedy algorithm

Adaptive Fourier series a variation of greedy algorithm Adv Comput Math (2011) 34:279 293 DOI 10.1007/s10444-010-9153-4 Adaptive Fourier series a variation of greedy algorithm Tao Qian Yan-Bo Wang Received: 5 September 2009 / Accepted: 6 April 2010 / Published

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

AP Calculus 2004 AB (Form B) FRQ Solutions

AP Calculus 2004 AB (Form B) FRQ Solutions AP Calculus 4 AB (Form B) FRQ Solutions Louis A. Talman, Ph.D. Emeritus Professor of Mathematics Metropolitan State University of Denver July, 7 Problem. Part a The curve intersects the x-axis at x =,

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Preliminary draft only: please check for final version

Preliminary draft only: please check for final version ARE211, Fall2012 CALCULUS4: THU, OCT 11, 2012 PRINTED: AUGUST 22, 2012 (LEC# 15) Contents 3. Univariate and Multivariate Differentiation (cont) 1 3.6. Taylor s Theorem (cont) 2 3.7. Applying Taylor theory:

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (1998) 80: 39 59 Numerische Mathematik c Springer-Verlag 1998 Electronic Edition Numerical integration over a disc. A new Gaussian quadrature formula Borislav Bojanov 1,, Guergana Petrova,

More information

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich Measures, orthogonal polynomials, and continued fractions Michael Anshelevich November 7, 2008 MEASURES AND ORTHOGONAL POLYNOMIALS. µ a positive measure on R. A linear functional µ[p ] = P (x) dµ(x), µ

More information

{σ x >t}p x. (σ x >t)=e at.

{σ x >t}p x. (σ x >t)=e at. 3.11. EXERCISES 121 3.11 Exercises Exercise 3.1 Consider the Ornstein Uhlenbeck process in example 3.1.7(B). Show that the defined process is a Markov process which converges in distribution to an N(0,σ

More information

A Product Integration Approach Based on New Orthogonal Polynomials for Nonlinear Weakly Singular Integral Equations

A Product Integration Approach Based on New Orthogonal Polynomials for Nonlinear Weakly Singular Integral Equations Acta Appl Math (21) 19: 861 873 DOI 1.17/s144-8-9351-y A Product Integration Approach Based on New Orthogonal Polynomials for Nonlinear Weakly Singular Integral Equations M. Rasty M. Hadizadeh Received:

More information

OR MSc Maths Revision Course

OR MSc Maths Revision Course OR MSc Maths Revision Course Tom Byrne School of Mathematics University of Edinburgh t.m.byrne@sms.ed.ac.uk 15 September 2017 General Information Today JCMB Lecture Theatre A, 09:30-12:30 Mathematics revision

More information

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005 4 Interpolation 4.1 Polynomial interpolation Problem: LetP n (I), n ln, I := [a,b] lr, be the linear space of polynomials of degree n on I, P n (I) := { p n : I lr p n (x) = n i=0 a i x i, a i lr, 0 i

More information

Properties of orthogonal polynomials

Properties of orthogonal polynomials University of South Africa LMS Research School University of Kent, Canterbury Outline 1 Orthogonal polynomials 2 Properties of classical orthogonal polynomials 3 Quasi-orthogonality and semiclassical orthogonal

More information

Math 489AB Exercises for Chapter 1 Fall Section 1.0

Math 489AB Exercises for Chapter 1 Fall Section 1.0 Math 489AB Exercises for Chapter 1 Fall 2008 Section 1.0 1.0.2 We want to maximize x T Ax subject to the condition x T x = 1. We use the method of Lagrange multipliers. Let f(x) = x T Ax and g(x) = x T

More information

Asymptotics of minimax stochastic programs

Asymptotics of minimax stochastic programs Asymptotics of minimax stochastic programs Alexander Shapiro Abstract. We discuss in this paper asymptotics of the sample average approximation (SAA) of the optimal value of a minimax stochastic programming

More information

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS 31 October, 2007 1 INTRODUCTION 2 ORTHOGONAL POLYNOMIALS Properties of Orthogonal Polynomials 3 GAUSS INTEGRATION Gauss- Radau Integration Gauss -Lobatto Integration

More information

THE CAUCHY INTEGRAL FORMULA, QUADRATURE DOMAINS, AND RIEMANN MAPPING THEOREMS

THE CAUCHY INTEGRAL FORMULA, QUADRATURE DOMAINS, AND RIEMANN MAPPING THEOREMS THE CAUCHY INTEGRAL FORMULA, QUADRATURE DOMAINS, AND RIEMANN MAPPING THEOREMS STEVEN R. BELL Abstract. It is well known that a domain in the plane is a quadrature domain with respect to area measure if

More information

Boundary behaviour of optimal polynomial approximants

Boundary behaviour of optimal polynomial approximants Boundary behaviour of optimal polynomial approximants University of South Florida Laval University, in honour of Tom Ransford, May 2018 This talk is based on some recent and upcoming papers with various

More information

Largest dual ellipsoids inscribed in dual cones

Largest dual ellipsoids inscribed in dual cones Largest dual ellipsoids inscribed in dual cones M. J. Todd June 23, 2005 Abstract Suppose x and s lie in the interiors of a cone K and its dual K respectively. We seek dual ellipsoidal norms such that

More information