International ejournals

Size: px
Start display at page:

Download "International ejournals"

Transcription

1 Available online at ISS International ejournals International ejournal of Mathematics and Engineering 8 (00) A RECURSIVE APPROACH FOR PREY-PREDATOR ECO SYSTEM ICORPORATIG DEATH RATE FOR PREDATOR B. Bhaskara Rama Sarma.Ch. Pattabhiramacharyulu and S.V..L.Lalitha 3.Department of Mathematics, BRS Classes, #-84,Vivekananda street, Hanuman nagar, Ramavarappadu, Vijayawada, A.P-,India E Mail.bbramasarma@yahoo.co.in Department of Mathematics (Retd.), IT, Warangal A.P,India. 3. Department of Electrical Engineering, Koneru Lakshmaiah College of Engineering, Vijayawada, A.P.,India ABSTRACT In the present paper a four stage recursive procedure is designed to give an approximate solution to the mathematical model equations of a two-species Prey- Predator eco-system. umerical examples are provided to explain trajectories of the solutions. The conclusions are recorded from the graphs. Key words : Recursive procedure, on-linear system, trajectories. AMS Classification : 9 D 5, 9 D 40 ITRODUCTIO The exact solutions of first order non-linear differential equations obtained in the two-species competitive eco-systems can t be obtained directly because of intractability of non-linear terms. Techniques like self portrait analysis are used to give qualitative nature of solutions in treatises of Kapoor [ ], Meyer [ ], Kushing [ ] etal. In the present investigation we present a four stage recursive procedure to give an approximate solution for a first order non-linear differential equation and the same is applied to solve a two-species Prey-Predator eco-system.in the section, general four-stage procedure is presented for solving a first order non linear differential equation. In section II the recursive procedure is applied to a two-species Prey- Predator eco-system.some numerical illustrations are given to explain the trajectories of the approximate solutions considering various situations. All the conclusions are recorded.

2 B. Bhaskara Rama Sarma,.Ch. Pattabhiramacharyulu, S.V.. L. Lalitha International ejournal of Mathematics and Engineering 8 (00) SECTIO I General Recursive procedure with four-stage approximation for first order nonlinear differential equations. Consider the system () t = A () t + f, t + h() t () d t Where () t = with initial condition Where ( 0) = 0 A () t denote the linear dependence of the system.. (.) (.) f, t corresponds to the non-linear dependence terms of the system h ()denote t replenishment / renewal rates of the system. The total procedure is represented in the following four stages. Stage I : Consider the linear system of (.) () t = A () t with same initial conditions ( 0) = 0 (.3) This system is obtained by suppressing the non-linear part in the right hand side in the absence of replenishments or renewals. () Let the solution of (.3) together with (.) be given by () t Stage II : Compute the resdenishment / renewal rate that could maintain above solution () () t r uu r () uur () () ht () () t A () t f uur =, t h in the non-linear system for the system (.) i.e. () () () () t = () t A () t f () t () h Stage III : Consider the system, t () t = f () t, t (.4) uu () r '( t) = A uur ( t) f uur, t with the homogeneous initial condition uu r (0) = 0 uur Let () () t. (.5). (.6) be the solution of system (.5) together with (.6).

3 B. Bhaskara Rama Sarma,.Ch. Pattabhiramacharyulu, S.V.. L. Lalitha International ejournal of Mathematics and Engineering 8 (00) Stage IV : An approximate solution of non-linear system (.) with (.) is given by uur uur() uur () () t = () t () t. (.7) SECTIO II. In this section we obtain the approximate solution of a typical two-species Prey-Predator eco-system with death rate for Predator and replenishments for both prey and predator.. The system under study is d = a a a + h (.) d = a + a a + h with initial conditions i (0) = i0 = i =,. (.) The computations of recursive procedure explained in section are carried out. Stage I : Taking the system (.) with linear terms along with (.) we get d d = a = a (.3) along with i (0) = i0 : i =,. (.4) The solution of (.3) with (.4) be given by = exp a t () { } 0 () = exp { a t } 0 Stage II : Basing on (.5) h, h of (.) are calculated as h t = a exp a t + a exp a + a t h () 0 ( ) 0 0 {( ) } () t = a exp( a t) a exp{ ( a + a ) t} (.5) (.6) Stage III : Using (.6) along with homogeneous initial conditions we set up the linear system d = a + h () t (.7) d = a + h () t along with (0) = (0) = 0. (.8) The solution of (.7) along with (.8) is now given as,

4 B. Bhaskara Rama Sarma,.Ch. Pattabhiramacharyulu, S.V.. L. Lalitha International ejournal of Mathematics and Engineering 8 (00) a a ( ) 0 0 = exp( a t) ( exp( a t) ) + ( exp( a t) ) 0 a a ( ) a 0 a0 = 0 exp( at) ( exp( at) ) ( exp( at ) ) a a Stage IV : An approximate solution to the system (.) is now provided as () () = () ( ) () t = () ( ) () t = a 0 a i.e. a 0 a. umerical computation : (.0) 0 0 () t = exp( a t) ( exp( a t) ) ( exp( a t) ) 0 0 () t = exp( a t) ( exp( a t) ) + ( exp( a t) ) a a a a (.9) (.0) (t), (t) are obtained numerically for a sampled initial values 0 =, 0 = 0.5 and with species competing parameters. a = a = a = 0.5,.0,.5, a = 0.5,.0,.5,.0 a = 0.,,.5 All the graphs showing trajectories are illustrated in Fig. Fig.. Fig. Fig.

5 B. Bhaskara Rama Sarma,.Ch. Pattabhiramacharyulu, S.V.. L. Lalitha International ejournal of Mathematics and Engineering 8 (00) Fig. 4 Fig. 3 Fig. 5 Fig. 6

6 B. Bhaskara Rama Sarma,.Ch. Pattabhiramacharyulu, S.V.. L. Lalitha International ejournal of Mathematics and Engineering 8 (00) Fig. 7 Fig. 8 Fig. 9 Fig. 0

7 B. Bhaskara Rama Sarma,.Ch. Pattabhiramacharyulu, S.V.. L. Lalitha International ejournal of Mathematics and Engineering 8 (00) Fig. Fig. 3.3 Conclusions from the graphs: Following conclusions are derived from the graphs (Fig. Fig.). If Growth rate of second species S decreases the curves are with decreasing Steepness.. Both, decrease with t as it is expected in a competing process because of utilization of energy during the predation. 3. For a <, weak competition of S over S, falls with slower rate than. However with increasing growth rate a of S steepness increases for the curves and falling rate is decreased with comparison with. slowly falls down. With increasing a steepness decreases. 4. For a =, equal competition of S & S the steepness of increase with a. However falling of is faster along with increasing a. 5. For a >, S is stronger than S it is observed that is increasing. This tendency is observed at slow rate in case of a =. This behaviour is expected of S because of resource limiting term and death rate are present. 6. Inspite of death rate of S, falls much faster than. However this fall becomes slower in case of a >. 7. As the resource limiting coefficients a of S increases falls down rapidly. Trend index: a decreases steepness increases a decreases steepness falls a decreases steepness increases

8 B. Bhaskara Rama Sarma,.Ch. Pattabhiramacharyulu, S.V.. L. Lalitha International ejournal of Mathematics and Engineering 8 (00) REFERECES [] Bhaskara Rama Sarma.B &. Ch. Pattabhiramacharyulu: Stability Analysis of a two-species competitive eco-system-,international journal of logic based intelligent systems,volume-, o., 008,PP [] Bhaskara Rama Sarma.B,. Ch. Pattabhiramacharyulu & S.V..L.Lalitha : A recursive procedure for general prey-predator eco-system ;Communicated to Bulletin of Marathwada Math.Association, Aurangabad, Maharastra (April,009) [3] Bhaskara Rama Sarma.B,. Ch. Pattabhiramacharyulu &S.V..L.Lalitha : A recursive procedure for two-species competitive eco-systemwith decay and replenishment for one of the species Communicated to Acta Ciencia Indica, ew Delhi (October,008). [4] Lakshmi arayan. K: A Mathematical study of a prey- predator ecological model with a partial cover for the prey and alternate food for the predator, Ph.D Thesis, J..T.U. (005) [5] Srinivas..C : Some Mathematical Aspects of Modelling in Bio-Medical Sciences - Ph.D. Thesis Submitted to Kakatiya University (99).

A RECURSIVE PROCEDURE FOR COMMENSAL- HOST ECOLOGICAL MODEL WITH REPLENISHMENT RATE FOR BOTH THE SPECIES - A NUMERICAL APPROACH

A RECURSIVE PROCEDURE FOR COMMENSAL- HOST ECOLOGICAL MODEL WITH REPLENISHMENT RATE FOR BOTH THE SPECIES - A NUMERICAL APPROACH VOL. 5, NO., OCTOBER ISSN 89-668 6- Asian Research Publishing Network (ARPN). All rights reserved. A RECURSIVE PROCEDURE FOR COMMENSAL- HOST ECOLOGICAL MODEL WITH REPLENISHMENT RATE FOR BOTH THE SPECIES

More information

International ejournals

International ejournals Available online at www.internationalejournals.com International ejournals ISSN 0976 4 International ejournal of Mathematics and Engineering 95 (00) 889-894 GLOBAL STABILITY OF AN IMMIGRATING COMMENSAL

More information

Ecological Ammensal Model With Reserve For One Species and Harvesting For Both the Species at Variable Rates

Ecological Ammensal Model With Reserve For One Species and Harvesting For Both the Species at Variable Rates Int. J. Advance. Soft Comput. Appl., Vol., No. 3, November 00 ISSN 074-853; Copyright ICSRS Publication, 00 www.i-csrs.org Ecological Ammensal Model With Reserve For One Species and Harvesting For Both

More information

A Stability Analysis on Models of Cooperative and Competitive Species

A Stability Analysis on Models of Cooperative and Competitive Species Research Journal of Mathematical and Statistical Sciences ISSN 2320 6047 A Stability Analysis on Models of Cooperative and Competitive Species Abstract Gideon Kwadzo Gogovi 1, Justice Kwame Appati 1 and

More information

A Study of the Variational Iteration Method for Solving. Three Species Food Web Model

A Study of the Variational Iteration Method for Solving. Three Species Food Web Model Int. Journal of Math. Analysis, Vol. 6, 2012, no. 16, 753-759 A Study of the Variational Iteration Method for Solving Three Species Food Web Model D. Venu Gopala Rao Home: Plot No.159, Sector-12, M.V.P.Colony,

More information

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material.

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material. Lecture 1 1 1 Department of Mathematics Dartmouth College 3/28/07 Outline Course Overview http://www.math.dartmouth.edu/~m23s07 Matlab Ordinary differential equations Definition An ordinary differential

More information

International ejournals International ejournal of Mathematics and Engineering 91 (2010)

International ejournals International ejournal of Mathematics and Engineering 91 (2010) Available online at www.internationalejournals.com International ejournals International ejournal of Mathematics and Engineering 9 (00 866-87 ISS 0976 4 A TWO SPECIES MOA AMMESALISM -GLOBAL STABILITY AALYSIS

More information

Introduction to Dynamical Systems

Introduction to Dynamical Systems Introduction to Dynamical Systems Autonomous Planar Systems Vector form of a Dynamical System Trajectories Trajectories Don t Cross Equilibria Population Biology Rabbit-Fox System Trout System Trout System

More information

The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor

The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor , pp. 35-46 http://dx.doi.org/10.14257/ijbsbt.2017.9.3.04 The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor Alemu Geleta Wedajo

More information

An M/M/1/N Queuing system with Encouraged Arrivals

An M/M/1/N Queuing system with Encouraged Arrivals Global Journal of Pure and Applied Mathematics. ISS 0973-1768 Volume 13, umber 7 (2017), pp. 3443-3453 Research India Publications http://www.ripublication.com An M/M/1/ Queuing system with Encouraged

More information

All living organisms are limited by factors in the environment

All living organisms are limited by factors in the environment All living organisms are limited by factors in the environment Monday, October 30 POPULATION ECOLOGY Monday, October 30 POPULATION ECOLOGY Population Definition Root of the word: The word in another language

More information

Getting Started With The Predator - Prey Model: Nullclines

Getting Started With The Predator - Prey Model: Nullclines Getting Started With The Predator - Prey Model: Nullclines James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline The Predator

More information

Math Lecture 46

Math Lecture 46 Math 2280 - Lecture 46 Dylan Zwick Fall 2013 Today we re going to use the tools we ve developed in the last two lectures to analyze some systems of nonlinear differential equations that arise in simple

More information

DIVERSITIES OF COMMENSAL & AMMENSAL MATHEMATICAL MODELS WITH LIMITED RESOURCES IN COMMENSAL /AMMENSAL WASHED- OUT STATE

DIVERSITIES OF COMMENSAL & AMMENSAL MATHEMATICAL MODELS WITH LIMITED RESOURCES IN COMMENSAL /AMMENSAL WASHED- OUT STATE Volume o 04, Special Issue o. 0, March 05 ISS (online): 394-537 DIVERSITIES OF COMMESAL & AMMESAL MATHEMATICAL MODELS WITH LIMITED RESOURCES I COMMESAL /AMMESAL WASHED- OUT STATE Dr.K.V.L..Acharyulu &

More information

2D-Volterra-Lotka Modeling For 2 Species

2D-Volterra-Lotka Modeling For 2 Species Majalat Al-Ulum Al-Insaniya wat - Tatbiqiya 2D-Volterra-Lotka Modeling For 2 Species Alhashmi Darah 1 University of Almergeb Department of Mathematics Faculty of Science Zliten Libya. Abstract The purpose

More information

A Model of two mutually interacting Species with Mortality Rate for the Second Species

A Model of two mutually interacting Species with Mortality Rate for the Second Species Avilble online t www.pelgireserchlibrry.com Advnces in Applied Science Reserch, 0, 3 ():757-764 ISS: 0976-860 CODE (USA): AASRFC A Model of two mutully intercting Species with Mortlity Rte for the Second

More information

7. E C. 5 B. 1 D E V E L O P A N D U S E M O D E L S T O E X P L A I N H O W O R G A N I S M S I N T E R A C T I N A C O M P E T I T I V E O R M U T

7. E C. 5 B. 1 D E V E L O P A N D U S E M O D E L S T O E X P L A I N H O W O R G A N I S M S I N T E R A C T I N A C O M P E T I T I V E O R M U T 7. E C. 5 B. 1 D E V E L O P A N D U S E M O D E L S T O E X P L A I N H O W O R G A N I S M S I N T E R A C T I N A C O M P E T I T I V E O R M U T U A L L Y B E N E F I C I A L R E L A T I O N S H I

More information

A Discrete Model of Three Species Prey- Predator System

A Discrete Model of Three Species Prey- Predator System ISSN(Online): 39-8753 ISSN (Print): 347-670 (An ISO 397: 007 Certified Organization) Vol. 4, Issue, January 05 A Discrete Model of Three Species Prey- Predator System A.George Maria Selvam, R.Janagaraj

More information

Gerardo Zavala. Math 388. Predator-Prey Models

Gerardo Zavala. Math 388. Predator-Prey Models Gerardo Zavala Math 388 Predator-Prey Models Spring 2013 1 History In the 1920s A. J. Lotka developed a mathematical model for the interaction between two species. The mathematician Vito Volterra worked

More information

Population Dynamics II

Population Dynamics II Population Dynamics II In this class, we shall analyze behavioral patterns of ecosystems, in which more than two species interact with each other. Such systems frequently exhibit chaotic behavior. Chaotic

More information

Population Dynamics Graphs

Population Dynamics Graphs Dynamics Graphs OJETIVES: - to learn about three types of population dynamics graphs - to determine which type of graph you constructed from the Pike and Perch Game - to interpret (describe, analyze) graphs

More information

Populations Study Guide (KEY) All the members of a species living in the same place at the same time.

Populations Study Guide (KEY) All the members of a species living in the same place at the same time. Populations Study Guide (KEY) 1. Define Population. All the members of a species living in the same place at the same time. 2. List and explain the three terms that describe population. a. Size. How large

More information

COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE

COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 2, Number, Spring 22 COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE SILOGINI THANARAJAH AND HAO WANG ABSTRACT. In many studies of

More information

Dynamical Analysis of a Harvested Predator-prey. Model with Ratio-dependent Response Function. and Prey Refuge

Dynamical Analysis of a Harvested Predator-prey. Model with Ratio-dependent Response Function. and Prey Refuge Applied Mathematical Sciences, Vol. 8, 214, no. 11, 527-537 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/12988/ams.214.4275 Dynamical Analysis of a Harvested Predator-prey Model with Ratio-dependent

More information

MATH 250 Homework 4: Due May 4, 2017

MATH 250 Homework 4: Due May 4, 2017 Due May 4, 17 Answer the following questions to the best of your ability. Solutions should be typed. Any plots or graphs should be included with the question (please include the questions in your solutions).

More information

Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses Journal of Physics: Conference Series PAPER OPEN ACCESS Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses To cite this article: D Savitri 2018

More information

International ejournals

International ejournals ISSN 2249 5460 Available online at www.internationalejournals.com International ejournals International Journal of Mathematical Sciences, Technology and Humanities 19 (2012) 193 200 MATHEMATICAL MODELLING

More information

Lab 5: Nonlinear Systems

Lab 5: Nonlinear Systems Lab 5: Nonlinear Systems Goals In this lab you will use the pplane6 program to study two nonlinear systems by direct numerical simulation. The first model, from population biology, displays interesting

More information

Exam 2 Study Guide: MATH 2080: Summer I 2016

Exam 2 Study Guide: MATH 2080: Summer I 2016 Exam Study Guide: MATH 080: Summer I 016 Dr. Peterson June 7 016 First Order Problems Solve the following IVP s by inspection (i.e. guessing). Sketch a careful graph of each solution. (a) u u; u(0) 0.

More information

D. Correct! Allelopathy is a form of interference competition in plants. Therefore this answer is correct.

D. Correct! Allelopathy is a form of interference competition in plants. Therefore this answer is correct. Ecology Problem Drill 18: Competition in Ecology Question No. 1 of 10 Question 1. The concept of allelopathy focuses on which of the following: (A) Carrying capacity (B) Limiting resource (C) Law of the

More information

INTERPRETING POPULATION DYNAMICS GRAPH

INTERPRETING POPULATION DYNAMICS GRAPH INTERPRETING POPULATION DYNAMIS GRAPH OJETIVES TASKS Name: To learn about three types of population dynamics graphs To determine which type of graph you constructed from the Pike and Perch Game To interpret

More information

VITA EDUCATION. Arizona State University, , Ph.D. Huazhong Univ. of Sci. and Tech., , M.S. Lanzhou University, , B.S.

VITA EDUCATION. Arizona State University, , Ph.D. Huazhong Univ. of Sci. and Tech., , M.S. Lanzhou University, , B.S. VITA Bingtuan Li Department of Mathematics University of Louisville Louisville, KY 40292 Office phone: (502) 852-6149 Fax: (502) 852-7132 E-mail: bing.li@louisville.edu EDUCATION Arizona State University,

More information

Population Ecology and the Distribution of Organisms. Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e)

Population Ecology and the Distribution of Organisms. Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e) Population Ecology and the Distribution of Organisms Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e) Ecology The scientific study of the interactions between organisms and the environment

More information

3.5 Competition Models: Principle of Competitive Exclusion

3.5 Competition Models: Principle of Competitive Exclusion 94 3. Models for Interacting Populations different dimensional parameter changes. For example, doubling the carrying capacity K is exactly equivalent to halving the predator response parameter D. The dimensionless

More information

A SPECIAL CASE OF ECOLOGICAL COMMENSALISM- PHASE PLANE ANALYSIS

A SPECIAL CASE OF ECOLOGICAL COMMENSALISM- PHASE PLANE ANALYSIS A SPECIAL CASE OF ECOLOGICAL COMMENSALISM- PHASE PLANE ANALYSIS Dr. K.V. L. N. Acharyulu Associate Professor, Department of Mathematics, Bapatla Engineering College, Bapatla, (India) n whet ABSTRACT The

More information

THETA-LOGISTIC PREDATOR PREY

THETA-LOGISTIC PREDATOR PREY THETA-LOGISTIC PREDATOR PREY What are the assumptions of this model? 1.) Functional responses are non-linear. Functional response refers to a change in the rate of exploitation of prey by an individual

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

TWO VISIBLE SPECTROPHOTOMETRIC METHODS FOR DETERMINATION OF NEPAFENAC IN OPHTHALMIC SUSPENSION

TWO VISIBLE SPECTROPHOTOMETRIC METHODS FOR DETERMINATION OF NEPAFENAC IN OPHTHALMIC SUSPENSION Int. J. Chem. Sci.: 8(4), 2010, 2358-2362 TWO VISIBLE SPECTROPHOTOMETRIC METHODS FOR DETERMINATION OF NEPAFENAC IN OPHTHALMIC SUSPENSION Ch. HARI PRASAD *, B. ANUPAMA, V. JAGATHI, P. BASKARA RAO and G.

More information

Further analysis. Objective Based on the understanding of the LV model from last report, further study the behaviours of the LV equations parameters.

Further analysis. Objective Based on the understanding of the LV model from last report, further study the behaviours of the LV equations parameters. Further analysis Objective Based on the understanding of the LV model from last report, further study the behaviours of the LV equations parameters. Changes have been made Method of finding the mean is

More information

2015 Holl ISU MSM Ames, Iowa. A Few Good ODEs: An Introduction to Modeling and Computation

2015 Holl ISU MSM Ames, Iowa. A Few Good ODEs: An Introduction to Modeling and Computation 2015 Holl Mini-Conference @ ISU MSM Ames, Iowa A Few Good ODEs: An Introduction to Modeling and Computation James A. Rossmanith Department of Mathematics Iowa State University June 20 th, 2015 J.A. Rossmanith

More information

Math 266: Phase Plane Portrait

Math 266: Phase Plane Portrait Math 266: Phase Plane Portrait Long Jin Purdue, Spring 2018 Review: Phase line for an autonomous equation For a single autonomous equation y = f (y) we used a phase line to illustrate the equilibrium solutions

More information

Chapter 6 Population and Community Ecology

Chapter 6 Population and Community Ecology Chapter 6 Population and Community Ecology Friedland and Relyea Environmental Science for AP, second edition 2015 W.H. Freeman and Company/BFW AP is a trademark registered and/or owned by the College Board,

More information

Environmental Science

Environmental Science Environmental Science Monday, January 25, 2016 Do)Now:& Intro.(to(Semester(Two ( 1. Write(down(today s(flt( 2. What(do(we(study(in(environmental(science?(( If(you re(not(sure,(make(a(guess.( 3. Do(you(think(humans(have(a(responsibility(

More information

THE SEPARATRIX FOR A SECOND ORDER ORDINARY DIFFERENTIAL EQUATION OR A 2 2 SYSTEM OF FIRST ORDER ODE WHICH ALLOWS A PHASE PLANE QUANTITATIVE ANALYSIS

THE SEPARATRIX FOR A SECOND ORDER ORDINARY DIFFERENTIAL EQUATION OR A 2 2 SYSTEM OF FIRST ORDER ODE WHICH ALLOWS A PHASE PLANE QUANTITATIVE ANALYSIS THE SEPARATRIX FOR A SECOND ORDER ORDINARY DIFFERENTIAL EQUATION OR A SYSTEM OF FIRST ORDER ODE WHICH ALLOWS A PHASE PLANE QUANTITATIVE ANALYSIS Maria P. Skhosana and Stephan V. Joubert, Tshwane University

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

Graphing Motion (Part 1 Distance)

Graphing Motion (Part 1 Distance) Unit Graphing Motion (Part 1 Distance) Directions: Work in your group (2 or 3 people) on the following activity. Choose ONE group member to be the subject (the person who walks to/from motion detector).

More information

GHS S.4 BIOLOGY TEST 2 APRIL Answer all the questions in Section A and B. in the spaces provided

GHS S.4 BIOLOGY TEST 2 APRIL Answer all the questions in Section A and B. in the spaces provided GHS S.4 BIOLOGY TEST 2 APRIL 2016 TIME: 1 HOUR Instructions: Answer all the questions in Section A and B. in the spaces provided ANSERS TO SECTION A 1 6 11 16 21 26 2 7 12 17 22 27 3 8 13 18 23 28 4 9

More information

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

More information

EG4321/EG7040. Nonlinear Control. Dr. Matt Turner

EG4321/EG7040. Nonlinear Control. Dr. Matt Turner EG4321/EG7040 Nonlinear Control Dr. Matt Turner EG4321/EG7040 [An introduction to] Nonlinear Control Dr. Matt Turner EG4321/EG7040 [An introduction to] Nonlinear [System Analysis] and Control Dr. Matt

More information

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

HOMEWORK ASSIGNMENTS FOR: Grade

HOMEWORK ASSIGNMENTS FOR: Grade HOMEWORK ASSIGNMENTS FOR: Date 4/25/18 Wednesday Teacher Ms. Weger Subject/Grade Science 7 th Grade In-Class: REVIEW FOR CH. 22 TEST Go over the 22-3 Think Questions Look at the data from the Oh Deer!

More information

REVISION: POPULATION ECOLOGY 01 OCTOBER 2014

REVISION: POPULATION ECOLOGY 01 OCTOBER 2014 REVISION: POPULATION ECOLOGY 01 OCTOBER 2014 Lesson Description In this lesson we revise: Introduction to Population Ecology What s Happening in the Environment Human Population: Analysis & Predictions

More information

Name : Dr. Shivajirao Nivrutti Thore Designation : Principal College : M.S.P.Mandal s, Deogiri College, Aurangabad. (MS) INDIA Date of Birth : 25

Name : Dr. Shivajirao Nivrutti Thore Designation : Principal College : M.S.P.Mandal s, Deogiri College, Aurangabad. (MS) INDIA Date of Birth : 25 BIO-DATA 1 Name : Dr. Shivajirao Nivrutti Thore Designation : Principal College : M.S.P.Mandal s, Deogiri College, Aurangabad. (MS) INDIA Date of Birth : 25 June 1967 Date of Appointment : 16 October 1990

More information

Lecture 3. Dynamical Systems in Continuous Time

Lecture 3. Dynamical Systems in Continuous Time Lecture 3. Dynamical Systems in Continuous Time University of British Columbia, Vancouver Yue-Xian Li November 2, 2017 1 3.1 Exponential growth and decay A Population With Generation Overlap Consider a

More information

STUDY OF THE DYNAMICAL MODEL OF HIV

STUDY OF THE DYNAMICAL MODEL OF HIV STUDY OF THE DYNAMICAL MODEL OF HIV M.A. Lapshova, E.A. Shchepakina Samara National Research University, Samara, Russia Abstract. The paper is devoted to the study of the dynamical model of HIV. An application

More information

POPULATION DYNAMICS: TWO SPECIES MODELS; Susceptible Infected Recovered (SIR) MODEL. If they co-exist in the same environment:

POPULATION DYNAMICS: TWO SPECIES MODELS; Susceptible Infected Recovered (SIR) MODEL. If they co-exist in the same environment: POPULATION DYNAMICS: TWO SPECIES MODELS; Susceptible Infected Recovered (SIR) MODEL Next logical step: consider dynamics of more than one species. We start with models of 2 interacting species. We consider,

More information

CHAPTER 5. Interactions in the Ecosystem

CHAPTER 5. Interactions in the Ecosystem CHAPTER 5 Interactions in the Ecosystem 1 SECTION 3.3 - THE ECOSYSTEM 2 SECTION 3.3 - THE ECOSYSTEM Levels of Organization Individual one organism from a species. Species a group of organisms so similar

More information

Ecology. Part 4. Populations Part 5. Communities Part 6. Biodiversity and Conservation

Ecology. Part 4. Populations Part 5. Communities Part 6. Biodiversity and Conservation Ecology Part 4. Populations Part 5. Communities Part 6. Biodiversity and Conservation Population Ecology: Population Growth Models Population Limiting Factors Population growth models Logistic

More information

Differential Equations with Boundary Value Problems

Differential Equations with Boundary Value Problems Differential Equations with Boundary Value Problems John Polking Rice University Albert Boggess Texas A&M University David Arnold College of the Redwoods Pearson Education, Inc. Upper Saddle River, New

More information

Analysis of a Prey-Predator System with Modified Transmission Function

Analysis of a Prey-Predator System with Modified Transmission Function Research Paper American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-3, Issue-9, pp-194-202 www.ajer.org Open Access Analysis of a Prey-Predator System with Modified

More information

We want to determine what the graph of the logarithmic function. y = log a. (x) looks like for values of a such that a > 1

We want to determine what the graph of the logarithmic function. y = log a. (x) looks like for values of a such that a > 1 Section 9 A: Graphs of Increasing Logarithmic Functions We want to determine what the graph of the logarithmic function y = log a looks like for values of a such that a > We will select a value a such

More information

DYNAMICS OF A PREDATOR-PREY INTERACTION IN CHEMOSTAT WITH VARIABLE YIELD

DYNAMICS OF A PREDATOR-PREY INTERACTION IN CHEMOSTAT WITH VARIABLE YIELD Journal of Sustainability Science Management Volume 10 Number 2, December 2015: 16-23 ISSN: 1823-8556 Penerbit UMT DYNAMICS OF A PREDATOR-PREY INTERACTION IN CHEMOSTAT WITH VARIABLE YIELD SARKER MD SOHEL

More information

1.2. Introduction to Modeling. P (t) = r P (t) (b) When r > 0 this is the exponential growth equation.

1.2. Introduction to Modeling. P (t) = r P (t) (b) When r > 0 this is the exponential growth equation. G. NAGY ODE January 9, 2018 1 1.2. Introduction to Modeling Section Objective(s): Review of Exponential Growth. The Logistic Population Model. Competing Species Model. Overview of Mathematical Models.

More information

A population is a group of individuals of the same species occupying a particular area at the same time

A population is a group of individuals of the same species occupying a particular area at the same time A population is a group of individuals of the same species occupying a particular area at the same time Population Growth As long as the birth rate exceeds the death rate a population will grow Immigration

More information

Bees and Flowers. Unit 1: Qualitative and Graphical Approaches

Bees and Flowers. Unit 1: Qualitative and Graphical Approaches Bees and Flowers Often scientists use rate of change equations in their stu of population growth for one or more species. In this problem we stu systems of rate of change equations designed to inform us

More information

UNIQUENESS OF AMMENSAL & COMMENSAL MATHEMATICAL MODELS WITH LIMITED RESOURCES IN FULLY WASHED-OUT STATE

UNIQUENESS OF AMMENSAL & COMMENSAL MATHEMATICAL MODELS WITH LIMITED RESOURCES IN FULLY WASHED-OUT STATE UNIQUENESS OF AMMENSAL & COMMENSAL MATHEMATICAL MODELS WITH LIMITED RESOURCES IN FULLY WASHED-OUT STATE 1 Dr. K.V.L.N.Acharyulu & Dr.N.Phani Kumar 1 Associate Professor, Department of Mathematics, Bapatla

More information

An Application of Perturbation Methods in Evolutionary Ecology

An Application of Perturbation Methods in Evolutionary Ecology Dynamics at the Horsetooth Volume 2A, 2010. Focused Issue: Asymptotics and Perturbations An Application of Perturbation Methods in Evolutionary Ecology Department of Mathematics Colorado State University

More information

Applications in Biology

Applications in Biology 11 Applications in Biology In this chapter we make use of the techniques developed in the previous few chapters to examine some nonlinear systems that have been used as mathematical models for a variety

More information

MODELLING AND REAL TIME CONTROL OF TWO CONICAL TANK SYSTEMS OF NON-INTERACTING AND INTERACTING TYPE

MODELLING AND REAL TIME CONTROL OF TWO CONICAL TANK SYSTEMS OF NON-INTERACTING AND INTERACTING TYPE MODELLING AND REAL TIME CONTROL OF TWO CONICAL TANK SYSTEMS OF NON-INTERACTING AND INTERACTING TYPE D. Hariharan, S.Vijayachitra P.G. Scholar, M.E Control and Instrumentation Engineering, Kongu Engineering

More information

APPM 2360 Lab #3: The Predator Prey Model

APPM 2360 Lab #3: The Predator Prey Model APPM 2360 Lab #3: The Predator Prey Model 1 Instructions Labs may be done in groups of 3 or less. One report must be turned in for each group and must be in PDF format. Labs must include each student s:

More information

A NUMERICAL STUDY ON PREDATOR PREY MODEL

A NUMERICAL STUDY ON PREDATOR PREY MODEL International Conference Mathematical and Computational Biology 2011 International Journal of Modern Physics: Conference Series Vol. 9 (2012) 347 353 World Scientific Publishing Company DOI: 10.1142/S2010194512005417

More information

CURRICULUM VITAE. Course Year University Subject. Sri Venkateswara University

CURRICULUM VITAE. Course Year University Subject. Sri Venkateswara University CURRICULUM VITAE Name : Smt. Dr. D. SRIPRIYA Father s Name : D.M. Chandra Sekhar Address for correspondence : Asst. Professor, Dept. of Biotechnology School of Herbal Studies & Naturo Sciences Dravidian

More information

Study Guide: Unit A Interactions & Ecosystems

Study Guide: Unit A Interactions & Ecosystems Study Guide: Unit A Interactions & Ecosystems Name: Pattern: Vocabulary: Section 1 Section 2 Ecosystem Consumer Biotic Producer Abiotic Carnivore Organism Herbivore Species Omnivore Population Decomposer

More information

Sum divisor cordial labeling for star and ladder related graphs

Sum divisor cordial labeling for star and ladder related graphs Proyecciones Journal of Mathematics Vol. 35, N o 4, pp. 437-455, December 016. Universidad Católica del Norte Antofagasta - Chile Sum divisor cordial labeling for star and ladder related graphs A. Lourdusamy

More information

CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere)

CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere) WLHS / AP Bio / Monson Name CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere) 52.1: Earth s climate varies by latitude and season and is changing rapidly (p. 1144-1150) 1) Distinguish

More information

Ecology: Part 1 Mrs. Bradbury

Ecology: Part 1 Mrs. Bradbury Ecology: Part 1 Mrs. Bradbury Biotic and Abiotic Factors All environments include living and non-living things, that affect the organisms that live there. Biotic Factors all the living organisms in an

More information

Local Stability Analysis of a Mathematical Model of the Interaction of Two Populations of Differential Equations (Host-Parasitoid)

Local Stability Analysis of a Mathematical Model of the Interaction of Two Populations of Differential Equations (Host-Parasitoid) Biology Medicine & Natural Product Chemistry ISSN: 089-6514 Volume 5 Number 1 016 Pages: 9-14 DOI: 10.1441/biomedich.016.51.9-14 Local Stability Analysis of a Mathematical Model of the Interaction of Two

More information

Key words and phrases. Bifurcation, Difference Equations, Fixed Points, Predator - Prey System, Stability.

Key words and phrases. Bifurcation, Difference Equations, Fixed Points, Predator - Prey System, Stability. ISO 9001:008 Certified Volume, Issue, March 013 Dynamical Behavior in a Discrete Prey- Predator Interactions M.ReniSagaya Raj 1, A.George Maria Selvam, R.Janagaraj 3.and D.Pushparajan 4 1,,3 Sacred Heart

More information

Question #01. Feedback on Each Answer Choice. Solution. Ecology Problem Drill 20: Mutualism and Coevolution

Question #01. Feedback on Each Answer Choice. Solution. Ecology Problem Drill 20: Mutualism and Coevolution Ecology Problem Drill 20: Mutualism and Coevolution Question No. 1 of 10 Question 1. The concept of mutualism focuses on which of the following: Question #01 (A) Interaction between two competing species

More information

Ecology. Bio Sphere. Feeding Relationships

Ecology. Bio Sphere. Feeding Relationships Ecology Bio Sphere Feeding Relationships with a whole lot of other creatures Ecology Putting it all together study of interactions between creatures & their environment, because Everything is connected

More information

Chapter 6 Reading Questions

Chapter 6 Reading Questions Chapter 6 Reading Questions 1. Fill in 5 key events in the re-establishment of the New England forest in the Opening Story: 1. Farmers begin leaving 2. 3. 4. 5. 6. 7. Broadleaf forest reestablished 2.

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

6.3. Nonlinear Systems of Equations

6.3. Nonlinear Systems of Equations G. NAGY ODE November,.. Nonlinear Systems of Equations Section Objective(s): Part One: Two-Dimensional Nonlinear Systems. ritical Points and Linearization. The Hartman-Grobman Theorem. Part Two: ompeting

More information

Answer Key Niche and Carrying Capacity Review Questions 1. A 2. A 3. B 4. A 5. B 6. A 7. D 8. C 9. A 10. B 11. A 12. D 13. B 14. D 15.

Answer Key Niche and Carrying Capacity Review Questions 1. A 2. A 3. B 4. A 5. B 6. A 7. D 8. C 9. A 10. B 11. A 12. D 13. B 14. D 15. Answer Key Niche and Carrying Capacity Review Questions 1. A 2. A 3. B 4. A 5. B 6. A 7. D 8. C 9. A 10. B 11. A 12. D 13. B 14. D 15. D 1. The diagram below represents a remora fish attached to a shark.

More information

8 Ecosystem stability

8 Ecosystem stability 8 Ecosystem stability References: May [47], Strogatz [48]. In these lectures we consider models of populations, with an emphasis on the conditions for stability and instability. 8.1 Dynamics of a single

More information

LIMITING IONIC PARTIAL MOLAR VOLUMES OF R 4 N + AND I IN AQUEOUS METHANOL AT K

LIMITING IONIC PARTIAL MOLAR VOLUMES OF R 4 N + AND I IN AQUEOUS METHANOL AT K Int. J. Chem. Sci.: 11(1), 2013, 321-330 ISSN 0972-768X www.sadgurupublications.com LIMITING IONIC PARTIAL MOLAR VOLUMES OF R 4 N + AND I IN AQUEOUS METHANOL AT 298.15 K N. P. NIKAM * and S. V. PATIL a

More information

Focus Questions: 3-1: Describe how objects speed up and slow down 3-2: Describes how objects change direction

Focus Questions: 3-1: Describe how objects speed up and slow down 3-2: Describes how objects change direction Motion Graphing Focus Questions: 3-1: Describe how objects speed up and slow down 3-2: Describes how objects change direction Motion Graphing Speed Graphs A typical speed graph will have distance or position

More information

Graphs of Increasing Logarithmic Functions

Graphs of Increasing Logarithmic Functions Section 5 4A: Graphs of Increasing Logarithmic Functions We want to determine what the graph of the logarithmic function y = log a looks like for values of a such that a > We will select a value a such

More information

Stability Analysis of a Population Dynamics Model with Allee Effect

Stability Analysis of a Population Dynamics Model with Allee Effect Stability Analysis of a Population Dynamics Model with Allee Effect Canan Celik Abstract In this study, we focus on the stability analysis of equilibrium points of population dynamics with delay when the

More information

Math 215/255 Final Exam (Dec 2005)

Math 215/255 Final Exam (Dec 2005) Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.

More information

4. Ecology and Population Biology

4. Ecology and Population Biology 4. Ecology and Population Biology 4.1 Ecology and The Energy Cycle 4.2 Ecological Cycles 4.3 Population Growth and Models 4.4 Population Growth and Limiting Factors 4.5 Community Structure and Biogeography

More information

SPATIO-TEMPORAL ANALYSIS OF URBAN POPULATION GROWTH AND DISTRIBUTION IN AURANGABAD CITY

SPATIO-TEMPORAL ANALYSIS OF URBAN POPULATION GROWTH AND DISTRIBUTION IN AURANGABAD CITY International Journal of Research in Social Sciences Vol. 8 Issue 3, March 2018, ISSN: 2249-2496 Impact Factor: 7.081 Journal Homepage: Double-Blind Peer Reviewed Refereed Open Access International Journal

More information

An Exponential Matrix Method for Numerical Solutions of Hantavirus Infection Model

An Exponential Matrix Method for Numerical Solutions of Hantavirus Infection Model Available at http://pvamu.edu/aam Appl. Appl. Math. ISS: 1932-9466 Vol. 8, Issue 1 (June 2013), pp. 99-115 Applications and Applied Mathematics: An International Journal (AAM) An Exponential Matrix Method

More information

Density Dependent Predator Death Prevalence Chaos in a Tri-Trophic Food Chain Model

Density Dependent Predator Death Prevalence Chaos in a Tri-Trophic Food Chain Model Nonlinear Analysis: Modelling and Control, 28, Vol. 13, No. 3, 35 324 Density Dependent Predator Death Prevalence Chaos in a Tri-Trophic Food Chain Model M. Bandyopadhyay 1, S. Chatterjee 2, S. Chakraborty

More information

Unit 8: Ecology: Ecosystems and Communities

Unit 8: Ecology: Ecosystems and Communities Unit 8: Ecology: Ecosystems and Communities An ecosystem consists of all the plants and animals that interact with the nonliving things in an area. Biosphere = area on Earth where living things are found

More information

CHAPTER 1 Introduction to Differential Equations 1 CHAPTER 2 First-Order Equations 29

CHAPTER 1 Introduction to Differential Equations 1 CHAPTER 2 First-Order Equations 29 Contents PREFACE xiii CHAPTER 1 Introduction to Differential Equations 1 1.1 Introduction to Differential Equations: Vocabulary... 2 Exercises 1.1 10 1.2 A Graphical Approach to Solutions: Slope Fields

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 6: Population dynamics Ilya Potapov Mathematics Department, TUT Room TD325 Living things are dynamical systems Dynamical systems theory

More information

CS 365 Introduction to Scientific Modeling Fall Semester, 2011 Review

CS 365 Introduction to Scientific Modeling Fall Semester, 2011 Review CS 365 Introduction to Scientific Modeling Fall Semester, 2011 Review Topics" What is a model?" Styles of modeling" How do we evaluate models?" Aggregate models vs. individual models." Cellular automata"

More information

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE UPB Sci Bull, Series A, Vol 79, Iss, 207 ISSN 22-7027 NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE Gabriel Bercu We itroduce two ew sequeces of Euler-Mascheroi type which have fast covergece

More information

Propagation of Plane Waves in Micro-stretch Elastic Solid in Special Case

Propagation of Plane Waves in Micro-stretch Elastic Solid in Special Case Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume 3, Number 6 (7), pp. 43-5 Research India Publications http://www.ripublication.com Propagation of Plane Waves in Micro-stretch Elastic

More information