Fronts for Periodic KPP Equations

Size: px
Start display at page:

Download "Fronts for Periodic KPP Equations"

Transcription

1 Fronts for Periodic KPP Equations Steffen Heinze Bioquant University of Heidelberg September 15th 2010

2 ontent Fronts and Asymptotic Spreading Variational Formulation for the Speed Qualitative onsequences Generalizations

3 KPP in periodic media onsider the KPP equation in a periodic medium: (KPP) t u(t, x) = (A(x) u(t, x)) + f (x, u(t, x)) t > 0, x IR n u(0, x) = u 0 (x) 0 A, b, f are 1 and 1-periodic in each direction x i A(x) IR n n positive definite, not necessarily symmetric f (x, 0) = f (x, 1) = 0 f (x, u)/u is decreasing for u > 0 u f (x, 0) =: µ(x) > 0 for 0 < u < 1 e.g. f (x, u) = µ(x)u(1 u) lassical case n = 1: u t = Au xx + µu(1 u)

4 Travelling waves A travelling wave solution in direction e IR n, e = 1 with speed c satisfies with ξ = ct + e x IR: u(t, x) = U(ξ, x), U(ξ, x) is periodic w.r.t. x i (TW) c ξ U(ξ, x) = ( + e ξ )(A(x)( + e ξ )U(ξ, x)) + f (x, U(ξ, x)) U(, x) = 0, U(, x) = 1 We need the following linear operator. With µ(x) = u f (x, 0) and λ 0 let (L λ φ)(x) = (A(x) φ(x)) + µ(x)φ(x) φ(x)e λe x is 1-periodic Due to the last condition L λ is not selfadjoint! Let k(λ) be the principal eigenvalue with corresponding eigenfunction φ(x) > 0.

5 Theorem (Berestycki, Hamel 02) A travelling wave exist iff k(λ) c c(e) := min λ>0 λ Explanation: Let (U(ξ, x), c) be a travelling wave. U(ξ, x) e λξ v(x), ξ λ > 0, v periodic Then φ(x) := e λe x v(x) > 0 satisfies Lφ(x) = λcφ(x) Hence c = k(λ) λ. onstruction of upper and lower solutions shows, that every c in the range of k(λ) λ occurs. How does c(e) depend on A, µ, e?

6 Asymptotic Spreading onsider an initial value 0 u 0 (x) 1 for KPP with compact, nonempty support and let u(t, x) be the solution. Theorem (Weinberger 02, Beresytcki, Hamel, Nadin 08)) For c(f ) w(e) = min f e>0 f e the following holds lim u(t, x + wte) = 0, x t u(t, x + wte) = 1, x lim t IRn, w > w(e) IRn, 0 w < w(e) w(e) is called the spreading speed in direction e. We will see that the formula for w(e) can be inverted:. c(e) = sup(e f )w(f ) f

7 Variational Formulation of the Speed There exists a variational formulation of k(λ) using the maximum principle: k(λ) = (L λ φ)(x) inf sup 0<φe λe x per 2 x φ(x) Difficult to use for qualitative analysis. Seek an integral variational principle. The adjoint operator of L λ is (L λ ψ) = (A(x)T ψ(x)) + µ(x)ψ(x) ψ(x)e λe x is 1-periodic Observe that k(λ) is a critical value of: ( ψa φ+µφψ) dx critical with constraint φψ dx = 1

8 Goal: Transform s.t. convex and concave part are seperated: φ(x) = α(x)e λρ(x), ψ(x) = α(x)e λρ(x) G(α, ρ, λ) := = α(x), ρ(x) e x are 1-periodic ( ( α λα ρ)a( α + λα ρ) + µα 2) (λ 2 α 2 ρa s ρ + 2λα ρa a α αa s α + µα 2) critical point with constriant α 2 = 1 where A s := 1 2 (A + AT ), A a := 1 2 (A AT )

9 Now the following saddle point property for k(λ) follows: Theorem (Donsker-Varadhan 76, Holland 78) k(λ) = sup inf G(α, ρ, λ) = inf sup G(α, ρ, λ) α ρ ρ α α, ρ e x per 1 (IR n ), α > 0, α 2 dx = 1 The Euler Lagrange equations are: (A s α) + λ 2 α ρa s ρ + λα A a ρ + µα = k(λ)α λ (α 2 A s ρ) + (A a α 2 ) = 0 This is a selfadjoint problem for α coupled to a Poisson equation for ρ.

10 Saddle point principle for the speed k(λ) Goal: Eliminate λ in c(e) = inf λ>0 λ. Idea: onsider ( = 2 if (µα 2 αa s α) G(α, ρ, λ) J(α, ρ) := inf λ>0 λ 1/2 α 2 ρa s ρ) + (µα 2 αa s α) 0 and otherwise. ρa a α 2, Let (α λ, ρ λ ) be the saddle point of G(α, ρ, λ). and let λ > 0 be the unique minimizer of k(λ)/λ. Have to show, that J(α λ, ρ λ ) > holds.

11 This follows from 0 = d dλ k(λ) λ λ = αλ 2 ρ λ A s ρ λ 1 λ 2 (µαλ 2 α λ A s α λ ) Since J is convex, w.r.t. λ, ρ and concave w.r.t. α we obtain: Theorem: (Saddle point principle) c(e) = sup inf J(α, ρ) = inf sup J(α, ρ) α ρ ρ α α, ρ e x per 1 (IR n ), α > 0, α 2 dx = 1

12 Dual variational principle Goal: Dualize the infimum into a supremum: For simplicity assume A a = 0. Let v(x) be a nontrivial periodic divergence free 1 vector field. ( 2 ( e v) = 2 v ρ) va 1 v α 2 α 2 ρa ρ and equality holds iff v = γα 2 A ρ for some γ IR. This is the Euler Lagrange equation for ρ. Theorem (Maximization principle) c(e) 2 /4 = sup α,v! 2 v e α, v per 1 (IR n ), α > 0, (µα 2 αa α) va 1 v α 2 α 2 dx = 1, v = 0, v 0

13 For n = 1 this simplyfies to: c(e) 2 /4 = sup α 1 (µα 2 Aα 2 ) Aα 2

14 Qualitative onsequences Smooth Dependence The principle eigenvalue k(λ) is simple. Hence it depends smoothly on parameters. One can show that d dλ k(λ) λ λ = 0 implies d 2 d 2 λ k(λ) λ λ > 0. Hence the minimal speed also depends smoothly on parameters. Suppose that the functional J depends on a parameter t and (α t, ρ t ) is the saddle point. Then d dt c(t) = tj(α t, ρ t, t)

15 Dependence on the direction Extend the definition of c(e) and w(e) as a homogeneous function to all e IR n of degree 1 and degree -1 respectively. Theorem c(e) and w(e) satisfy: 1. c(e), w(e) > 0, e 0 2. c(se) = sc(e), s 0 3. c(e + f ) c(e) + c(f ) 4. c(e) is the support function of a convex body. 5. 1/w(e) is the support function of the polar convex body, e f i.e. 1/w(e) = sup c(f ) f 0 6. c(e) = sup e f w(f ) f 0

16 Dependence on the period onsider the symmetric case A a = 0. For L > 0 replace in (KPP) A(x) and f (x, u) by A(x/L) and f (x/l, u). A rescaling of x gives: c(l) 2 /4 = sup inf (µα 2 1 α ρ L 2 αas α) Let (α L, ρ L ) be the saddle point of J. Theorem d dl c(l) = 2 L 3 α L A α L 0 α 2 ρa s ρ holds. Equality holds for some L 0 > 0 or equvalently for all L > iff ρa ρ ρa ρ + µ µ = 2 where ρ solves (A ρ) = 0, ρ(x) e x is 1-periodic

17 Remark: There exist nonconstant media, s.t. the speed is independent of the period and the direction. (test case for numerics)

18 Homogenization For simplicity consider the case A a = 0 only. Theorem The following limit exists lim c(l) =: c 0 = 2 µea h e L 0 and equals the minimal speed of the homogenized equation. Proof: hoosing α = 1 in the variational principle gives: c(l) 2 /4 µ inf ρa ρ = 2 µea h e ρ

19 Let (α L, ρ L ) be the critical point of J(α, ρ, L). We know: (µαl 2 1 L 2 α LA α L ) 0 This implies α L 1 in Hper 1. We have for every ρ: c(l) 2 /4 = J(α L, ρ L ) J(α L, ρ) αl 2 ρa ρ µ ρa ρ µαl 2 Minimizing over ρ completes the proof.

20 Large period limit Theorem Suppose A a = 0. Then lim c(l) = c = sup L α,v ( v e) 2 µα2 va 1 v α 2 In 1-D we have c = sup α ( 1 1 µα Aα 2 ) 1 The supremum can be evaluated, conjectured by Hamel, Fayard, Roques 10.

21 Theorem Let µ = sup µ(x) and assume Then 1 µ (a(µ µ)) 1/2 2 0 c = inf η>µ η η µ a ( µ µ a ) 1/2 This holds e.g. if µ is piecewise 2. If µ is constant this gives c = 2 µ ( 1 0 ) 1 1 a

22 Proof: The lower is obtained by choosing α = (a(η µ)) 1/4 in the variational principle and maximizing over η. The upper bound follows from ( ) 2 ψ µ a α 2 1 (η µ) aα 2 and minimizing over η. Equality of these bounds holds iff the condition above holds.

23 Dependence on µ Theorem If A is constant, then µ γ(µ) := c(µ) 2 is increasing and convex. In particular if µ 2 (x) = µ 1 (x + a) holds, then c( µ 1 + µ 2 ) c(µ 1 ) 2 follows, i.e. fragmentation decreases the minimal speed. Proof: Let (α, v) be the maximizer of J (α, v, (µ 1 + µ 2 )/2) where J is the functional of the dual variational principle. c( µ 1 + µ 2 2 ) 2 = J(α, v, µ 1 + µ 2 ) 2 2 = 1 2 J(α, v, µ 1) J(α, v, µ 2) 2 c(µ 1) 2 + c(µ 2 ) 2 2

24 Optimization over µ Theorem Suppose that A is constant and let µ > 0 be given. Then sup 1R µ=µ 0 c(µ) = c(µδ x0 ) where δ x0 is the Dirac functional at x 0. In 1-D this is finite. Proof: The convexity implies for every periodic ν with integral one: c(µ ν) c(µ) The variational formula can be extended to measures. hoosing µ = µδ x0 completes the proof. Related rearrangement results: Nadim (2010)

25 Generalizations Less regular data A, f, µ, e.g. µ could be a characterstic function. f (x, u) < 0 for u > M instead of f (x, 1) = 0. Then U + (x) is a periodic function instead of U + = 1. Instead of µ(x) 0, assume k(0) > 0, e.g. µ > 0 is enough. Perforated domains. Space and time periodic data.

KPP Pulsating Traveling Fronts within Large Drift

KPP Pulsating Traveling Fronts within Large Drift KPP Pulsating Traveling Fronts within Large Drift Mohammad El Smaily Joint work with Stéphane Kirsch University of British olumbia & Pacific Institute for the Mathematical Sciences September 17, 2009 PIMS

More information

The KPP minimal speed within large drift in two dimensions

The KPP minimal speed within large drift in two dimensions The KPP minimal speed within large drift in two dimensions Mohammad El Smaily Joint work with Stéphane Kirsch University of British Columbia & Pacific Institute for the Mathematical Sciences Banff, March-2010

More information

Qualitative properties of monostable pulsating fronts : exponential decay and monotonicity

Qualitative properties of monostable pulsating fronts : exponential decay and monotonicity Qualitative properties of monostable pulsating fronts : exponential decay and monotonicity François Hamel Université Aix-Marseille III, LATP, Faculté des Sciences et Techniques Avenue Escadrille Normandie-Niemen,

More information

Spreading Speeds for Monostable Equations with Nonlocal Dispersal in Space Periodic Habitats

Spreading Speeds for Monostable Equations with Nonlocal Dispersal in Space Periodic Habitats Spreading Speeds for Monostable Equations with Nonlocal Dispersal in Space Periodic Habitats Wenxian Shen and Aijun Zhang Department of Mathematics and Statistics Auburn University Auburn University, AL

More information

How fast travelling waves can attract small initial data

How fast travelling waves can attract small initial data How fast travelling waves can attract small initial data Laurent Dietrich Institut de Mathématiques de Toulouse ANR NONLOCAL Institut des systèmes complexes, Paris 16 avril 2014 Introduction Model under

More information

Math Partial Differential Equations 1

Math Partial Differential Equations 1 Math 9 - Partial Differential Equations Homework 5 and Answers. The one-dimensional shallow water equations are h t + (hv) x, v t + ( v + h) x, or equivalently for classical solutions, h t + (hv) x, (hv)

More information

On some weighted fractional porous media equations

On some weighted fractional porous media equations On some weighted fractional porous media equations Gabriele Grillo Politecnico di Milano September 16 th, 2015 Anacapri Joint works with M. Muratori and F. Punzo Gabriele Grillo Weighted Fractional PME

More information

On duality theory of conic linear problems

On duality theory of conic linear problems On duality theory of conic linear problems Alexander Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 3332-25, USA e-mail: ashapiro@isye.gatech.edu

More information

2. Dual space is essential for the concept of gradient which, in turn, leads to the variational analysis of Lagrange multipliers.

2. Dual space is essential for the concept of gradient which, in turn, leads to the variational analysis of Lagrange multipliers. Chapter 3 Duality in Banach Space Modern optimization theory largely centers around the interplay of a normed vector space and its corresponding dual. The notion of duality is important for the following

More information

Varying the direction of propagation in reaction-diffusion equations in periodic media

Varying the direction of propagation in reaction-diffusion equations in periodic media Varying the direction of propagation in reaction-diffusion equations in periodic media Matthieu Alfaro 1 and Thomas Giletti 2. Contents 1 Introduction 2 1.1 Main assumptions....................................

More information

The influence of a line with fast diffusion on Fisher-KPP propagation : integral models

The influence of a line with fast diffusion on Fisher-KPP propagation : integral models The influence of a line with fast diffusion on Fisher-KPP propagation : integral models Antoine Pauthier Institut de Mathématique de Toulouse PhD supervised by Henri Berestycki (EHESS) and Jean-Michel

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Robustness for a Liouville type theorem in exterior domains

Robustness for a Liouville type theorem in exterior domains Robustness for a Liouville type theorem in exterior domains Juliette Bouhours 1 arxiv:1207.0329v3 [math.ap] 24 Oct 2014 1 UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris,

More information

Fisher-KPP equations and applications to a model in medical sciences

Fisher-KPP equations and applications to a model in medical sciences Fisher-KPP equations and applications to a model in medical sciences Benjamin Contri To cite this version: Benjamin Contri. Fisher-KPP equations and applications to a model in medical sciences. 216.

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

CVaR and Examples of Deviation Risk Measures

CVaR and Examples of Deviation Risk Measures CVaR and Examples of Deviation Risk Measures Jakub Černý Department of Probability and Mathematical Statistics Stochastic Modelling in Economics and Finance November 10, 2014 1 / 25 Contents CVaR - Dual

More information

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018 EXTENDED EULER-LAGRANGE AND HAMILTONIAN CONDITIONS IN OPTIMAL CONTROL OF SWEEPING PROCESSES WITH CONTROLLED MOVING SETS BORIS MORDUKHOVICH Wayne State University Talk given at the conference Optimization,

More information

Fonction propre principale optimale pour des opérateurs elliptiques avec un terme de transport grand

Fonction propre principale optimale pour des opérateurs elliptiques avec un terme de transport grand Fonction propre principale optimale pour des opérateurs elliptiques avec un terme de transport grand Luca Rossi CAMS, CNRS - EHESS Paris Collaboration avec F. Hamel, E. Russ Luca Rossi (EHESS-CNRS) Fonction

More information

Uniqueness and stability properties of monostable pulsating fronts

Uniqueness and stability properties of monostable pulsating fronts Uniqueness and stability properties of monostable pulsating fronts François Hamel a and Lionel Roques b a Aix-Marseille Université, LATP, Faculté des Sciences et Techniques Avenue Escadrille Normandie-Niemen,

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

Asymptotics of minimax stochastic programs

Asymptotics of minimax stochastic programs Asymptotics of minimax stochastic programs Alexander Shapiro Abstract. We discuss in this paper asymptotics of the sample average approximation (SAA) of the optimal value of a minimax stochastic programming

More information

Two examples of reaction-diffusion front propagation in heterogeneous media

Two examples of reaction-diffusion front propagation in heterogeneous media Two examples of reaction-diffusion front propagation in heterogeneous media Soutenance de thèse Antoine Pauthier Institut de Mathématique de Toulouse Thèse dirigée par Henri Berestycki (EHESS) et Jean-Michel

More information

Nonlinear stabilization via a linear observability

Nonlinear stabilization via a linear observability via a linear observability Kaïs Ammari Department of Mathematics University of Monastir Joint work with Fathia Alabau-Boussouira Collocated feedback stabilization Outline 1 Introduction and main result

More information

On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds

On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds François Hamel enya Ryzhik Abstract We consider the Fisher-KPP equation with a non-local interaction term. We establish

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Hyperbolic inverse problems and exact controllability

Hyperbolic inverse problems and exact controllability Hyperbolic inverse problems and exact controllability Lauri Oksanen University College London An inverse initial source problem Let M R n be a compact domain with smooth strictly convex boundary, and let

More information

ANDREJ ZLATOŠ. u 0 and u dx = 0. (1.3)

ANDREJ ZLATOŠ. u 0 and u dx = 0. (1.3) SHARP ASYMPOICS FOR KPP PULSAING FRON SPEED-UP AND DIFFUSION ENHANCEMEN BY FLOWS ANDREJ ZLAOŠ Abstract. We study KPP pulsating front speed-up and effective diffusivity enhancement by general periodic incompressible

More information

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization MATHEMATICS OF OPERATIONS RESEARCH Vol. 29, No. 3, August 2004, pp. 479 491 issn 0364-765X eissn 1526-5471 04 2903 0479 informs doi 10.1287/moor.1040.0103 2004 INFORMS Some Properties of the Augmented

More information

Mathematical Methods in Quantum Mechanics With Applications to Schrödinger Operators 2nd edition

Mathematical Methods in Quantum Mechanics With Applications to Schrödinger Operators 2nd edition Errata G. Teschl, Mathematical Methods in Quantum Mechanics With Applications to Schrödinger Operators nd edition Graduate Studies in Mathematics, Vol. 157 American Mathematical Society, Providence, Rhode

More information

The speed of propagation for KPP type problems. II - General domains

The speed of propagation for KPP type problems. II - General domains The speed of propagation for KPP type problems. II - General domains Henri Berestycki a, François Hamel b and Nikolai Nadirashvili c a EHESS, CAMS, 54 Boulevard Raspail, F-75006 Paris, France b Université

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

On the Spectral Expansion Formula for a Class of Dirac Operators

On the Spectral Expansion Formula for a Class of Dirac Operators Malaya J. Mat. 42216 297 34 On the Spectral Expansion Formula for a Class of Dirac Operators O. Akcay a, and Kh. R. Mamedov b a,b Department of Mathematics, Mersin University, 33343, Mersin, Turkey. Abstract

More information

Rudin Real and Complex Analysis - Harmonic Functions

Rudin Real and Complex Analysis - Harmonic Functions Rudin Real and Complex Analysis - Harmonic Functions Aaron Lou December 2018 1 Notes 1.1 The Cauchy-Riemann Equations 11.1: The Operators and Suppose f is a complex function defined in a plane open set

More information

A note on W 1,p estimates for quasilinear parabolic equations

A note on W 1,p estimates for quasilinear parabolic equations 200-Luminy conference on Quasilinear Elliptic and Parabolic Equations and Systems, Electronic Journal of Differential Equations, Conference 08, 2002, pp 2 3. http://ejde.math.swt.edu or http://ejde.math.unt.edu

More information

KPP Pulsating Front Speed-up by Flows

KPP Pulsating Front Speed-up by Flows KPP Pulsating Front Speed-up by Flows Lenya Ryzhik Andrej Zlatoš April 24, 2007 Abstract We obtain a criterion for pulsating front speed-up by general periodic incompressible flows in two dimensions and

More information

Errata Applied Analysis

Errata Applied Analysis Errata Applied Analysis p. 9: line 2 from the bottom: 2 instead of 2. p. 10: Last sentence should read: The lim sup of a sequence whose terms are bounded from above is finite or, and the lim inf of a sequence

More information

Generalized transition waves and their properties

Generalized transition waves and their properties Generalized transition waves and their properties Henri Berestycki a and François Hamel b a EHESS, CAMS, 54 Boulevard Raspail, F-75006 Paris, France & University of Chicago, Department of Mathematics 5734

More information

y = h + η(x,t) Δϕ = 0

y = h + η(x,t) Δϕ = 0 HYDRODYNAMIC PROBLEM y = h + η(x,t) Δϕ = 0 y ϕ y = 0 y = 0 Kinematic boundary condition: η t = ϕ y η x ϕ x Dynamical boundary condition: z x ϕ t + 1 2 ϕ 2 + gη + D 1 1 η xx ρ (1 + η 2 x ) 1/2 (1 + η 2

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

Front propagation directed by a line of fast diffusion : existence of travelling waves.

Front propagation directed by a line of fast diffusion : existence of travelling waves. Front propagation directed by a line of fast diffusion : existence of travelling waves. Laurent Dietrich Ph.D supervised by H. Berestycki and J.-M. Roquejoffre Institut de mathématiques de Toulouse Workshop

More information

Transition waves for Fisher-KPP equations with general time-heterogeneous and space-periodic coefficients

Transition waves for Fisher-KPP equations with general time-heterogeneous and space-periodic coefficients Transition waves for Fisher-KPP equations with general time-heterogeneous and space-periodic coefficients Grégoire Nadin Luca Rossi March 15, 215 Abstract This paper is devoted to existence and non-existence

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 The Scalar Conservation

More information

Regularization and Inverse Problems

Regularization and Inverse Problems Regularization and Inverse Problems Caroline Sieger Host Institution: Universität Bremen Home Institution: Clemson University August 5, 2009 Caroline Sieger (Bremen and Clemson) Regularization and Inverse

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

Nonlinear Analysis 74 (2011) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage:

Nonlinear Analysis 74 (2011) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage: Nonlinear Analysis 74 (211) 6469 6486 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na Two-dimensional curved fronts in a periodic shear flow Mohammad

More information

Second Order Elliptic PDE

Second Order Elliptic PDE Second Order Elliptic PDE T. Muthukumar tmk@iitk.ac.in December 16, 2014 Contents 1 A Quick Introduction to PDE 1 2 Classification of Second Order PDE 3 3 Linear Second Order Elliptic Operators 4 4 Periodic

More information

On a general definition of transition waves and their properties

On a general definition of transition waves and their properties On a general definition of transition waves and their properties Henri Berestycki a and François Hamel b a EHESS, CAMS, 54 Boulevard Raspail, F-75006 Paris, France b Université Aix-Marseille III, LATP,

More information

C* ALGEBRAS AND THEIR REPRESENTATIONS

C* ALGEBRAS AND THEIR REPRESENTATIONS C* ALGEBRAS AND THEIR REPRESENTATIONS ILIJAS FARAH The original version of this note was based on two talks given by Efren Ruiz at the Toronto Set Theory seminar in November 2005. This very tentative note

More information

Non-Constant Stable Solutions to Reaction- Diffusion Equations in Star-Shaped Domains

Non-Constant Stable Solutions to Reaction- Diffusion Equations in Star-Shaped Domains Rose-Hulman Undergraduate Mathematics Journal Volume 6 Issue Article 4 Non-Constant Stable Solutions to Reaction- iffusion Equations in Star-Shaped omains Greg rugan University of Texas at Austin, g_drugan@mail.utexas.edu

More information

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations C. David Levermore Department of Mathematics and Institute for Physical Science and Technology

More information

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE MA 201: Method of Separation of Variables Finite Vibrating String Problem ecture - 11 IBVP for Vibrating string with no external forces We consider the problem in a computational domain (x,t) [0,] [0,

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

Integrable evolution equations on spaces of tensor densities

Integrable evolution equations on spaces of tensor densities Integrable evolution equations on spaces of tensor densities J. Lenells, G. Misiolek and F. Tiglay* April 11, 21 Lenells, Misiolek, Tiglay* AMS Meeting, Minnesota, April 11, 21 slide 1/22 A family of equations

More information

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor RANDOM FIELDS AND GEOMETRY from the book of the same name by Robert Adler and Jonathan Taylor IE&M, Technion, Israel, Statistics, Stanford, US. ie.technion.ac.il/adler.phtml www-stat.stanford.edu/ jtaylor

More information

Green s Functions and Distributions

Green s Functions and Distributions CHAPTER 9 Green s Functions and Distributions 9.1. Boundary Value Problems We would like to study, and solve if possible, boundary value problems such as the following: (1.1) u = f in U u = g on U, where

More information

Brownian survival and Lifshitz tail in perturbed lattice disorder

Brownian survival and Lifshitz tail in perturbed lattice disorder Brownian survival and Lifshitz tail in perturbed lattice disorder Ryoki Fukushima Kyoto niversity Random Processes and Systems February 16, 2009 6 B T 1. Model ) ({B t t 0, P x : standard Brownian motion

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Functional analysis can be seen as a natural extension of the real analysis to more general spaces. As an example we can think at the Heine - Borel theorem (closed and bounded is

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Variational Problems of the Dirichlet BVP of the Poisson Equation 1 For the homogeneous

More information

UNIQUENESS OF POSITIVE SOLUTION TO SOME COUPLED COOPERATIVE VARIATIONAL ELLIPTIC SYSTEMS

UNIQUENESS OF POSITIVE SOLUTION TO SOME COUPLED COOPERATIVE VARIATIONAL ELLIPTIC SYSTEMS TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9947(XX)0000-0 UNIQUENESS OF POSITIVE SOLUTION TO SOME COUPLED COOPERATIVE VARIATIONAL ELLIPTIC SYSTEMS YULIAN

More information

Optimal Transport: A Crash Course

Optimal Transport: A Crash Course Optimal Transport: A Crash Course Soheil Kolouri and Gustavo K. Rohde HRL Laboratories, University of Virginia Introduction What is Optimal Transport? The optimal transport problem seeks the most efficient

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011 Direct Method of Construction of Conservation Laws for Nonlinear Differential Equations, its Relation with Noether s Theorem, Applications, and Symbolic Software Alexei F. Cheviakov University of Saskatchewan,

More information

Exit times of diffusions with incompressible drift

Exit times of diffusions with incompressible drift Exit times of diffusions with incompressible drift Gautam Iyer, Carnegie Mellon University gautam@math.cmu.edu Collaborators: Alexei Novikov, Penn. State Lenya Ryzhik, Stanford University Andrej Zlatoš,

More information

Lecture Notes on PDEs

Lecture Notes on PDEs Lecture Notes on PDEs Alberto Bressan February 26, 2012 1 Elliptic equations Let IR n be a bounded open set Given measurable functions a ij, b i, c : IR, consider the linear, second order differential

More information

Optimal Transportation. Nonlinear Partial Differential Equations

Optimal Transportation. Nonlinear Partial Differential Equations Optimal Transportation and Nonlinear Partial Differential Equations Neil S. Trudinger Centre of Mathematics and its Applications Australian National University 26th Brazilian Mathematical Colloquium 2007

More information

On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators

On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators Fabio Camilli ("Sapienza" Università di Roma) joint work with I.Birindelli ("Sapienza") I.Capuzzo Dolcetta ("Sapienza")

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

Criterions on periodic feedback stabilization for some evolution equations

Criterions on periodic feedback stabilization for some evolution equations Criterions on periodic feedback stabilization for some evolution equations School of Mathematics and Statistics, Wuhan University, P. R. China (Joint work with Yashan Xu, Fudan University) Toulouse, June,

More information

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock WEYL S LEMMA, ONE OF MANY Daniel W Stroock Abstract This note is a brief, and somewhat biased, account of the evolution of what people working in PDE s call Weyl s Lemma about the regularity of solutions

More information

Stochastic Homogenization for Reaction-Diffusion Equations

Stochastic Homogenization for Reaction-Diffusion Equations Stochastic Homogenization for Reaction-Diffusion Equations Jessica Lin McGill University Joint Work with Andrej Zlatoš June 18, 2018 Motivation: Forest Fires ç ç ç ç ç ç ç ç ç ç Motivation: Forest Fires

More information

Functional Analysis I

Functional Analysis I Functional Analysis I Course Notes by Stefan Richter Transcribed and Annotated by Gregory Zitelli Polar Decomposition Definition. An operator W B(H) is called a partial isometry if W x = X for all x (ker

More information

Annealed Brownian motion in a heavy tailed Poissonian potential

Annealed Brownian motion in a heavy tailed Poissonian potential Annealed Brownian motion in a heavy tailed Poissonian potential Ryoki Fukushima Research Institute of Mathematical Sciences Stochastic Analysis and Applications, Okayama University, September 26, 2012

More information

Generalized quantiles as risk measures

Generalized quantiles as risk measures Generalized quantiles as risk measures Bellini, Klar, Muller, Rosazza Gianin December 1, 2014 Vorisek Jan Introduction Quantiles q α of a random variable X can be defined as the minimizers of a piecewise

More information

The fundamental theorem of linear programming

The fundamental theorem of linear programming The fundamental theorem of linear programming Michael Tehranchi June 8, 2017 This note supplements the lecture notes of Optimisation The statement of the fundamental theorem of linear programming and the

More information

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations.

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations. Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations. Alexey Shevyakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon,

More information

ON A MODEL OF A POPULATION WITH VARIABLE MOTILITY

ON A MODEL OF A POPULATION WITH VARIABLE MOTILITY ON A MODEL OF A POPULATION WITH VARIABLE MOTILITY OLGA TURANOVA Abstract. We study a reaction-diffusion equation with a nonlocal reaction term that models a population with variable motility. We establish

More information

Exit times of diffusions with incompressible drifts

Exit times of diffusions with incompressible drifts Exit times of diffusions with incompressible drifts Andrej Zlatoš University of Chicago Joint work with: Gautam Iyer (Carnegie Mellon University) Alexei Novikov (Pennylvania State University) Lenya Ryzhik

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Microlocal Analysis : a short introduction

Microlocal Analysis : a short introduction Microlocal Analysis : a short introduction Plamen Stefanov Purdue University Mini Course, Fields Institute, 2012 Plamen Stefanov (Purdue University ) Microlocal Analysis : a short introduction 1 / 25 Introduction

More information

Nonlinear stability of semidiscrete shocks for two-sided schemes

Nonlinear stability of semidiscrete shocks for two-sided schemes Nonlinear stability of semidiscrete shocks for two-sided schemes Margaret Beck Boston University Joint work with Hermen Jan Hupkes, Björn Sandstede, and Kevin Zumbrun Setting: semi-discrete conservation

More information

Travelling fronts for the thermodiffusive system with arbitrary Lewis numbers

Travelling fronts for the thermodiffusive system with arbitrary Lewis numbers Travelling fronts for the thermodiffusive system with arbitrary Lewis numbers François Hamel Lenya Ryzhik Abstract We consider KPP-type systems in a cylinder with an arbitrary Lewis number (the ratio of

More information

Traveling waves in a one-dimensional heterogeneous medium

Traveling waves in a one-dimensional heterogeneous medium Traveling waves in a one-dimensional heterogeneous medium James Nolen and Lenya Ryzhik September 19, 2008 Abstract We consider solutions of a scalar reaction-diffusion equation of the ignition type with

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then 1. x S is a global minimum point of f over S if f (x) f (x ) for any x S. 2. x S

More information

Superconductivity in domains with corners

Superconductivity in domains with corners Superconductivity in domains with corners Virginie BONNAILLIE-NOËL IRMAR, Université Rennes 1 and ENS Cachan Bretagne Each China Normal University, Shanghai 2007.5.15 Outline 1. Introduction 2. Linear

More information

P(E t, Ω)dt, (2) 4t has an advantage with respect. to the compactly supported mollifiers, i.e., the function W (t)f satisfies a semigroup law:

P(E t, Ω)dt, (2) 4t has an advantage with respect. to the compactly supported mollifiers, i.e., the function W (t)f satisfies a semigroup law: Introduction Functions of bounded variation, usually denoted by BV, have had and have an important role in several problems of calculus of variations. The main features that make BV functions suitable

More information

5.2.2 Planar Andronov-Hopf bifurcation

5.2.2 Planar Andronov-Hopf bifurcation 138 CHAPTER 5. LOCAL BIFURCATION THEORY 5.. Planar Andronov-Hopf bifurcation What happens if a planar system has an equilibrium x = x 0 at some parameter value α = α 0 with eigenvalues λ 1, = ±iω 0, ω

More information

Exponential Stability of the Traveling Fronts for a Pseudo-Para. Pseudo-Parabolic Fisher-KPP Equation

Exponential Stability of the Traveling Fronts for a Pseudo-Para. Pseudo-Parabolic Fisher-KPP Equation Exponential Stability of the Traveling Fronts for a Pseudo-Parabolic Fisher-KPP Equation Based on joint work with Xueli Bai (Center for PDE, East China Normal Univ.) and Yang Cao (Dalian University of

More information

Igor Cialenco. Department of Applied Mathematics Illinois Institute of Technology, USA joint with N.

Igor Cialenco. Department of Applied Mathematics Illinois Institute of Technology, USA joint with N. Parameter Estimation for Stochastic Navier-Stokes Equations Igor Cialenco Department of Applied Mathematics Illinois Institute of Technology, USA igor@math.iit.edu joint with N. Glatt-Holtz (IU) Asymptotical

More information

Existence and stability of solitary-wave solutions to nonlocal equations

Existence and stability of solitary-wave solutions to nonlocal equations Existence and stability of solitary-wave solutions to nonlocal equations Mathias Nikolai Arnesen Norwegian University of Science and Technology September 22nd, Trondheim The equations u t + f (u) x (Lu)

More information

ADJOINT METHODS FOR OBSTACLE PROBLEMS AND WEAKLY COUPLED SYSTEMS OF PDE. 1. Introduction

ADJOINT METHODS FOR OBSTACLE PROBLEMS AND WEAKLY COUPLED SYSTEMS OF PDE. 1. Introduction ADJOINT METHODS FOR OBSTACLE PROBLEMS AND WEAKLY COPLED SYSTEMS OF PDE F. CAGNETTI, D. GOMES, AND H.V. TRAN Abstract. The adjoint method, recently introduced by Evans, is used to study obstacle problems,

More information

Introduction LECTURE 1

Introduction LECTURE 1 LECTURE 1 Introduction The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in

More information

2 Lebesgue integration

2 Lebesgue integration 2 Lebesgue integration 1. Let (, A, µ) be a measure space. We will always assume that µ is complete, otherwise we first take its completion. The example to have in mind is the Lebesgue measure on R n,

More information

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators Lei Ni And I cherish more than anything else the Analogies, my most trustworthy masters. They know all the secrets of

More information

Iteration-complexity of first-order penalty methods for convex programming

Iteration-complexity of first-order penalty methods for convex programming Iteration-complexity of first-order penalty methods for convex programming Guanghui Lan Renato D.C. Monteiro July 24, 2008 Abstract This paper considers a special but broad class of convex programing CP)

More information

EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE. Leszek Gasiński

EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE. Leszek Gasiński DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp. 409 418 EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE Leszek Gasiński Jagiellonian

More information

1 Introduction We will consider traveling waves for reaction-diusion equations (R-D) u t = nx i;j=1 (a ij (x)u xi ) xj + f(u) uj t=0 = u 0 (x) (1.1) w

1 Introduction We will consider traveling waves for reaction-diusion equations (R-D) u t = nx i;j=1 (a ij (x)u xi ) xj + f(u) uj t=0 = u 0 (x) (1.1) w Reaction-Diusion Fronts in Periodically Layered Media George Papanicolaou and Xue Xin Courant Institute of Mathematical Sciences 251 Mercer Street, New York, N.Y. 10012 Abstract We compute the eective

More information

Neighboring feasible trajectories in infinite dimension

Neighboring feasible trajectories in infinite dimension Neighboring feasible trajectories in infinite dimension Marco Mazzola Université Pierre et Marie Curie (Paris 6) H. Frankowska and E. M. Marchini Control of State Constrained Dynamical Systems Padova,

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information