Annealed Brownian motion in a heavy tailed Poissonian potential

Size: px
Start display at page:

Download "Annealed Brownian motion in a heavy tailed Poissonian potential"

Transcription

1 Annealed Brownian motion in a heavy tailed Poissonian potential Ryoki Fukushima Research Institute of Mathematical Sciences Stochastic Analysis and Applications, Okayama University, September 26, / 27

2 Introduction Anderson (1958): low lying spectra of + V ω are pure point and corresponding eigenfunctions are strongly localized. 2 / 27

3 Introduction Anderson (1958): low lying spectra of + V ω are pure point and corresponding eigenfunctions are strongly localized. Consider the parabolic counterpart (Gärtner-Molchanov 1990, later many others): t u = ( V ω )u, u(0, x) = δ 0 (x). The eigenfunction expansion u(t, x) = k=1 e tλ k φ k (0)φ k (x) tells us that u(t, ) localizes as well. 2 / 27

4 Introduction Anderson (1958): low lying spectra of + V ω are pure point and corresponding eigenfunctions are strongly localized. Consider the parabolic counterpart (Gärtner-Molchanov 1990, later many others): t u = ( V ω )u, u(0, x) = δ 0 (x). The eigenfunction expansion u(t, x) = k=1 e tλ k φ k (0)φ k (x) tells us that u(t, ) localizes as well. { t } ] u(t, x) = E 0 [exp V ω (B s )ds, B t = x 0 localization of the diffusion particle 2 / 27

5 1. Setting ) ({B t } t 0, P x : κ -Brownian motion on R d ( ω = ) δ ωi, P : Poisson point process on R d i with unit intensity 3 / 27

6 1. Setting ) ({B t } t 0, P x : κ -Brownian motion on R d ( ω = ) δ ωi, P : Poisson point process on R d i with unit intensity Potential For a non-negative and integrable function v, V ω (x) := i v(x ω i ). (Typically v(x) = 1 B(0,1) (x) or x α 1 with α > d.) 3 / 27

7 Annealed measure We are interested in the behavior of Brownian motion under the measure { t } exp V ω (B s )ds P P 0 ( ) 0 Q t ( ) = { t }]. E E 0 [exp V ω (B s )ds The configuration is not fixed and hence Brownian motion and ω i s tend to avoid each other. 0 4 / 27

8 0 B t exp{ t 0 V ω(b s )ds} : large, P : large, P 0 : small 5 / 27

9 0 B t exp{ t 0 V ω(b s )ds} : large, P : small, P 0 : large 5 / 27

10 2. Light tailed case Donsker and Varadhan (1975) When v(x) = o( x d 2 ) as x, { t }] } E E 0 [exp V ω (B s ) ds = exp { c(d, κ)t d d+2 (1 + o(1)) 0 as t. Remark c(d, κ) = inf U {κλd (U) + U }. 6 / 27

11 Suppose v is compactly supported for simplicity. Then { t }] E E 0 [exp V ω (B s ) ds 0 ( P 0 B[0,t] U) ) P (ω(u) = 0) exp{ κλ D (U)t U }. Optimizing over U, we get the correct lower bound. 7 / 27

12 Suppose v is compactly supported for simplicity. Then { t }] E E 0 [exp V ω (B s ) ds 0 ( P 0 B[0,t] U) ) P (ω(u) = 0) exp{ κλ D (U)t U }. Optimizing over U, we get the correct lower bound. maximizer = B(x, t 1 d+2 R0 ) 7 / 27

13 R 0 t 1 d+2 B t 0 8 / 27

14 One specific strategy gives dominant contribution to the partition function. It occurs with high probability under the annealed path measure. 9 / 27

15 Sznitman (1991, d = 2) and Povel (1999, d 3) When v has a compact support, there exists such that D t (ω) B ( 0, t 1 d+2 (R0 + o(1)) ) Q t ( B [0,t] B ( D t (ω), t 1 d+2 (R0 + o(1)) )) t 1. Remark Bolthausen (1994) proved the corresponding result for two-dimensional random walk model. 10 / 27

16 3. Heavy tailed case Pastur (1977) When v(x) x α (α (d, d + 2)) as x, { t }] } E E 0 [exp V ω (B s )ds = exp { a 1 t d α (1 + o(1)), 0 where a 1 = B(0, 1) Γ ( ) α d α. 11 / 27

17 3. Heavy tailed case Pastur (1977) When v(x) x α (α (d, d + 2)) as x, { t }] } E E 0 [exp V ω (B s )ds = exp { a 1 t d α (1 + o(1)), 0 where a 1 = B(0, 1) Γ ( ) α d α. Unfortunately, this first order asymptotics tells us little about the Brownian motion. 11 / 27

18 In fact, Pastur s proof goes as follows: { t }] E E 0 [exp V ω (B s )ds 0 E[exp{ tv ω (0)}] exp{ a 1 t d α }. 12 / 27

19 In fact, Pastur s proof goes as follows: { t }] E E 0 [exp V ω (B s )ds 0 E[exp{ tv ω (0)}] exp{ a 1 t d α }. The effort of the Brownian motion is hidden in the higher order terms. A bit more careful inspection of the proof shows / 27

20 O(t 1 α ) B t 0 1 o(t α ) 13 / 27

21 F. (2011) When v(x)= x α 1 (d < α < d + 2), { E E 0 [exp = exp t 0 }] V ω (B s )ds { a 1 t d α (a2 + o(1))t α+d 2 2α }, where a 2 := { inf φ 2 =1 } κ φ(x) 2 + C(d, α) x 2 φ(x) 2 dx. Remark The proof is an application of the general machinery developed by Gärtner-König / 27

22 Recalling the Donsker-Varadhan LDP ( 1 t ) { P 0 δ Bs ds φ 2 (x)dx exp t t 0 } κ φ(x) 2 dx, we expect the second term explains the behavior of the Brownian motion. 15 / 27

23 Recalling the Donsker-Varadhan LDP ( 1 t ) { P 0 δ Bs ds φ 2 (x)dx exp t t 0 } κ φ(x) 2 dx, we expect the second term explains the behavior of the Brownian motion. In particular, since P 0 ( B[0,t] B(x, R) ) exp{ tr 2 }, the localization scale should be tr 2 = t α+d 2 2α R = t α d+2 4α. 15 / 27

24 Recalling the Donsker-Varadhan LDP ( 1 t ) { P 0 δ Bs ds φ 2 (x)dx exp t t 0 } κ φ(x) 2 dx, we expect the second term explains the behavior of the Brownian motion. In particular, since P 0 ( B[0,t] B(x, R) ) exp{ tr 2 }, the localization scale should be tr 2 = t α+d 2 2α R = t α d+2 4α. In addition, the term C(d, α) x 2 φ(x) 2 dx says that V ω (locally) looks like a parabola. 15 / 27

25 O(t 1 α ) B t 0 α d+2 O(t 4α ) 16 / 27

26 0 the below is the section along this line V ω (x) Heavy tailed case h(t) r(t) th(t) t/r(t) 2 17 / 27

27 0 the below is the section along this line V ω (x) Light tailed case h(t) r(t) th(t) t/r(t) 2 17 / 27

28 Main Theorem (F. 2012) Q t (B [0,t] B (0, t α d+2 1 4α (log t) +ϵ)) t 2 1, Q t ( V ω (x) V ω (m t (ω)) t α d+2 α C(d, α) x m t (ω) 2 {t α d+2 4α Bt α d+2 2α s } s 0 in B(0, t α d+2 4α +ϵ ) ) t 1, in law OU-process with random center, where m t (ω) is the minimizer of V ω in B(0, t α d+2 4α log t). 18 / 27

29 4. Outline of the proof An important feature of this model is that there are two scales in the optimal strategy. ω lives in the scale t 1/α, {B s } s t lives in the scale o(t 1/α ). 19 / 27

30 4. Outline of the proof An important feature of this model is that there are two scales in the optimal strategy. ω lives in the scale t 1/α, {B s } s t lives in the scale o(t 1/α ). This, for instace, prevents us from using the compactification by projecting on a torus. 19 / 27

31 4. Outline of the proof An important feature of this model is that there are two scales in the optimal strategy. ω lives in the scale t 1/α, {B s } s t lives in the scale o(t 1/α ). This, for instace, prevents us from using the compactification by projecting on a torus. But on the other hand, this helps us since it allows us to treat ω and B s separately. 19 / 27

32 Suppose we have a crude estimate sup B s = o(t 1/α ). 0 s t Then B s 0 viewed from ω. Thus it is plausible that Q t (dω) E[exp{ tv ω(0)} : dω]. E[exp{ tv ω (0)}] 20 / 27

33 Suppose we have a crude estimate sup B s = o(t 1/α ). 0 s t Then B s 0 viewed from ω. Thus it is plausible that Q t (dω) E[exp{ tv ω(0)} : dω]. E[exp{ tv ω (0)}] The right hand side is nothing but the Poisson point process with intensity e t( x α 1) dx. potential locally looks like parabola, localization, weak convergence. 20 / 27

34 It remains to verify sup B s = o(t 1/α ). This is a localization but 0 s t weaker than the main theorem. To this end, we need some control on V ω... circular argument? 21 / 27

35 It remains to verify sup B s = o(t 1/α ). This is a localization but 0 s t weaker than the main theorem. To this end, we need some control on V ω... circular argument? No! What we need is crude control which can be established with bare hands. 21 / 27

36 It remains to verify sup B s = o(t 1/α ). This is a localization but 0 s t weaker than the main theorem. To this end, we need some control on V ω... circular argument? No! What we need is crude control which can be established with bare hands. In what follows, we assume V ω takes its minimum value at 0 for simplicity. 21 / 27

37 4.1 Crude control on the potential Lemma 1 ( Q t V ω (0) d α a 1t α d α ) + t 3α 3d+2 4α ( M 1, M 1 ) / 27

38 4.1 Crude control on the potential Lemma 1 Idea ( Q t V ω (0) d α a 1t α d α Z t E[exp{ tv ω (0)}] ) + t 3α 3d+2 4α ( M 1, M 1 ) 1. { { } = exp a 1 t d α, sup h>0 [ e th P(V ω (0) h) ]. 22 / 27

39 4.1 Crude control on the potential Lemma 1 Idea ( Q t V ω (0) d α a 1t α d α Z t E[exp{ tv ω (0)}] ) + t 3α 3d+2 4α ( M 1, M 1 ) 1. { { } = exp a 1 t d α, sup h>0 [ e th P(V ω (0) h) ]. d α a 1t α d α = h(t) is the maximizer. { t } ] E E 0 [exp V ω (B s )ds : V ω (0) is far from h(t) 0 E [exp{ tv ω (0)} : V ω (0) is far from h(t)] = o(z t ). 22 / 27

40 Lemma 2 Q t ( V ω (0) + V ω (x) 2h(t) + c 1 t α d+2 α x 2 for t α d+6 8α < x < M 2 t α d+6 8α ) / 27

41 Lemma 2 Q t ( V ω (0) + V ω (x) 2h(t) + c 1 t α d+2 α x 2 Idea By Lemma 1, { t } exp V ω (B s )ds 0 for t α d+6 8α < x < M 2 t α d+6 8α ) 1. { exp { th(t)} = exp d } α a 1t d α 23 / 27

42 Lemma 2 Q t ( V ω (0) + V ω (x) 2h(t) + c 1 t α d+2 α x 2 Idea By Lemma 1, { t } exp V ω (B s )ds 0 for t α d+6 8α Then, use [ { E exp t }] 2 (V ω(0) + V ω (x)) and Chebyshev s inequality. < x < M 2 t α d+6 8α ) 1. { exp { th(t)} = exp d } α a 1t d α exp { a } 1 t d α c2 t d 2 α x 2 23 / 27

43 4.2 Crude control on the trajectory V ω (x) V ω (0) M 2 t α d+6 8α t α d+6 8α 0 t α d+6 8α x M 2 t α d+6 8α 24 / 27

44 4.2 Crude control on the trajectory V ω (x) V ω (0) M 2 t α d+6 8α t α d+6 8α 0 t α d+6 8α x M 2 t α d+6 8α By penalizing a crossing, Q t (B [0,t] B )) (0, M 2 t α d+6 8α / 27

45 How about the critical case α = d + 2? Ôkura (1981) proved { t }] } E E 0 [exp V ω (B s ) ds = exp { c(d, κ)t d d+2 (1 + o(1)) 0 as t, where { c(d, κ) = inf φ 2 =1 { κ φ(x) exp φ(y) 2 } } dy dx. x y d+2 25 / 27

46 Thank you! 26 / 27

47 How about the critical case α = d + 2? Ôkura (1981) proved { t }] } E E 0 [exp V ω (B s ) ds = exp { c(d, κ)t d d+2 (1 + o(1)) 0 as t, where { c(d, κ) = inf φ 2 =1 { κ φ(x) exp φ(y) 2 } } dy dx. x y d+2 27 / 27

Annealed Brownian motion in a heavy tailed Poissonian potential

Annealed Brownian motion in a heavy tailed Poissonian potential Annealed Brownian motion in a heavy tailed Poissonian potential Ryoki Fukushima Tokyo Institute of Technology Workshop on Random Polymer Models and Related Problems, National University of Singapore, May

More information

Brownian survival and Lifshitz tail in perturbed lattice disorder

Brownian survival and Lifshitz tail in perturbed lattice disorder Brownian survival and Lifshitz tail in perturbed lattice disorder Ryoki Fukushima Kyoto niversity Random Processes and Systems February 16, 2009 6 B T 1. Model ) ({B t t 0, P x : standard Brownian motion

More information

The Chaotic Character of the Stochastic Heat Equation

The Chaotic Character of the Stochastic Heat Equation The Chaotic Character of the Stochastic Heat Equation March 11, 2011 Intermittency The Stochastic Heat Equation Blowup of the solution Intermittency-Example ξ j, j = 1, 2,, 10 i.i.d. random variables Taking

More information

A large deviation principle for a RWRC in a box

A large deviation principle for a RWRC in a box A large deviation principle for a RWRC in a box 7th Cornell Probability Summer School Michele Salvi TU Berlin July 12, 2011 Michele Salvi (TU Berlin) An LDP for a RWRC in a nite box July 12, 2011 1 / 15

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Brownian intersection local times

Brownian intersection local times Weierstrass Institute for Applied Analysis and Stochastics Brownian intersection local times Wolfgang König (TU Berlin and WIAS Berlin) [K.&M., Ann. Probab. 2002], [K.&M., Trans. Amer. Math. Soc. 2006]

More information

The parabolic Anderson model on Z d with time-dependent potential: Frank s works

The parabolic Anderson model on Z d with time-dependent potential: Frank s works Weierstrass Institute for Applied Analysis and Stochastics The parabolic Anderson model on Z d with time-dependent potential: Frank s works Based on Frank s works 2006 2016 jointly with Dirk Erhard (Warwick),

More information

Continuous dependence estimates for the ergodic problem with an application to homogenization

Continuous dependence estimates for the ergodic problem with an application to homogenization Continuous dependence estimates for the ergodic problem with an application to homogenization Claudio Marchi Bayreuth, September 12 th, 2013 C. Marchi (Università di Padova) Continuous dependence Bayreuth,

More information

Classical behavior of the integrated density of states for the uniform magnetic field and a randomly perturbed

Classical behavior of the integrated density of states for the uniform magnetic field and a randomly perturbed Classical behavior of the integrated density of states for the uniform magnetic field and a randomly perturbed lattice * Naomasa Ueki 1 1 Graduate School of Human and Environmental Studies, Kyoto University

More information

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility José Enrique Figueroa-López 1 1 Department of Statistics Purdue University Statistics, Jump Processes,

More information

More Empirical Process Theory

More Empirical Process Theory More Empirical Process heory 4.384 ime Series Analysis, Fall 2008 Recitation by Paul Schrimpf Supplementary to lectures given by Anna Mikusheva October 24, 2008 Recitation 8 More Empirical Process heory

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Bridging the Gap between Center and Tail for Multiscale Processes

Bridging the Gap between Center and Tail for Multiscale Processes Bridging the Gap between Center and Tail for Multiscale Processes Matthew R. Morse Department of Mathematics and Statistics Boston University BU-Keio 2016, August 16 Matthew R. Morse (BU) Moderate Deviations

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

Long Time Asymptotics of Ornstein-Uhlenbeck Processes in Poisson Random Media

Long Time Asymptotics of Ornstein-Uhlenbeck Processes in Poisson Random Media University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-23 Long Time Asymptotics of Ornstein-Uhlenbeck Processes in Poisson Random Media

More information

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Gonçalo dos Reis University of Edinburgh (UK) & CMA/FCT/UNL (PT) jointly with: W. Salkeld, U. of

More information

Citation 数理解析研究所講究録 (2014), 1891:

Citation 数理解析研究所講究録 (2014), 1891: On Poisson Anderson model with poly Titlesingle site potential (Spectral and Related Topics) Author(s) Fukushima, Ryoki Citation 数理解析研究所講究録 (2014), 1891: 122-132 Issue Date 2014-04 URL http://hdl.handle.net/2433/195792

More information

A. Bovier () Branching Brownian motion: extremal process and ergodic theorems

A. Bovier () Branching Brownian motion: extremal process and ergodic theorems Branching Brownian motion: extremal process and ergodic theorems Anton Bovier with Louis-Pierre Arguin and Nicola Kistler RCS&SM, Venezia, 06.05.2013 Plan 1 BBM 2 Maximum of BBM 3 The Lalley-Sellke conjecture

More information

Concentration for Coulomb gases and Coulomb transport inequalities

Concentration for Coulomb gases and Coulomb transport inequalities Concentration for Coulomb gases and Coulomb transport inequalities Mylène Maïda U. Lille, Laboratoire Paul Painlevé Joint work with Djalil Chafaï and Adrien Hardy U. Paris-Dauphine and U. Lille ICERM,

More information

(B(t i+1 ) B(t i )) 2

(B(t i+1 ) B(t i )) 2 ltcc5.tex Week 5 29 October 213 Ch. V. ITÔ (STOCHASTIC) CALCULUS. WEAK CONVERGENCE. 1. Quadratic Variation. A partition π n of [, t] is a finite set of points t ni such that = t n < t n1

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Large Deviations from the Hydrodynamic Limit for a System with Nearest Neighbor Interactions

Large Deviations from the Hydrodynamic Limit for a System with Nearest Neighbor Interactions Large Deviations from the Hydrodynamic Limit for a System with Nearest Neighbor Interactions Amarjit Budhiraja Department of Statistics & Operations Research University of North Carolina at Chapel Hill

More information

The Contraction Method on C([0, 1]) and Donsker s Theorem

The Contraction Method on C([0, 1]) and Donsker s Theorem The Contraction Method on C([0, 1]) and Donsker s Theorem Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M. YEP VII Probability, random trees and algorithms Eindhoven, March 12, 2010 joint work

More information

MATH 425, HOMEWORK 3 SOLUTIONS

MATH 425, HOMEWORK 3 SOLUTIONS MATH 425, HOMEWORK 3 SOLUTIONS Exercise. (The differentiation property of the heat equation In this exercise, we will use the fact that the derivative of a solution to the heat equation again solves the

More information

Hypothesis testing for Stochastic PDEs. Igor Cialenco

Hypothesis testing for Stochastic PDEs. Igor Cialenco Hypothesis testing for Stochastic PDEs Igor Cialenco Department of Applied Mathematics Illinois Institute of Technology igor@math.iit.edu Joint work with Liaosha Xu Research partially funded by NSF grants

More information

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1 Chapter 3 A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1 Abstract We establish a change of variable

More information

MA8109 Stochastic Processes in Systems Theory Autumn 2013

MA8109 Stochastic Processes in Systems Theory Autumn 2013 Norwegian University of Science and Technology Department of Mathematical Sciences MA819 Stochastic Processes in Systems Theory Autumn 213 1 MA819 Exam 23, problem 3b This is a linear equation of the form

More information

Richard F. Bass Krzysztof Burdzy University of Washington

Richard F. Bass Krzysztof Burdzy University of Washington ON DOMAIN MONOTONICITY OF THE NEUMANN HEAT KERNEL Richard F. Bass Krzysztof Burdzy University of Washington Abstract. Some examples are given of convex domains for which domain monotonicity of the Neumann

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

ON THE ZERO-ONE LAW AND THE LAW OF LARGE NUMBERS FOR RANDOM WALK IN MIXING RAN- DOM ENVIRONMENT

ON THE ZERO-ONE LAW AND THE LAW OF LARGE NUMBERS FOR RANDOM WALK IN MIXING RAN- DOM ENVIRONMENT Elect. Comm. in Probab. 10 (2005), 36 44 ELECTRONIC COMMUNICATIONS in PROBABILITY ON THE ZERO-ONE LAW AND THE LAW OF LARGE NUMBERS FOR RANDOM WALK IN MIXING RAN- DOM ENVIRONMENT FIRAS RASSOUL AGHA Department

More information

Effective dynamics for the (overdamped) Langevin equation

Effective dynamics for the (overdamped) Langevin equation Effective dynamics for the (overdamped) Langevin equation Frédéric Legoll ENPC and INRIA joint work with T. Lelièvre (ENPC and INRIA) Enumath conference, MS Numerical methods for molecular dynamics EnuMath

More information

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3) M ath 5 2 7 Fall 2 0 0 9 L ecture 4 ( S ep. 6, 2 0 0 9 ) Properties and Estimates of Laplace s and Poisson s Equations In our last lecture we derived the formulas for the solutions of Poisson s equation

More information

Asymptotics for evolution problems with nonlocal diffusion. Julio D. Rossi

Asymptotics for evolution problems with nonlocal diffusion. Julio D. Rossi Asymptotics for evolution problems with nonlocal diffusion Julio D. Rossi IMDEA Matemáticas, C-IX, Campus Cantoblanco, UAM, Madrid, Spain and Departamento de Matemática, FCEyN UBA (1428) Buenos Aires,

More information

Classical and quantum behavior of the integrated density of states for a randomly perturbed lattice

Classical and quantum behavior of the integrated density of states for a randomly perturbed lattice Classical and quantum behavior of the integrated density of states for a randomly perturbed lattice Ryoki Fukushima Naomasa Ueki March 13, 2009 Abstract The asymptotic behavior of the integrated density

More information

Scaling exponents for certain 1+1 dimensional directed polymers

Scaling exponents for certain 1+1 dimensional directed polymers Scaling exponents for certain 1+1 dimensional directed polymers Timo Seppäläinen Department of Mathematics University of Wisconsin-Madison 2010 Scaling for a polymer 1/29 1 Introduction 2 KPZ equation

More information

First passage time for Brownian motion and piecewise linear boundaries

First passage time for Brownian motion and piecewise linear boundaries To appear in Methodology and Computing in Applied Probability, (2017) 19: 237-253. doi 10.1007/s11009-015-9475-2 First passage time for Brownian motion and piecewise linear boundaries Zhiyong Jin 1 and

More information

THE SKOROKHOD OBLIQUE REFLECTION PROBLEM IN A CONVEX POLYHEDRON

THE SKOROKHOD OBLIQUE REFLECTION PROBLEM IN A CONVEX POLYHEDRON GEORGIAN MATHEMATICAL JOURNAL: Vol. 3, No. 2, 1996, 153-176 THE SKOROKHOD OBLIQUE REFLECTION PROBLEM IN A CONVEX POLYHEDRON M. SHASHIASHVILI Abstract. The Skorokhod oblique reflection problem is studied

More information

Yaglom-type limit theorems for branching Brownian motion with absorption. by Jason Schweinsberg University of California San Diego

Yaglom-type limit theorems for branching Brownian motion with absorption. by Jason Schweinsberg University of California San Diego Yaglom-type limit theorems for branching Brownian motion with absorption by Jason Schweinsberg University of California San Diego (with Julien Berestycki, Nathanaël Berestycki, Pascal Maillard) Outline

More information

Large Deviations for Small-Noise Stochastic Differential Equations

Large Deviations for Small-Noise Stochastic Differential Equations Chapter 21 Large Deviations for Small-Noise Stochastic Differential Equations This lecture is at once the end of our main consideration of diffusions and stochastic calculus, and a first taste of large

More information

Invariance Principle for Variable Speed Random Walks on Trees

Invariance Principle for Variable Speed Random Walks on Trees Invariance Principle for Variable Speed Random Walks on Trees Wolfgang Löhr, University of Duisburg-Essen joint work with Siva Athreya and Anita Winter Stochastic Analysis and Applications Thoku University,

More information

THE PARABOLIC ANDERSON MODEL. Wolfgang König 1,2,3

THE PARABOLIC ANDERSON MODEL. Wolfgang König 1,2,3 THE PARABOLIC ANDERSON MODEL Jürgen Gärtner 1,2 Wolfgang König 1,2,3 (February 20, 2004) Abstract: This is a survey on the intermittent behavior of the parabolic Anderson model, which is the Cauchy problem

More information

THE MCKEAN-SINGER FORMULA VIA EQUIVARIANT QUANTIZATION

THE MCKEAN-SINGER FORMULA VIA EQUIVARIANT QUANTIZATION THE MCKEAN-SINGER FORMULA VIA EQUIVARIANT QUANTIZATION EUGENE RABINOVICH 1. Introduction The aim of this talk is to present a proof, using the language of factorization algebras, and in particular the

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

Potential theory of subordinate killed Brownian motions

Potential theory of subordinate killed Brownian motions Potential theory of subordinate killed Brownian motions Renming Song University of Illinois AMS meeting, Indiana University, April 2, 2017 References This talk is based on the following paper with Panki

More information

A Note On Large Deviation Theory and Beyond

A Note On Large Deviation Theory and Beyond A Note On Large Deviation Theory and Beyond Jin Feng In this set of notes, we will develop and explain a whole mathematical theory which can be highly summarized through one simple observation ( ) lim

More information

TRANSPORT IN POROUS MEDIA

TRANSPORT IN POROUS MEDIA 1 TRANSPORT IN POROUS MEDIA G. ALLAIRE CMAP, Ecole Polytechnique 1. Introduction 2. Main result in an unbounded domain 3. Asymptotic expansions with drift 4. Two-scale convergence with drift 5. The case

More information

MATH 6605: SUMMARY LECTURE NOTES

MATH 6605: SUMMARY LECTURE NOTES MATH 6605: SUMMARY LECTURE NOTES These notes summarize the lectures on weak convergence of stochastic processes. If you see any typos, please let me know. 1. Construction of Stochastic rocesses A stochastic

More information

Lecture 5: Importance sampling and Hamilton-Jacobi equations

Lecture 5: Importance sampling and Hamilton-Jacobi equations Lecture 5: Importance sampling and Hamilton-Jacobi equations Henrik Hult Department of Mathematics KTH Royal Institute of Technology Sweden Summer School on Monte Carlo Methods and Rare Events Brown University,

More information

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang.

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang. Florida State University March 1, 2018 Framework 1. (Lizhe) Basic inequalities Chernoff bounding Review for STA 6448 2. (Lizhe) Discrete-time martingales inequalities via martingale approach 3. (Boning)

More information

Classical and quantum behavior of the integrated density of states for a randomly perturbed lattice

Classical and quantum behavior of the integrated density of states for a randomly perturbed lattice Classical and quantum behavior of the integrated density of states for a randomly perturbed lattice Ryoki Fukushima and Naomasa Ueki Abstract. The asymptotic behavior of the integrated density of states

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem Koichiro TAKAOKA Dept of Applied Physics, Tokyo Institute of Technology Abstract M Yor constructed a family

More information

THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES

THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES IGOR PROKHORENKOV 1. Introduction to the Selberg Trace Formula This is a talk about the paper H. P. McKean: Selberg s Trace Formula as applied to a

More information

COMPARISON THEOREMS FOR THE SPECTRAL GAP OF DIFFUSIONS PROCESSES AND SCHRÖDINGER OPERATORS ON AN INTERVAL. Ross G. Pinsky

COMPARISON THEOREMS FOR THE SPECTRAL GAP OF DIFFUSIONS PROCESSES AND SCHRÖDINGER OPERATORS ON AN INTERVAL. Ross G. Pinsky COMPARISON THEOREMS FOR THE SPECTRAL GAP OF DIFFUSIONS PROCESSES AND SCHRÖDINGER OPERATORS ON AN INTERVAL Ross G. Pinsky Department of Mathematics Technion-Israel Institute of Technology Haifa, 32000 Israel

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

THE WAVE EQUATION. d = 1: D Alembert s formula We begin with the initial value problem in 1 space dimension { u = utt u xx = 0, in (0, ) R, (2)

THE WAVE EQUATION. d = 1: D Alembert s formula We begin with the initial value problem in 1 space dimension { u = utt u xx = 0, in (0, ) R, (2) THE WAVE EQUATION () The free wave equation takes the form u := ( t x )u = 0, u : R t R d x R In the literature, the operator := t x is called the D Alembertian on R +d. Later we shall also consider the

More information

Large Deviations Techniques and Applications

Large Deviations Techniques and Applications Amir Dembo Ofer Zeitouni Large Deviations Techniques and Applications Second Edition With 29 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1 Introduction 1

More information

On pathwise stochastic integration

On pathwise stochastic integration On pathwise stochastic integration Rafa l Marcin Lochowski Afican Institute for Mathematical Sciences, Warsaw School of Economics UWC seminar Rafa l Marcin Lochowski (AIMS, WSE) On pathwise stochastic

More information

SPDEs, criticality, and renormalisation

SPDEs, criticality, and renormalisation SPDEs, criticality, and renormalisation Hendrik Weber Mathematics Institute University of Warwick Potsdam, 06.11.2013 An interesting model from Physics I Ising model Spin configurations: Energy: Inverse

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

GARCH processes continuous counterparts (Part 2)

GARCH processes continuous counterparts (Part 2) GARCH processes continuous counterparts (Part 2) Alexander Lindner Centre of Mathematical Sciences Technical University of Munich D 85747 Garching Germany lindner@ma.tum.de http://www-m1.ma.tum.de/m4/pers/lindner/

More information

Poisson random measure: motivation

Poisson random measure: motivation : motivation The Lévy measure provides the expected number of jumps by time unit, i.e. in a time interval of the form: [t, t + 1], and of a certain size Example: ν([1, )) is the expected number of jumps

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Large deviations and fluctuation exponents for some polymer models. Directed polymer in a random environment. KPZ equation Log-gamma polymer

Large deviations and fluctuation exponents for some polymer models. Directed polymer in a random environment. KPZ equation Log-gamma polymer Large deviations and fluctuation exponents for some polymer models Timo Seppäläinen Department of Mathematics University of Wisconsin-Madison 211 1 Introduction 2 Large deviations 3 Fluctuation exponents

More information

Connection to Branching Random Walk

Connection to Branching Random Walk Lecture 7 Connection to Branching Random Walk The aim of this lecture is to prepare the grounds for the proof of tightness of the maximum of the DGFF. We will begin with a recount of the so called Dekking-Host

More information

Elliptic PDEs of 2nd Order, Gilbarg and Trudinger

Elliptic PDEs of 2nd Order, Gilbarg and Trudinger Elliptic PDEs of 2nd Order, Gilbarg and Trudinger Chapter 2 Laplace Equation Yung-Hsiang Huang 207.07.07. Mimic the proof for Theorem 3.. 2. Proof. I think we should assume u C 2 (Ω Γ). Let W be an open

More information

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Feng Wei 2 University of Michigan July 29, 2016 1 This presentation is based a project under the supervision of M. Rudelson.

More information

Erdős-Renyi random graphs basics

Erdős-Renyi random graphs basics Erdős-Renyi random graphs basics Nathanaël Berestycki U.B.C. - class on percolation We take n vertices and a number p = p(n) with < p < 1. Let G(n, p(n)) be the graph such that there is an edge between

More information

Weak solutions of mean-field stochastic differential equations

Weak solutions of mean-field stochastic differential equations Weak solutions of mean-field stochastic differential equations Juan Li School of Mathematics and Statistics, Shandong University (Weihai), Weihai 26429, China. Email: juanli@sdu.edu.cn Based on joint works

More information

SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE

SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE FRANÇOIS BOLLEY Abstract. In this note we prove in an elementary way that the Wasserstein distances, which play a basic role in optimal transportation

More information

9.2 Branching random walk and branching Brownian motions

9.2 Branching random walk and branching Brownian motions 168 CHAPTER 9. SPATIALLY STRUCTURED MODELS 9.2 Branching random walk and branching Brownian motions Branching random walks and branching diffusions have a long history. A general theory of branching Markov

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam August 9, 212 Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless,

More information

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS (2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS Svetlana Janković and Miljana Jovanović Faculty of Science, Department of Mathematics, University

More information

Heat kernels of some Schrödinger operators

Heat kernels of some Schrödinger operators Heat kernels of some Schrödinger operators Alexander Grigor yan Tsinghua University 28 September 2016 Consider an elliptic Schrödinger operator H = Δ + Φ, where Δ = n 2 i=1 is the Laplace operator in R

More information

Uncertainty quantification and systemic risk

Uncertainty quantification and systemic risk Uncertainty quantification and systemic risk Josselin Garnier (Université Paris Diderot) with George Papanicolaou and Tzu-Wei Yang (Stanford University) February 3, 2016 Modeling systemic risk We consider

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Obstacle problems for nonlocal operators

Obstacle problems for nonlocal operators Obstacle problems for nonlocal operators Camelia Pop School of Mathematics, University of Minnesota Fractional PDEs: Theory, Algorithms and Applications ICERM June 19, 2018 Outline Motivation Optimal regularity

More information

Skorokhod Embeddings In Bounded Time

Skorokhod Embeddings In Bounded Time Skorokhod Embeddings In Bounded Time Stefan Ankirchner Institute for Applied Mathematics University of Bonn Endenicher Allee 6 D-535 Bonn ankirchner@hcm.uni-bonn.de Philipp Strack Bonn Graduate School

More information

v( x) u( y) dy for any r > 0, B r ( x) Ω, or equivalently u( w) ds for any r > 0, B r ( x) Ω, or ( not really) equivalently if v exists, v 0.

v( x) u( y) dy for any r > 0, B r ( x) Ω, or equivalently u( w) ds for any r > 0, B r ( x) Ω, or ( not really) equivalently if v exists, v 0. Sep. 26 The Perron Method In this lecture we show that one can show existence of solutions using maximum principle alone.. The Perron method. Recall in the last lecture we have shown the existence of solutions

More information

Wiener Measure and Brownian Motion

Wiener Measure and Brownian Motion Chapter 16 Wiener Measure and Brownian Motion Diffusion of particles is a product of their apparently random motion. The density u(t, x) of diffusing particles satisfies the diffusion equation (16.1) u

More information

N polaron systems and mathematics

N polaron systems and mathematics N polaron systems and mathematics (with R. Frank, E. Lieb, and R. Seiringer) Outline A very brief history of the polaron Lower bounds on the ground state energy for polarons Recent results on the binding

More information

Some Properties of NSFDEs

Some Properties of NSFDEs Chenggui Yuan (Swansea University) Some Properties of NSFDEs 1 / 41 Some Properties of NSFDEs Chenggui Yuan Swansea University Chenggui Yuan (Swansea University) Some Properties of NSFDEs 2 / 41 Outline

More information

Uniformly Uniformly-ergodic Markov chains and BSDEs

Uniformly Uniformly-ergodic Markov chains and BSDEs Uniformly Uniformly-ergodic Markov chains and BSDEs Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) Centre Henri Lebesgue,

More information

The cover time of random walks on random graphs. Colin Cooper Alan Frieze

The cover time of random walks on random graphs. Colin Cooper Alan Frieze Happy Birthday Bela Random Graphs 1985 The cover time of random walks on random graphs Colin Cooper Alan Frieze The cover time of random walks on random graphs Colin Cooper Alan Frieze and Eyal Lubetzky

More information

Improved diffusion Monte Carlo

Improved diffusion Monte Carlo Improved diffusion Monte Carlo Jonathan Weare University of Chicago with Martin Hairer (U of Warwick) October 4, 2012 Diffusion Monte Carlo The original motivation for DMC was to compute averages with

More information

Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N

Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N P. Poláčik School of Mathematics, University of Minnesota Minneapolis, MN 55455 Abstract This paper is devoted to

More information

S. Lototsky and B.L. Rozovskii Center for Applied Mathematical Sciences University of Southern California, Los Angeles, CA

S. Lototsky and B.L. Rozovskii Center for Applied Mathematical Sciences University of Southern California, Los Angeles, CA RECURSIVE MULTIPLE WIENER INTEGRAL EXPANSION FOR NONLINEAR FILTERING OF DIFFUSION PROCESSES Published in: J. A. Goldstein, N. E. Gretsky, and J. J. Uhl (editors), Stochastic Processes and Functional Analysis,

More information

An Overview of the Martingale Representation Theorem

An Overview of the Martingale Representation Theorem An Overview of the Martingale Representation Theorem Nuno Azevedo CEMAPRE - ISEG - UTL nazevedo@iseg.utl.pt September 3, 21 Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar September 3, 21 1 / 25 Background

More information

Fractional Laplacian

Fractional Laplacian Fractional Laplacian Grzegorz Karch 5ème Ecole de printemps EDP Non-linéaire Mathématiques et Interactions: modèles non locaux et applications Ecole Supérieure de Technologie d Essaouira, du 27 au 30 Avril

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

Some Aspects of Universal Portfolio

Some Aspects of Universal Portfolio 1 Some Aspects of Universal Portfolio Tomoyuki Ichiba (UC Santa Barbara) joint work with Marcel Brod (ETH Zurich) Conference on Stochastic Asymptotics & Applications Sixth Western Conference on Mathematical

More information

Weak convergence and large deviation theory

Weak convergence and large deviation theory First Prev Next Go To Go Back Full Screen Close Quit 1 Weak convergence and large deviation theory Large deviation principle Convergence in distribution The Bryc-Varadhan theorem Tightness and Prohorov

More information

Product measure and Fubini s theorem

Product measure and Fubini s theorem Chapter 7 Product measure and Fubini s theorem This is based on [Billingsley, Section 18]. 1. Product spaces Suppose (Ω 1, F 1 ) and (Ω 2, F 2 ) are two probability spaces. In a product space Ω = Ω 1 Ω

More information

Parameter Estimation for Stochastic Evolution Equations with Non-commuting Operators

Parameter Estimation for Stochastic Evolution Equations with Non-commuting Operators Parameter Estimation for Stochastic Evolution Equations with Non-commuting Operators Sergey V. Lototsky and Boris L. Rosovskii In: V. Korolyuk, N. Portenko, and H. Syta (editors), Skorokhod s Ideas in

More information

Ahmed Mohammed. Harnack Inequality for Non-divergence Structure Semi-linear Elliptic Equations

Ahmed Mohammed. Harnack Inequality for Non-divergence Structure Semi-linear Elliptic Equations Harnack Inequality for Non-divergence Structure Semi-linear Elliptic Equations International Conference on PDE, Complex Analysis, and Related Topics Miami, Florida January 4-7, 2016 An Outline 1 The Krylov-Safonov

More information

Fractals at infinity and SPDEs (Large scale random fractals)

Fractals at infinity and SPDEs (Large scale random fractals) Fractals at infinity and SPDEs (Large scale random fractals) Kunwoo Kim (joint with Davar Khoshnevisan and Yimin Xiao) Department of Mathematics University of Utah May 18, 2014 Frontier Probability Days

More information

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true 3 ohn Nirenberg inequality, Part I A function ϕ L () belongs to the space BMO() if sup ϕ(s) ϕ I I I < for all subintervals I If the same is true for the dyadic subintervals I D only, we will write ϕ BMO

More information