for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true

Size: px
Start display at page:

Download "for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true"

Transcription

1 3 ohn Nirenberg inequality, Part I A function ϕ L () belongs to the space BMO() if sup ϕ(s) ϕ I I I < for all subintervals I If the same is true for the dyadic subintervals I D only, we will write ϕ BMO d () In fact, the following is true ϕ BMO() ( ϕ(s) ϕ I p I ds) p <, p (0, ), I If we factor over the constants, we get a normed space, where the expression on the right-hand side can be taken as one of the equivalent norms for any p [, ) In what follows, we will use the L -based norm: ϕ BMO() = sup I I I ( ) ϕ(s) ϕ I ds = sup ϕ I ϕ I I The BMO ball of radius ε centered at 0 will be denoted by BMO ε Using the Haar decomposition ϕ(s) = ϕ + I D (ϕ, h I )h I (s), we can write down the expression for the norm in the following way ϕ BMO() = sup (ϕ, h I I L ) = sup L ( ϕ I I L + ϕ L L D L D I Theorem (ohn Nirenberg) There exist absolute constants c and c such that for all ϕ BMO ε () {s : ϕ(s) ϕ λ} c e c λ ϕ An equivalent integral form of the same assertion is the following Theorem There exist absolute constants ε 0 such that for any ϕ BMO() with ε < ε 0 the inequality e ϕ ce ϕ holds with a constant c = c(ε) not depending on ϕ We shall prove the theorem in this integral form and find the sharp constant c(ε) Our Bellman function, B(x; ε) = sup ϕ BMO ε() { } e ϕ : ϕ = x, ϕ = x, is well-ined on the domain Ω ε = { x = (x, x ): x x x + ε } First, we will consider the dyadic problem and deduce the main inequality for the dyadic Bellman function

2 Lemma 3 (Main inequality) For every pair of points x ± from Ω ε such that their mean x = (x + + x )/ is also in Ω ε, the following inequality holds (3) B(x) B(x+ ) + B(x ) Proof The proof literarily repeats the proof of the main inequality for the Buckley Bellman function We split the integral in the inition of B into two parts: the integral over + and the one over : e ϕ(s) ds = e ϕ(s) ds + e ϕ(s) ds + Now we choose such functions ϕ ± on the intervals ± that almost give us the supremum in the inition of B(x ± ), ie ± ± e ϕ(s) ds B(x ± ) η, for a fixed small η > 0 Then for the function ϕ on, ined as ϕ + on + and ϕ on, we obtain the inequality (3) e ϕ(s) ds B(x+ ) + B(x ) η Observe that the compound function ϕ is an admissible test function, corresponding to the point x Indeed, x ± = x ± and by construction ϕ ± BMO d ε( ± ); therefore, the function ϕ satisfies the inequality ϕ I ϕ ε for all I D I +, since ϕ + does, and for all I D, since ϕ does Lastly, ϕ ϕ ε, because, by assumption, x Ω ε We can now take supremum in (3) over all admissible functions ϕ which yields B(x) B(x+ ) + B(x ) η, which proves the main inequality because η is arbitrarily small For the Buckley inequality Bellman function, the next step was to reduce the number of variables Here it is possible as well, but we postpone this procedure and first derive a boundary condition for B Lemma 3 (Boundary condition) (33) B(x, x ) = e x Proof The function ϕ(s) = x is the only test function corresponding to the point x = (x, x ), because the equality in the Hölder inequality x x occurs only for the constant functions Hence, e ϕ = e x Now we are ready to describe super-solutions as functions verifying the main inequality and the boundary conditions Lemma 33 (Bellman induction) If B is a continuous function on the domain Ω ε, satisfying the main inequality (3) for any pair of x ± Ω ε, such that x = x+ +x Ω ε, and the boundary condition (33), then B(x) B(x)

3 Proof Fix a bounded function ϕ BMO ε () By the main inequality we have B(x ) + B(x + ) + B(x ) I B(x I ) = B(x (n) (s)) ds, I D where x (n) (s) = x I, when s I, I D By the Lebesgue differentiation theorem we have x (n) (s) (ϕ(s), ϕ (s)) almost everywhere Now, we can pass to the limit in this inequality as n Since ϕ is assumed to be bounded, x (n) (s) runs in a bounded and, therefore, compact subdomain of Ω ε Since B is continuous, it is bounded on any compact set and so, by the Lebesgue dominated convergence theorem, we can pass to the limit in the integral using the boundary condition (33): (34) B(x ) B(ϕ(s), ϕ (s)) ds = e ϕ(s) ds = e ϕ To complete the proof of the lemma, we need to pass from bounded to arbitrary BMO test functions To this end, we will use the following result: Lemma 34 Fix ϕ BMO() and two real numbers c, d such that c < d Let ϕ c,d be the cut-off of ϕ at heights c and d : c, if ϕ(s) c; (35) ϕ c,d (s) = ϕ(s), if c < ϕ(s) < d; d, if ϕ(s) d Then and, consequently, ϕ c,d I ϕ c,d ϕ I I ϕ, I, I, I ϕ c,d BMO ϕ BMO Proof First, let us note that it is sufficient to prove this lemma for one-sided cut, for example, for c = We then get the full statement by applying this argument twice Indeed, if we denote by C d ϕ the cut-off of a ϕ from above at height d, ie C d ϕ = ϕ,d, then ϕ c,d = C c ( C d ϕ) Take a measurable subset I and let I = {s I : ϕ(s) d} and I = {s I : ϕ(s) d} Let β k = I k / I, k =, We have the following identity: [ ] [ ϕ I ϕ I (Cd ϕ) I C d ϕ I] [ ] [ =β ϕ I ϕ I + β β ϕ I d ][ ] ϕ I + d ϕ I, which proves the lemma, because ϕ I d ϕ I Now, let ϕ BMO ε () be a function bounded from above Then, by the above lemma, ϕ n = ϕ n, BMO ε (), and, according to (34), we have B( ϕ n, ϕ n ) e ϕn Since e ϕ is a summable majorant for e ϕn and B is continuous, we can pass to the limit and obtain the estimate (34) for any function ϕ bounded from above Finally, we repeat this approximation procedure for an arbitrary ϕ Now, we take ϕ n = ϕ,n and use the monotone convergence theorem to pass to the limit in the right-hand side of the inequality 3

4 4 So, we have proved the inequality B(x ) e ϕ for arbitrary ϕ BMO ε () Taking supremum over all admissible test functions corresponding to the point x, we get B(x) B(x) As before, we pass from the finite-difference inequality (3) to the infinitesimal one: B B d B x x x (36) = dx B B 0, x x x and we will require this Hessian matrix to be degenerate, ie det( d B dx ) = 0 Again, to solve this PDE, we use a homogeneity property to reduce the problem to ODE Lemma 35 (Homogeneity) There exists a function G on the interval [0, ε ] such that B(x; ε) = e x G(x x ), G(0) = Proof Let ϕ be an arbitrary test function and x = ( ϕ, ϕ ) its Bellman point Then the function ϕ = ϕ + τ is also a test function with the same norm, and its Bellman point is x = (x + τ, x + τx + τ ) Therefore, Choosing τ = x we get B( x) = sup ϕ e ϕ = e τ sup e ϕ = e τ B(x) B(x) = e τ B(x + τ, x + τx + τ ) = e x B(0, x x ) Setting G(t) = B(0, t) completes the proof Since G 0, we can introduce g(t) = log G(t) and look for a function B of the form B(x, x ) = e x +g(x x ) By direct calculation, we get B = ( 4x x g + 4x (g ) g + 4x g ) B, B = ( g x (g ) x g ) B, x x B = ( (g ) + g ) B x The partial differential equation det( d B dx ) = 0 then turns into the following ordinary differential equation: ( 4x g + 4x (g ) g + 4x g ) ( (g ) + g ) = ( g x (g ) x g ), ϕ which reduces to g g g (g ) 3 = 0

5 Dividing by (g ) 3 (since we are not interested in constant solutions), we get ( g ) =, 4(g ) which yields g 4(g ) = t + const or, equivalently, ( ) = t + const, s [0, ε ] g Since the left-hand side is non-positive, the constant cannot be greater than ε Let us denote it by δ, where δ ε Thus, we have two possible solutions: = ± δ g ± t Using the boundary condition g(0) = 0, we obtain g ± (t) = t ds 0 δ s = log δ t ± δ δ t δ This yields two solutions for B : B ± (x) = { δ x + x } exp x ± δ δ x + x δ Homework assignment ) Check that the quadratic form of the Hessian is: ( (x B ± ) δ x +x ± ) { } i j = exp x ± δ x i x x +x j δ x + x δ ( δ) i,j= ) Describe the extremal trajectories along which the Hessian degenerates 4 Homogeneous Monge Ampère equation We will look for the solutions of the system (4) B x x B x x = (B x x ), B x x 0, B x x 0, subject to certain boundary conditions By the nature of the problem, we are interested in finding the smallest possible solution of (4) If a linear function fulfills the boundary conditions, it clearly is that smallest solution In what follows we assume that B is not linear This means that at each point x of the domain there exists a unique (up to a scalar coefficient) vector, say Θ(x), lying in the kernel of the matrix d B dx Let us show that the functions B xi are constant along the vector field Θ For a differentiable ( function ) f, the vector field tangent to the level set f(x, x ) = const fx has the form (it is orthogonal to f) Thus, we need to check that both f x 5

6 6 ( ) (Bxi ) vectors x are in the kernel of the Hessian (ie proportional to the kernel (B xi ) x vector Θ) This is a direct consequence of (4) For example, for i = we have: ( ) ( ) ( ) Bx,x B x x (Bx ) x Bx x = B x x + B x x B x x = 0 B x x (B x ) x B x x B x x + B x x B x x B x x If we parameterize the integral curves of the field Θ by some parameter s we can write B xi = t i (s), s = s(x, x ) Any B xi that is not identically constant can be itself taken as s But it is usually more convenient to parameterize the integral curves by some other parameter with a clear geometrical meaning Now, we show that the function t 0 = B x t x t is also constant along the integral curves Since t 0 t t = B x + x + x + t = x B x x x x x + x B x x and t 0 t t = B x t x x = x B x x x x x x B x x, we have ( ) ( ) ( ) (t0 ) x (t ) = x x (t ) (t 0 ) x x x (t ) Ker d B x (t ) x dx Thus, we have proved that any solution of the homogeneous Monge Ampère equation has the representation (4) B = t 0 + x t + x t where the coefficients t i are constant along the vector field generated by the kernel of the Hessian Now we prove that the integral curves of this vector field are in fact straight lines, given by the equation (43) dt 0 + x dt + x dt = 0 This is, indeed, the equation of a straight line, because all the differentials are constant along the trajectory This equation can be rewritten as a usual linear equation with constant coefficients, if we choose a parametrization of the trajectories For example, if we take s = t 0, then (43) turns into + x dt dt 0 + x dt dt 0 = 0, where the coefficients dt i dt 0, being functions of t 0, are constant on each trajectory Let us now deduce equation (43) On the one side, (44) db = B x dx + B x dx = t dx + t dx ; on the other side, from (4) we have (45) db = dt 0 + t dx + x dt + t dx + x dt Comparing of (44) and (45) yields (43)

JUHA KINNUNEN. Harmonic Analysis

JUHA KINNUNEN. Harmonic Analysis JUHA KINNUNEN Harmonic Analysis Department of Mathematics and Systems Analysis, Aalto University 27 Contents Calderón-Zygmund decomposition. Dyadic subcubes of a cube.........................2 Dyadic cubes

More information

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 6. Geodesics A parametrized line γ : [a, b] R n in R n is straight (and the parametrization is uniform) if the vector γ (t) does not depend on t. Thus,

More information

Bellman function approach to the sharp constants in uniform convexity

Bellman function approach to the sharp constants in uniform convexity Adv. Calc. Var. 08; (): 89 9 Research Article Paata Ivanisvili* Bellman function approach to the sharp constants in uniform convexity DOI: 0.55/acv-06-0008 Received February 9 06; revised May 5 06; accepted

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

HARMONIC ANALYSIS. Date:

HARMONIC ANALYSIS. Date: HARMONIC ANALYSIS Contents. Introduction 2. Hardy-Littlewood maximal function 3. Approximation by convolution 4. Muckenhaupt weights 4.. Calderón-Zygmund decomposition 5. Fourier transform 6. BMO (bounded

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Yongsheng Han, Ji Li, and Guozhen Lu Department of Mathematics Vanderbilt University Nashville, TN Internet Analysis Seminar 2012

More information

arxiv: v1 [math.ca] 31 Dec 2014

arxiv: v1 [math.ca] 31 Dec 2014 INEQUALITIES FOR BMO ON -TREES LEONID SLAVIN AND VASILY VASYUNIN arxiv:150100097v1 [mathca] 31 Dec 2014 Abstract We develop technical tools that enable the use of Bellman functions for BMO defined on -trees,

More information

MATH 6337: Homework 8 Solutions

MATH 6337: Homework 8 Solutions 6.1. MATH 6337: Homework 8 Solutions (a) Let be a measurable subset of 2 such that for almost every x, {y : (x, y) } has -measure zero. Show that has measure zero and that for almost every y, {x : (x,

More information

Non-linear wave equations. Hans Ringström. Department of Mathematics, KTH, Stockholm, Sweden

Non-linear wave equations. Hans Ringström. Department of Mathematics, KTH, Stockholm, Sweden Non-linear wave equations Hans Ringström Department of Mathematics, KTH, 144 Stockholm, Sweden Contents Chapter 1. Introduction 5 Chapter 2. Local existence and uniqueness for ODE:s 9 1. Background material

More information

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM OLEG ZUBELEVICH DEPARTMENT OF MATHEMATICS THE BUDGET AND TREASURY ACADEMY OF THE MINISTRY OF FINANCE OF THE RUSSIAN FEDERATION 7, ZLATOUSTINSKY MALIY PER.,

More information

The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge

The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge Vladimir Kozlov (Linköping University, Sweden) 2010 joint work with A.Nazarov Lu t u a ij

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

An introduction to Mathematical Theory of Control

An introduction to Mathematical Theory of Control An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Geometric-arithmetic averaging of dyadic weights

Geometric-arithmetic averaging of dyadic weights Geometric-arithmetic averaging of dyadic weights Jill Pipher Department of Mathematics Brown University Providence, RI 2912 jpipher@math.brown.edu Lesley A. Ward School of Mathematics and Statistics University

More information

A GENERAL THEOREM ON APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION. Miljenko Huzak University of Zagreb,Croatia

A GENERAL THEOREM ON APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION. Miljenko Huzak University of Zagreb,Croatia GLASNIK MATEMATIČKI Vol. 36(56)(2001), 139 153 A GENERAL THEOREM ON APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION Miljenko Huzak University of Zagreb,Croatia Abstract. In this paper a version of the general

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

16 1 Basic Facts from Functional Analysis and Banach Lattices

16 1 Basic Facts from Functional Analysis and Banach Lattices 16 1 Basic Facts from Functional Analysis and Banach Lattices 1.2.3 Banach Steinhaus Theorem Another fundamental theorem of functional analysis is the Banach Steinhaus theorem, or the Uniform Boundedness

More information

Singular Integrals. 1 Calderon-Zygmund decomposition

Singular Integrals. 1 Calderon-Zygmund decomposition Singular Integrals Analysis III Calderon-Zygmund decomposition Let f be an integrable function f dx 0, f = g + b with g Cα almost everywhere, with b

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 9 November 13 November Deadline to hand in the homeworks: your exercise class on week 16 November 20 November Exercises (1) Show that if T B(X, Y ) and S B(Y, Z)

More information

Integral Jensen inequality

Integral Jensen inequality Integral Jensen inequality Let us consider a convex set R d, and a convex function f : (, + ]. For any x,..., x n and λ,..., λ n with n λ i =, we have () f( n λ ix i ) n λ if(x i ). For a R d, let δ a

More information

VISCOSITY SOLUTIONS OF ELLIPTIC EQUATIONS

VISCOSITY SOLUTIONS OF ELLIPTIC EQUATIONS VISCOSITY SOLUTIONS OF ELLIPTIC EQUATIONS LUIS SILVESTRE These are the notes from the summer course given in the Second Chicago Summer School In Analysis, in June 2015. We introduce the notion of viscosity

More information

1 I (x)) 1/2 I. A fairly immediate corollary of the techniques discussed in the last lecture is Theorem 1.1. For all 1 < p <

1 I (x)) 1/2 I. A fairly immediate corollary of the techniques discussed in the last lecture is Theorem 1.1. For all 1 < p < 1. Lecture 4 1.1. Square functions, paraproducts, Khintchin s inequality. The dyadic Littlewood Paley square function of a function f is defined as Sf(x) := ( f, h 2 1 (x)) 1/2 where the summation goes

More information

VISCOSITY SOLUTIONS. We follow Han and Lin, Elliptic Partial Differential Equations, 5.

VISCOSITY SOLUTIONS. We follow Han and Lin, Elliptic Partial Differential Equations, 5. VISCOSITY SOLUTIONS PETER HINTZ We follow Han and Lin, Elliptic Partial Differential Equations, 5. 1. Motivation Throughout, we will assume that Ω R n is a bounded and connected domain and that a ij C(Ω)

More information

An introduction to some aspects of functional analysis

An introduction to some aspects of functional analysis An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms

More information

Exercise 1. Let f be a nonnegative measurable function. Show that. where ϕ is taken over all simple functions with ϕ f. k 1.

Exercise 1. Let f be a nonnegative measurable function. Show that. where ϕ is taken over all simple functions with ϕ f. k 1. Real Variables, Fall 2014 Problem set 3 Solution suggestions xercise 1. Let f be a nonnegative measurable function. Show that f = sup ϕ, where ϕ is taken over all simple functions with ϕ f. For each n

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

APPLICATIONS OF DIFFERENTIABILITY IN R n.

APPLICATIONS OF DIFFERENTIABILITY IN R n. APPLICATIONS OF DIFFERENTIABILITY IN R n. MATANIA BEN-ARTZI April 2015 Functions here are defined on a subset T R n and take values in R m, where m can be smaller, equal or greater than n. The (open) ball

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

i=1 β i,i.e. = β 1 x β x β 1 1 xβ d

i=1 β i,i.e. = β 1 x β x β 1 1 xβ d 66 2. Every family of seminorms on a vector space containing a norm induces ahausdorff locally convex topology. 3. Given an open subset Ω of R d with the euclidean topology, the space C(Ω) of real valued

More information

MAT 257, Handout 13: December 5-7, 2011.

MAT 257, Handout 13: December 5-7, 2011. MAT 257, Handout 13: December 5-7, 2011. The Change of Variables Theorem. In these notes, I try to make more explicit some parts of Spivak s proof of the Change of Variable Theorem, and to supply most

More information

Tools from Lebesgue integration

Tools from Lebesgue integration Tools from Lebesgue integration E.P. van den Ban Fall 2005 Introduction In these notes we describe some of the basic tools from the theory of Lebesgue integration. Definitions and results will be given

More information

A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION

A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION O. SAVIN. Introduction In this paper we study the geometry of the sections for solutions to the Monge- Ampere equation det D 2 u = f, u

More information

A Pair in a Crowd of Unit Balls

A Pair in a Crowd of Unit Balls Europ. J. Combinatorics (2001) 22, 1083 1092 doi:10.1006/eujc.2001.0547 Available online at http://www.idealibrary.com on A Pair in a Crowd of Unit Balls K. HOSONO, H. MAEHARA AND K. MATSUDA Let F be a

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Everywhere differentiability of infinity harmonic functions

Everywhere differentiability of infinity harmonic functions Everywhere differentiability of infinity harmonic functions Lawrence C. Evans and Charles K. Smart Department of Mathematics University of California, Berkeley Abstract We show that an infinity harmonic

More information

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate A survey of Lihe Wang s paper Michael Snarski December 5, 22 Contents Hölder spaces. Control on functions......................................2

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Spring 2017 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u =

More information

Measure and Integration: Solutions of CW2

Measure and Integration: Solutions of CW2 Measure and Integration: s of CW2 Fall 206 [G. Holzegel] December 9, 206 Problem of Sheet 5 a) Left (f n ) and (g n ) be sequences of integrable functions with f n (x) f (x) and g n (x) g (x) for almost

More information

AN EFFECTIVE METRIC ON C(H, K) WITH NORMAL STRUCTURE. Mona Nabiei (Received 23 June, 2015)

AN EFFECTIVE METRIC ON C(H, K) WITH NORMAL STRUCTURE. Mona Nabiei (Received 23 June, 2015) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 46 (2016), 53-64 AN EFFECTIVE METRIC ON C(H, K) WITH NORMAL STRUCTURE Mona Nabiei (Received 23 June, 2015) Abstract. This study first defines a new metric with

More information

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t Analysis Comprehensive Exam Questions Fall 2. Let f L 2 (, ) be given. (a) Prove that ( x 2 f(t) dt) 2 x x t f(t) 2 dt. (b) Given part (a), prove that F L 2 (, ) 2 f L 2 (, ), where F(x) = x (a) Using

More information

Green s Functions and Distributions

Green s Functions and Distributions CHAPTER 9 Green s Functions and Distributions 9.1. Boundary Value Problems We would like to study, and solve if possible, boundary value problems such as the following: (1.1) u = f in U u = g on U, where

More information

Nonlinear elliptic systems with exponential nonlinearities

Nonlinear elliptic systems with exponential nonlinearities 22-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 9, 22, pp 139 147. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu

More information

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions ARCS IN FINITE PROJECTIVE SPACES SIMEON BALL Abstract. These notes are an outline of a course on arcs given at the Finite Geometry Summer School, University of Sussex, June 26-30, 2017. Let K denote an

More information

Lebesgue Measure on R n

Lebesgue Measure on R n CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information

Newtonian Mechanics. Chapter Classical space-time

Newtonian Mechanics. Chapter Classical space-time Chapter 1 Newtonian Mechanics In these notes classical mechanics will be viewed as a mathematical model for the description of physical systems consisting of a certain (generally finite) number of particles

More information

REGULARITY OF SUBELLIPTIC MONGE-AMPÈRE EQUATIONS IN THE PLANE

REGULARITY OF SUBELLIPTIC MONGE-AMPÈRE EQUATIONS IN THE PLANE REGULARITY OF SUBELLIPTIC MONGE-AMPÈRE EQUATIONS IN THE PLANE PENGFEI GUAN AND ERIC SAWYER (.). Introduction There is a vast body of elliptic regularity results for the Monge-Ampère equation det D u (x)

More information

MAT1000 ASSIGNMENT 1. a k 3 k. x =

MAT1000 ASSIGNMENT 1. a k 3 k. x = MAT1000 ASSIGNMENT 1 VITALY KUZNETSOV Question 1 (Exercise 2 on page 37). Tne Cantor set C can also be described in terms of ternary expansions. (a) Every number in [0, 1] has a ternary expansion x = a

More information

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n ANALYSIS QUALIFYING EXAM FALL 206: SOLUTIONS Problem. Let m be Lebesgue measure on R. For a subset E R and r (0, ), define E r = { x R: dist(x, E) < r}. Let E R be compact. Prove that m(e) = lim m(e /n).

More information

Rigidity and Non-rigidity Results on the Sphere

Rigidity and Non-rigidity Results on the Sphere Rigidity and Non-rigidity Results on the Sphere Fengbo Hang Xiaodong Wang Department of Mathematics Michigan State University Oct., 00 1 Introduction It is a simple consequence of the maximum principle

More information

g(x) = P (y) Proof. This is true for n = 0. Assume by the inductive hypothesis that g (n) (0) = 0 for some n. Compute g (n) (h) g (n) (0)

g(x) = P (y) Proof. This is true for n = 0. Assume by the inductive hypothesis that g (n) (0) = 0 for some n. Compute g (n) (h) g (n) (0) Mollifiers and Smooth Functions We say a function f from C is C (or simply smooth) if all its derivatives to every order exist at every point of. For f : C, we say f is C if all partial derivatives to

More information

NOTES ON VECTOR-VALUED INTEGRATION MATH 581, SPRING 2017

NOTES ON VECTOR-VALUED INTEGRATION MATH 581, SPRING 2017 NOTES ON VECTOR-VALUED INTEGRATION MATH 58, SPRING 207 Throughout, X will denote a Banach space. Definition 0.. Let ϕ(s) : X be a continuous function from a compact Jordan region R n to a Banach space

More information

Gradient Estimate of Mean Curvature Equations and Hessian Equations with Neumann Boundary Condition

Gradient Estimate of Mean Curvature Equations and Hessian Equations with Neumann Boundary Condition of Mean Curvature Equations and Hessian Equations with Neumann Boundary Condition Xinan Ma NUS, Dec. 11, 2014 Four Kinds of Equations Laplace s equation: u = f(x); mean curvature equation: div( Du ) =

More information

Sobolev Spaces. Chapter Hölder spaces

Sobolev Spaces. Chapter Hölder spaces Chapter 2 Sobolev Spaces Sobolev spaces turn out often to be the proper setting in which to apply ideas of functional analysis to get information concerning partial differential equations. Here, we collect

More information

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1. Sep. 1 9 Intuitively, the solution u to the Poisson equation S chauder Theory u = f 1 should have better regularity than the right hand side f. In particular one expects u to be twice more differentiable

More information

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2.

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2. ANALYSIS QUALIFYING EXAM FALL 27: SOLUTIONS Problem. Determine, with justification, the it cos(nx) n 2 x 2 dx. Solution. For an integer n >, define g n : (, ) R by Also define g : (, ) R by g(x) = g n

More information

Half of Final Exam Name: Practice Problems October 28, 2014

Half of Final Exam Name: Practice Problems October 28, 2014 Math 54. Treibergs Half of Final Exam Name: Practice Problems October 28, 24 Half of the final will be over material since the last midterm exam, such as the practice problems given here. The other half

More information

Contents. 1. Introduction

Contents. 1. Introduction FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF CURVES KAIXIN WANG Abstract. In this expository paper, we present the fundamental theorem of the local theory of curves along with a detailed proof. We first

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

ESTIMATES FOR THE MONGE-AMPERE EQUATION

ESTIMATES FOR THE MONGE-AMPERE EQUATION GLOBAL W 2,p ESTIMATES FOR THE MONGE-AMPERE EQUATION O. SAVIN Abstract. We use a localization property of boundary sections for solutions to the Monge-Ampere equation obtain global W 2,p estimates under

More information

SYMMETRIC INTEGRALS DO NOT HAVE THE MARCINKIEWICZ PROPERTY

SYMMETRIC INTEGRALS DO NOT HAVE THE MARCINKIEWICZ PROPERTY RESEARCH Real Analysis Exchange Vol. 21(2), 1995 96, pp. 510 520 V. A. Skvortsov, Department of Mathematics, Moscow State University, Moscow 119899, Russia B. S. Thomson, Department of Mathematics, Simon

More information

A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem

A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem Dave McCormick joint work with James Robinson and José Rodrigo Mathematics and Statistics Centre for Doctoral Training University

More information

A note on some approximation theorems in measure theory

A note on some approximation theorems in measure theory A note on some approximation theorems in measure theory S. Kesavan and M. T. Nair Department of Mathematics, Indian Institute of Technology, Madras, Chennai - 600 06 email: kesh@iitm.ac.in and mtnair@iitm.ac.in

More information

NOTES ON CALCULUS OF VARIATIONS. September 13, 2012

NOTES ON CALCULUS OF VARIATIONS. September 13, 2012 NOTES ON CALCULUS OF VARIATIONS JON JOHNSEN September 13, 212 1. The basic problem In Calculus of Variations one is given a fixed C 2 -function F (t, x, u), where F is defined for t [, t 1 ] and x, u R,

More information

The oblique derivative problem for general elliptic systems in Lipschitz domains

The oblique derivative problem for general elliptic systems in Lipschitz domains M. MITREA The oblique derivative problem for general elliptic systems in Lipschitz domains Let M be a smooth, oriented, connected, compact, boundaryless manifold of real dimension m, and let T M and T

More information

Stability of Stochastic Differential Equations

Stability of Stochastic Differential Equations Lyapunov stability theory for ODEs s Stability of Stochastic Differential Equations Part 1: Introduction Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH December 2010

More information

Implicit Functions, Curves and Surfaces

Implicit Functions, Curves and Surfaces Chapter 11 Implicit Functions, Curves and Surfaces 11.1 Implicit Function Theorem Motivation. In many problems, objects or quantities of interest can only be described indirectly or implicitly. It is then

More information

Exercise Solutions to Functional Analysis

Exercise Solutions to Functional Analysis Exercise Solutions to Functional Analysis Note: References refer to M. Schechter, Principles of Functional Analysis Exersize that. Let φ,..., φ n be an orthonormal set in a Hilbert space H. Show n f n

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski Topology, Math 581, Fall 2017 last updated: November 24, 2017 1 Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski Class of August 17: Course and syllabus overview. Topology

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 3. Fundamental properties IST-DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs2012/ 2012 1 Example Consider the system ẋ = f

More information

Lebesgue Measure on R n

Lebesgue Measure on R n 8 CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information

Reminder Notes for the Course on Measures on Topological Spaces

Reminder Notes for the Course on Measures on Topological Spaces Reminder Notes for the Course on Measures on Topological Spaces T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

Chapter 2 Convex Analysis

Chapter 2 Convex Analysis Chapter 2 Convex Analysis The theory of nonsmooth analysis is based on convex analysis. Thus, we start this chapter by giving basic concepts and results of convexity (for further readings see also [202,

More information

The L p -dissipativity of first order partial differential operators

The L p -dissipativity of first order partial differential operators The L p -dissipativity of first order partial differential operators A. Cialdea V. Maz ya n Memory of Vladimir. Smirnov Abstract. We find necessary and sufficient conditions for the L p -dissipativity

More information

Controllability of linear PDEs (I): The wave equation

Controllability of linear PDEs (I): The wave equation Controllability of linear PDEs (I): The wave equation M. González-Burgos IMUS, Universidad de Sevilla Doc Course, Course 2, Sevilla, 2018 Contents 1 Introduction. Statement of the problem 2 Distributed

More information

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r)

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r) Appeared in Israel J. Math. 00 (997), 7 24 THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION Juha Kinnunen Abstract. We prove that the Hardy Littlewood maximal operator is bounded in the Sobolev

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS Electronic Journal of Differential Equations, Vol. 017 (017), No. 15, pp. 1 7. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC

More information

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS LE MATEMATICHE Vol. LI (1996) Fasc. II, pp. 335347 GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS CARLO SBORDONE Dedicated to Professor Francesco Guglielmino on his 7th birthday W

More information

2. Function spaces and approximation

2. Function spaces and approximation 2.1 2. Function spaces and approximation 2.1. The space of test functions. Notation and prerequisites are collected in Appendix A. Let Ω be an open subset of R n. The space C0 (Ω), consisting of the C

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

Math 207 Honors Calculus III Final Exam Solutions

Math 207 Honors Calculus III Final Exam Solutions Math 207 Honors Calculus III Final Exam Solutions PART I. Problem 1. A particle moves in the 3-dimensional space so that its velocity v(t) and acceleration a(t) satisfy v(0) = 3j and v(t) a(t) = t 3 for

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Analysis II Lecture notes

Analysis II Lecture notes Analysis II Lecture notes Christoph Thiele (lectures 11,12 by Roland Donninger lecture 22 by Diogo Oliveira e Silva) Summer term 2015 Universität Bonn July 5, 2016 Contents 1 Analysis in several variables

More information

RIESZ BASES AND UNCONDITIONAL BASES

RIESZ BASES AND UNCONDITIONAL BASES In this paper we give a brief introduction to adjoint operators on Hilbert spaces and a characterization of the dual space of a Hilbert space. We then introduce the notion of a Riesz basis and give some

More information

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E,

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E, Tel Aviv University, 26 Analysis-III 9 9 Improper integral 9a Introduction....................... 9 9b Positive integrands................... 9c Special functions gamma and beta......... 4 9d Change of

More information

Introduction to Algebraic and Geometric Topology Week 14

Introduction to Algebraic and Geometric Topology Week 14 Introduction to Algebraic and Geometric Topology Week 14 Domingo Toledo University of Utah Fall 2016 Computations in coordinates I Recall smooth surface S = {f (x, y, z) =0} R 3, I rf 6= 0 on S, I Chart

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Continuous Functions on Metric Spaces

Continuous Functions on Metric Spaces Continuous Functions on Metric Spaces Math 201A, Fall 2016 1 Continuous functions Definition 1. Let (X, d X ) and (Y, d Y ) be metric spaces. A function f : X Y is continuous at a X if for every ɛ > 0

More information

Some lecture notes for Math 6050E: PDEs, Fall 2016

Some lecture notes for Math 6050E: PDEs, Fall 2016 Some lecture notes for Math 65E: PDEs, Fall 216 Tianling Jin December 1, 216 1 Variational methods We discuss an example of the use of variational methods in obtaining existence of solutions. Theorem 1.1.

More information

Math 61CM - Quick answer key to section problems Fall 2018

Math 61CM - Quick answer key to section problems Fall 2018 Math 6CM - Quick answer key to section problems Fall 08 Cédric De Groote These are NOT complete solutions! You are always expected to write down all the details and justify everything. This document is

More information

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage:

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage: Nonlinear Analysis 71 2009 2744 2752 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A nonlinear inequality and applications N.S. Hoang A.G. Ramm

More information

HIGHER INTEGRABILITY WITH WEIGHTS

HIGHER INTEGRABILITY WITH WEIGHTS Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 19, 1994, 355 366 HIGHER INTEGRABILITY WITH WEIGHTS Juha Kinnunen University of Jyväskylä, Department of Mathematics P.O. Box 35, SF-4351

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information