Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

Size: px
Start display at page:

Download "Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011"

Transcription

1 Direct Method of Construction of Conservation Laws for Nonlinear Differential Equations, its Relation with Noether s Theorem, Applications, and Symbolic Software Alexei F. Cheviakov University of Saskatchewan, Saskatoon, Canada INPL seminar June 09, 2011 A. Cheviakov (UofS) Conservation Laws Nancy / 26

2 Outline 1 Conservation Laws Definition and Examples Applications 2 Variational Principles 3 Symmetries and Noether s Theorem Symmetries and Variational Symmetries Noether s Theorem, Examples Limitations of Noether s Theorem 4 Direct Construction Method for Conservation Laws The Idea Completeness A Detailed Example 5 Symbolic Computation of Conservation Laws Symbolic Sequence Some Examples 6 Conclusions A. Cheviakov (UofS) Conservation Laws Nancy / 26

3 Outline 1 Conservation Laws Definition and Examples Applications 2 Variational Principles 3 Symmetries and Noether s Theorem Symmetries and Variational Symmetries Noether s Theorem, Examples Limitations of Noether s Theorem 4 Direct Construction Method for Conservation Laws The Idea Completeness A Detailed Example 5 Symbolic Computation of Conservation Laws Symbolic Sequence Some Examples 6 Conclusions A. Cheviakov (UofS) Conservation Laws Nancy / 26

4 Conservation Laws: Definition and Examples Conservation law: A divergence expression equal to zero: d dt Ψ + d dx Φ1 + d dy Φ2 + = 0. Example 1: Harmonic oscillator Independent variable: t, dependent: x(t). ODE: ẍ(t) + ω 2 x(t) = 0; Conservation law: ω 2 = k/m = const. d ( ) mẋ 2 (t) + kx2 (t) = dt A. Cheviakov (UofS) Conservation Laws Nancy / 26

5 Conservation Laws: Definition and Examples Example 2: Adiabatic motion of an ideal gas in 3D Independent variables: t; x = (x 1, x 2, x 3 ) D R 3. Dependent: ρ(x, t), v 1 (x, t), v 2 (x, t), v 3 (x, t), p(x, t). Equations: D tρ + D j (ρv j ) = 0, ρ(d t + v j D j )v i + D i p = 0, i = 1, 2, 3, ρ(d t + v j D j )p + γρpd j v j = 0. Conservation laws: Mass: D tρ + D j (ρv j ) = 0, Momentum: D t(ρv i ) + D j (ρv i v j + pδ ij ) = 0, i = 1, 2, 3, Energy: D t(e) + D j ( v j (E + p) ) = 0, E = 1 2 ρ v 2 + p γ 1. Angular momentum, etc. A. Cheviakov (UofS) Conservation Laws Nancy / 26

6 Conservation Laws: Definition and Examples Example 3: Korteweg-de Vries equation (KdV) u = u(x, t), u t + uu x + u xxx = 0. Conservation laws: D t(u) + D x ( 1 2 u2 + u xx ) = 0, D t ( 1 2 u2) + D x ( 1 3 u3 + uu xx 1 2 u2 x ) = 0, D t ( 1 6 u3 1 2 u2 x ) + Dx ( 1 8 u4 uu 2 x (u2 u xx + u 2 xx) u xu xxx ) = 0,..., infinite countable set of conservation laws. A. Cheviakov (UofS) Conservation Laws Nancy / 26

7 Applications of Conservation Laws Direct physical meaning. Analysis: existence, uniqueness, stability. Modern finite element and finite volume numerical methods often require conserved forms. Nonlocally related PDE systems, exact solutions. An infinite number of conservation laws can be an indication of integrability and/or linearization. A. Cheviakov (UofS) Conservation Laws Nancy / 26

8 Outline 1 Conservation Laws Definition and Examples Applications 2 Variational Principles 3 Symmetries and Noether s Theorem Symmetries and Variational Symmetries Noether s Theorem, Examples Limitations of Noether s Theorem 4 Direct Construction Method for Conservation Laws The Idea Completeness A Detailed Example 5 Symbolic Computation of Conservation Laws Symbolic Sequence Some Examples 6 Conclusions A. Cheviakov (UofS) Conservation Laws Nancy / 26

9 Variational Principles Action integral J[U] = L(x, U, U,..., k U)dx. Ω Principle of extremal action Variation of U: U(x) U(x) + εv(x). Require: variation of action δj J[U + εv] J[U] = Ω (δl) dx = O(ε2 ). A. Cheviakov (UofS) Conservation Laws Nancy / 26

10 Variational Principles Action integral J[U] = L(x, U, U,..., k U)dx. Ω Principle of extremal action Variation of U: U(x) U(x) + εv(x). Require: variation of action δj J[U + εv] J[U] = Ω (δl) dx = O(ε2 ). Variation of Lagrangian δl = L(x, U + εv, U + ε v,..., k U + ε k v) L(x, U, U,..., k U) = ( ) L[U] ε U v σ + L[U] v σ σ Uj σ j + + L[U] v Uj σ j σ 1 j k + O(ε 2 ) 1 j k = ε(v σ E U σ (L[U]) +...) + O(ε 2 ), where E U σ are the Euler operators. A. Cheviakov (UofS) Conservation Laws Nancy / 26

11 Variational Principles Action integral J[U] = L(x, U, U,..., k U)dx. Ω Principle of extremal action Variation of U: U(x) U(x) + εv(x). Require: variation of action δj J[U + εv] J[U] = Ω (δl) dx = O(ε2 ). Euler-Lagrange equations: E u σ (L[u]) = L[u] u σ + + ( 1)k D j1 D jk L[u] u σ j 1 j k = 0, σ = 1,..., m. A. Cheviakov (UofS) Conservation Laws Nancy / 26

12 Variational Principles Example 1: Harmonic oscillator, x = x(t) L = 1 2 mẋ kx 2, E xl = m(ẍ + ω 2 x) = 0. A. Cheviakov (UofS) Conservation Laws Nancy / 26

13 Variational Principles Example 1: Harmonic oscillator, x = x(t) L = 1 2 mẋ kx 2, E xl = m(ẍ + ω 2 x) = 0. Example 2: Wave equation for u(x, t) L = 1 2 ρut T ux 2, E ul = ρ(u tt c 2 u xx) = 0. A. Cheviakov (UofS) Conservation Laws Nancy / 26

14 Variational Principles Example 1: Harmonic oscillator, x = x(t) L = 1 2 mẋ kx 2, E xl = m(ẍ + ω 2 x) = 0. Example 2: Wave equation for u(x, t) L = 1 2 ρut T ux 2, E ul = ρ(u tt c 2 u xx) = 0. Example 3: Klein-Gordon wave equations for u(x, t) L = 1 2 utux + h(u), EuL = utx + h (u) = 0. many other non-dissipative systems have variational formulations. A practical way to tell whether a DE system has a variational formulation: its linearized version must be self-adjoint. A. Cheviakov (UofS) Conservation Laws Nancy / 26

15 Outline 1 Conservation Laws Definition and Examples Applications 2 Variational Principles 3 Symmetries and Noether s Theorem Symmetries and Variational Symmetries Noether s Theorem, Examples Limitations of Noether s Theorem 4 Direct Construction Method for Conservation Laws The Idea Completeness A Detailed Example 5 Symbolic Computation of Conservation Laws Symbolic Sequence Some Examples 6 Conclusions A. Cheviakov (UofS) Conservation Laws Nancy / 26

16 Symmetries of Differential Equations Consider a general DE system R σ [u] = R σ (x, u, u,..., k u) = 0, σ = 1,..., N with variables x = (x 1,..., x n ), u = u(x) = (u 1,..., u m ). Definition A transformation x = f (x, u; a) = x + aξ(x, u) + O(a 2 ), u = g(x, u; a) = u + aη(x, u) + O(a 2 ). depending on a parameter a is a point symmetry of R σ [u] if the equation is the same in new variables x, u. A. Cheviakov (UofS) Conservation Laws Nancy / 26

17 Symmetries of Differential Equations Consider a general DE system R σ [u] = R σ (x, u, u,..., k u) = 0, σ = 1,..., N with variables x = (x 1,..., x n ), u = u(x) = (u 1,..., u m ). Definition A transformation x = f (x, u; a) = x + aξ(x, u) + O(a 2 ), u = g(x, u; a) = u + aη(x, u) + O(a 2 ). depending on a parameter a is a point symmetry of R σ [u] if the equation is the same in new variables x, u. Example 1: translations The translation leaves KdV invariant: x = x + C, t = t, u = u u t + uu x + u xxx = 0 = u t + u u x + u x x x. A. Cheviakov (UofS) Conservation Laws Nancy / 26

18 Symmetries of Differential Equations Consider a general DE system R σ [u] = R σ (x, u, u,..., k u) = 0, σ = 1,..., N with variables x = (x 1,..., x n ), u = u(x) = (u 1,..., u m ). Definition A transformation x = f (x, u; a) = x + aξ(x, u) + O(a 2 ), u = g(x, u; a) = u + aη(x, u) + O(a 2 ). depending on a parameter a is a point symmetry of R σ [u] if the equation is the same in new variables x, u. Example 2: scaling Same for the scaling: One has x = αx, t = α 3 t, u = αu. u t + uu x + u xxx = 0 = u t + u u x + u x x x. A. Cheviakov (UofS) Conservation Laws Nancy / 26

19 Variational Symmetries Consider a general DE system R σ [u] = R σ (x, u, u,..., k u) = 0, σ = 1,..., N that follows from a variational principle with J[U] = Ω L(x, U, U,..., k U)dx. Definition A symmetry of R σ [u] given by x = f (x, u; a) = x + aξ(x, u) + O(a 2 ), u = g(x, u; a) = u + aη(x, u) + O(a 2 ). is a variational symmetry of R σ [u] if it preserves the action J[U]. A. Cheviakov (UofS) Conservation Laws Nancy / 26

20 Variational Symmetries Consider a general DE system R σ [u] = R σ (x, u, u,..., k u) = 0, σ = 1,..., N that follows from a variational principle with J[U] = Ω L(x, U, U,..., k U)dx. Definition A symmetry of R σ [u] given by x = f (x, u; a) = x + aξ(x, u) + O(a 2 ), u = g(x, u; a) = u + aη(x, u) + O(a 2 ). is a variational symmetry of R σ [u] if it preserves the action J[U]. Example 1: translations for wave equation u tt = (T /ρ) 2 u xx, L = 1 2 ρut T ux 2. The translation x = x + C, t = t, u = u is evidently a variational symmetry. A. Cheviakov (UofS) Conservation Laws Nancy / 26

21 Variational Symmetries Consider a general DE system R σ [u] = R σ (x, u, u,..., k u) = 0, σ = 1,..., N that follows from a variational principle with J[U] = Ω L(x, U, U,..., k U)dx. Definition A symmetry of R σ [u] given by x = f (x, u; a) = x + aξ(x, u) + O(a 2 ), u = g(x, u; a) = u + aη(x, u) + O(a 2 ). is a variational symmetry of R σ [u] if it preserves the action J[U]. Example 2: scaling for wave equation u tt = (T /ρ) 2 u xx, L = 1 2 ρut T ux 2. The scaling x = αx, t = αt, u = u is not a variational symmetry. A. Cheviakov (UofS) Conservation Laws Nancy / 26

22 Noether s Theorem Theorem Given: a PDE system R σ [u] = R σ (x, u, u,..., k u) = 0, σ = 1,..., N, following from a variational principle; a variational symmetry (x i ) = f i (x, u; a) = x i + aξ i (x, u) + O(a 2 ), (u σ ) = g σ (x, u; a) = u σ + aη σ (x, u) + O(a 2 ). Then the system R σ [u] has a conservation law D i Φ i [u] = 0. In particular, D i Φ i [u] Λ σ[u]r σ [u] = 0, where the multipliers are given by Λ σ = η σ (x, u) uσ x i ξ i (x, u). A. Cheviakov (UofS) Conservation Laws Nancy / 26

23 Noether s Theorem: Examples Example: translation symmetry for the harmonic oscillator Equation: ẍ(t) + ω 2 x(t) = 0, ω 2 = k/m. Symmetry: t = t + a, ξ = 1; x = x, η = 0, Multiplier: Λ = η ẋ(t)ξ = ẋ; Conservation law: ΛR = ẋ(ẍ(t) + ω 2 x(t)) = 1 m ( d mẋ 2 (t) + kx ) 2 (t) = 0. dt 2 2 A. Cheviakov (UofS) Conservation Laws Nancy / 26

24 Limitations of Noether s Theorem The given DE system, as written, must be variational. Numbers of PDEs and dependent variables must coincide. Dissipative systems are not variational. If single PDE, must be of even order. If a PDE system is not variational, artifices sometimes can make it variational! A. Cheviakov (UofS) Conservation Laws Nancy / 26

25 Limitations of Noether s Theorem The given DE system, as written, must be variational. Numbers of PDEs and dependent variables must coincide. Dissipative systems are not variational. If single PDE, must be of even order. If a PDE system is not variational, artifices sometimes can make it variational! Example 1: The use of multipliers. The PDE u tt + H (u x)u xx + H(u x) = 0, as written, does not admit a variational principle. However, the equivalent PDE e x [u tt + H (u x)u xx + H(u x)] = 0, does follow from a variational principle! A. Cheviakov (UofS) Conservation Laws Nancy / 26

26 Limitations of Noether s Theorem The given DE system, as written, must be variational. Numbers of PDEs and dependent variables must coincide. Dissipative systems are not variational. If single PDE, must be of even order. If a PDE system is not variational, artifices sometimes can make it variational! Example 2: The use of a transformation. The PDE e x u tt e 3x (u + u x) 2 (u + 2u x + u xx) = 0, as written, does not admit a variational principle. But the point transformation x = x, t = t, u (x, t ) = y(x, t) = e x u(x, t), maps it into the self-adjoint PDE y tt (y x) 2 y xx = 0, which is the Euler Lagrange equation for an extremum Y = y of the action integral with Lagrangian L[Y ] = Yt 2 /2 Yx 4 /12. A. Cheviakov (UofS) Conservation Laws Nancy / 26

27 Limitations of Noether s Theorem The given DE system, as written, must be variational. Numbers of PDEs and dependent variables must coincide. Dissipative systems are not variational. If single PDE, must be of even order. If a PDE system is not variational, artifices sometimes can make it variational! Example 3: The use of a differential substitution. The kdv equation u t + uu x + u xxx = 0, as written, does not admit a variational principle. However, a substitution u = v x yields a variational PDE v xt + v xv xx + v xxxx = 0. A. Cheviakov (UofS) Conservation Laws Nancy / 26

28 Limitations of Noether s Theorem (Ctd.)... The use of an artificial additional equation. Any PDE system can be made variational, by appending an adjoint equation! Example: The diffusion equation u t u xx = 0 is dissipative, hence not self-adjoint. Its adjoint equation: w t + w xx = 0. But the PDE system u t u xx = 0, is evidently self-adjoint! ũ t + ũ xx = 0 A. Cheviakov (UofS) Conservation Laws Nancy / 26

29 Outline 1 Conservation Laws Definition and Examples Applications 2 Variational Principles 3 Symmetries and Noether s Theorem Symmetries and Variational Symmetries Noether s Theorem, Examples Limitations of Noether s Theorem 4 Direct Construction Method for Conservation Laws The Idea Completeness A Detailed Example 5 Symbolic Computation of Conservation Laws Symbolic Sequence Some Examples 6 Conclusions A. Cheviakov (UofS) Conservation Laws Nancy / 26

30 The Idea of the Direct Construction Method Definition The Euler operator with respect to U j : E U j = D U j i U j i + + ( 1) s D i1... D is U j i 1...i s +, j = 1,..., m. Consider a general DE system R σ [u] = R σ (x, u, u,..., k u) = 0, variables x = (x 1,..., x n ), u = u(x) = (u 1,..., u m ). σ = 1,..., N with Theorem The equations E U j F (x, U, U,..., s U) 0, hold for arbitrary U(x) if and only if j = 1,..., m for some functions Ψ i (x, U,...). F (x, U, U,..., s U) D i Ψ i A. Cheviakov (UofS) Conservation Laws Nancy / 26

31 The Idea of the Direct Construction Method Consider a general DE system R σ [u] = R σ (x, u, u,..., k u) = 0, variables x = (x 1,..., x n ), u = u(x) = (u 1,..., u m ). σ = 1,..., N with Direct Construction Method Specify dependence of multipliers: Λ σ = Λ σ(x, U,...), σ = 1,..., N. Solve the set of determining equations E U j (Λ σr σ ) 0, j = 1,..., m, for arbitrary U(x) to find all such sets of multipliers. Find the corresponding fluxes Φ i (x, U,...) satisfying the identity Λ σr σ D i Φ i. Each set of fluxes and multipliers yields a local conservation law D i Φ i (x, u,...) = 0, holding for all solutions u(x) of the given PDE system. A. Cheviakov (UofS) Conservation Laws Nancy / 26

32 Completeness Completeness of the Direct Construction Method For the majority of physical DE systems (in particular, all systems in solved form), all conservation laws follow from linear combinations of equations! Λ σr σ D i Φ i. A. Cheviakov (UofS) Conservation Laws Nancy / 26

33 A Detailed Example Consider a nonlinear telegraph system for u 1 = u(x, t), u 2 = v(x, t): R 1 [u, v] = v t (u 2 + 1)u x u = 0, R 2 [u, v] = u t v x = 0. Multiplier ansatz: Λ 1 = ξ(x, t, U, V ), Λ 2 = φ(x, t, U, V ). A. Cheviakov (UofS) Conservation Laws Nancy / 26

34 A Detailed Example Consider a nonlinear telegraph system for u 1 = u(x, t), u 2 = v(x, t): R 1 [u, v] = v t (u 2 + 1)u x u = 0, R 2 [u, v] = u t v x = 0. Multiplier ansatz: Λ 1 = ξ(x, t, U, V ), Λ 2 = φ(x, t, U, V ). Determining equations: [ E U ξ(x, t, U, V )(Vt (U 2 + 1)U x U) + φ(x, t, U, V )(U t V ] x) 0, [ E V ξ(x, t, U, V )(Vt (U 2 + 1)U x U) + φ(x, t, U, V )(U t V ] x) 0. Euler operators: E U = U Dx D t, U x U t E V = V Dx D t. V x V t A. Cheviakov (UofS) Conservation Laws Nancy / 26

35 A Detailed Example Consider a nonlinear telegraph system for u 1 = u(x, t), u 2 = v(x, t): R 1 [u, v] = v t (u 2 + 1)u x u = 0, R 2 [u, v] = u t v x = 0. Multiplier ansatz: Λ 1 = ξ(x, t, U, V ), Λ 2 = φ(x, t, U, V ). Determining equations: [ E U ξ(x, t, U, V )(Vt (U 2 + 1)U x U) + φ(x, t, U, V )(U t V ] x) 0, [ E V ξ(x, t, U, V )(Vt (U 2 + 1)U x U) + φ(x, t, U, V )(U t V ] x) 0. Split determining equations: φ V ξ U = 0, φ U (U 2 + 1)ξ V = 0, φ x ξ t Uξ V = 0, (U 2 + 1)ξ x φ t Uξ U ξ = 0. A. Cheviakov (UofS) Conservation Laws Nancy / 26

36 A Detailed Example Consider a nonlinear telegraph system for u 1 = u(x, t), u 2 = v(x, t): R 1 [u, v] = v t (u 2 + 1)u x u = 0, R 2 [u, v] = u t v x = 0. Multiplier ansatz: Λ 1 = ξ(x, t, U, V ), Λ 2 = φ(x, t, U, V ). Solution: five sets of multipliers (ξ 1, φ 1) = (0, 1), (ξ 2, φ 2) = (t, x 1 2 t2 ), (ξ 3, φ 3) = (1, t), (ξ 4, φ 4) = (e x+ 2 1 U2 +V, Ue x+ 2 1 U2 +V ), (ξ 5, φ 5) = (e x+ 2 1 U2 V, Ue x+ 2 1 U2 V ). Resulting five conservation laws: D tu + D x[ v] = 0, D t[(x 1 2 t2 )u + tv] + D x[( 1 2 t2 x)v t( 1 3 u3 + u)] = 0, D t[v tu] + D x[tv ( 1 3 u3 + u)] = 0, D t[e x+ 1 2 u2 +v ] + D x[ ue x+ 1 2 u2 +v ] = 0, D t[e x+ 2 1 u2 v ] + D x[ue x+ 1 2 u2 v ] = 0. A. Cheviakov (UofS) Conservation Laws Nancy / 26

37 A Detailed Example Consider a nonlinear telegraph system for u 1 = u(x, t), u 2 = v(x, t): R 1 [u, v] = v t (u 2 + 1)u x u = 0, R 2 [u, v] = u t v x = 0. Multiplier ansatz: Λ 1 = ξ(x, t, U, V ), Λ 2 = φ(x, t, U, V ). To obtain further conservation laws, extend the multiplier ansatz... A. Cheviakov (UofS) Conservation Laws Nancy / 26

38 Outline 1 Conservation Laws Definition and Examples Applications 2 Variational Principles 3 Symmetries and Noether s Theorem Symmetries and Variational Symmetries Noether s Theorem, Examples Limitations of Noether s Theorem 4 Direct Construction Method for Conservation Laws The Idea Completeness A Detailed Example 5 Symbolic Computation of Conservation Laws Symbolic Sequence Some Examples 6 Conclusions A. Cheviakov (UofS) Conservation Laws Nancy / 26

39 Symbolic Software for Computation of Conservation Laws Example of use of the GeM package for Maple for the KdV. Use the module: with(gem): Declare variables: gem_decl_vars(indeps=[x,t], deps=[u(x,t)]); Declare the equation: gem_decl_eqs([diff(u(x,t),t)=u(x,t)*diff(u(x,t),x) +diff(u(x,t),x,x,x)], solve_for=[diff(u(x,t),t)]); Generate determining equations: det_eqs:=gem_conslaw_det_eqs([x,t, U(x,t), diff(u(x,t),x), diff(u(x,t),x,x), diff(u(x,t),x,x,x)]): Reduce the overdetermined system: CL_multipliers:=gem_conslaw_multipliers(); simplified_eqs:=detools[rifsimp](det_eqs, CL_multipliers, mindim=1); A. Cheviakov (UofS) Conservation Laws Nancy / 26

40 Symbolic Software for Computation of Conservation Laws Example of use of the GeM package for Maple for the KdV. Solve determining equations: multipliers_sol:=pdsolve(simplified_eqs[solved]); Obtain corresponding conservation law fluxes/densities: gem_get_cl_fluxes(multipliers_sol, method=*****); A. Cheviakov (UofS) Conservation Laws Nancy / 26

41 Examples of Symbolic Computation of Conservation Laws Example 1 KdV equation: u t + uu x + u xxx = 0. A. Cheviakov (UofS) Conservation Laws Nancy / 26

42 Examples of Symbolic Computation of Conservation Laws Example 2 Euler equations of 2D incompressible fluid dynamics u = u(t, x, y), v = v(t, x, y), P = P(t, x, y); div v u x + v y = 0, u t + uu x + vu y + P x = 0, v t + uv x + vv y + P y = 0. A. Cheviakov (UofS) Conservation Laws Nancy / 26

43 Conclusions and Open Problems Conclusions Divergence-type conservation laws are useful in analysis and numerics. Conservation laws can be obtained systematically through the Direct Construction Method, which employs multipliers and Euler operators. The method is implemented in a symbolic package GeM for Maple. For variational DE systems, conservation laws correspond to variational symmetries. Noether s theorem is not a simplest way to derive unknown conservation laws. A. Cheviakov (UofS) Conservation Laws Nancy / 26

44 Conclusions and Open Problems Conclusions Divergence-type conservation laws are useful in analysis and numerics. Conservation laws can be obtained systematically through the Direct Construction Method, which employs multipliers and Euler operators. The method is implemented in a symbolic package GeM for Maple. For variational DE systems, conservation laws correspond to variational symmetries. Noether s theorem is not a simplest way to derive unknown conservation laws. Open problems Computations become hard for conservation laws of high orders. Can we tell anything in advance about highest order of the conservation law for a given DE system? For complicated DEs and multipliers, computation of fluxes/densities can become challenging. A. Cheviakov (UofS) Conservation Laws Nancy / 26

45 Some references Bluman, G.W., Cheviakov, A.F., and Anco, S.C. (2010). Applications of Symmetry Methods to Partial Differential Equations. Springer: Applied Mathematical Sciences, Vol Anco, S.C. and Bluman, G.W. (1997). Direct construction of conservation laws from field equations. Phys. Rev. Lett. 78, Anco, S.C. and Bluman, G.W. (2002). Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications. Eur. J. Appl. Math. 13, Cheviakov, A.F. (2007). GeM software package for computation of symmetries and conservation laws of differential equations. Comput. Phys. Commun. 176, Bluman, G.W., Cheviakov, A.F., and Anco, S.C. (2009). Construction of Conservation Laws: How the Direct Method Generalizes Noether s Theorem. Proceedings of 4th Workshop Group Analysis of Differential Equations & Integrability A. Cheviakov (UofS) Conservation Laws Nancy / 26

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations.

Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations. Conservation Laws: Systematic Construction, Noether s Theorem, Applications, and Symbolic Computations. Alexey Shevyakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon,

More information

Conservation Laws for Nonlinear Equations: Theory, Computation, and Examples

Conservation Laws for Nonlinear Equations: Theory, Computation, and Examples Conservation Laws for Nonlinear Equations: Theory, Computation, and Examples Alexei Cheviakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada Seminar February 2015

More information

Construction of Conservation Laws: How the Direct Method Generalizes Noether s Theorem

Construction of Conservation Laws: How the Direct Method Generalizes Noether s Theorem Proceedings of 4th Workshop Group Analysis of Differential Equations & Integrability 2009, 1 23 Construction of Conservation Laws: How the Direct Method Generalizes Noether s Theorem George W. BLUMAN,

More information

Conservation Laws of Surfactant Transport Equations

Conservation Laws of Surfactant Transport Equations Conservation Laws of Surfactant Transport Equations Alexei Cheviakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada Winter 2011 CMS Meeting Dec. 10, 2011 A. Cheviakov

More information

A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations

A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations Alexei Cheviakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada December

More information

Natural States and Symmetry Properties of. Two-Dimensional Ciarlet-Mooney-Rivlin. Nonlinear Constitutive Models

Natural States and Symmetry Properties of. Two-Dimensional Ciarlet-Mooney-Rivlin. Nonlinear Constitutive Models Natural States and Symmetry Properties of Two-Dimensional Ciarlet-Mooney-Rivlin Nonlinear Constitutive Models Alexei Cheviakov, Department of Mathematics and Statistics, Univ. Saskatchewan, Canada Jean-François

More information

Symmetry Methods for Differential Equations and Conservation Laws. Peter J. Olver University of Minnesota

Symmetry Methods for Differential Equations and Conservation Laws. Peter J. Olver University of Minnesota Symmetry Methods for Differential Equations and Conservation Laws Peter J. Olver University of Minnesota http://www.math.umn.edu/ olver Santiago, November, 2010 Symmetry Groups of Differential Equations

More information

A symmetry-based method for constructing nonlocally related partial differential equation systems

A symmetry-based method for constructing nonlocally related partial differential equation systems A symmetry-based method for constructing nonlocally related partial differential equation systems George W. Bluman and Zhengzheng Yang Citation: Journal of Mathematical Physics 54, 093504 (2013); doi:

More information

Symbolic Computation of Nonlocal Symmetries and Nonlocal Conservation Laws of Partial Differential Equations Using the GeM Package for Maple

Symbolic Computation of Nonlocal Symmetries and Nonlocal Conservation Laws of Partial Differential Equations Using the GeM Package for Maple Symbolic Computation of Nonlocal Symmetries and Nonlocal Conservation Laws of Partial Differential Equations Using the GeM Package for Maple Alexei F. Cheviakov Abstract The use of the symbolic software

More information

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems ISSN 139-5113 Nonlinear Analysis: Modelling Control, 017, Vol., No. 3, 334 346 https://doi.org/10.15388/na.017.3.4 Group analysis, nonlinear self-adjointness, conservation laws, soliton solutions for the

More information

Symmetry Reductions of (2+1) dimensional Equal Width. Wave Equation

Symmetry Reductions of (2+1) dimensional Equal Width. Wave Equation Authors: Symmetry Reductions of (2+1) dimensional Equal Width 1. Dr. S. Padmasekaran Wave Equation Asst. Professor, Department of Mathematics Periyar University, Salem 2. M.G. RANI Periyar University,

More information

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions Willy Hereman and Douglas Poole Department of Mathematical and Computer Sciences Colorado

More information

A comparison of conservation law construction approaches for the two-dimensional incompressible Mooney-Rivlin hyperelasticity model

A comparison of conservation law construction approaches for the two-dimensional incompressible Mooney-Rivlin hyperelasticity model JOURNAL OF MATHEMATICAL PHYSICS 56, 505 (05) A comparison of conservation law construction approaches for the two-dimensional incompressible Mooney-Rivlin hyperelasticity model A. F. Cheviakov and S. St.

More information

The Orchestra of Partial Differential Equations. Adam Larios

The Orchestra of Partial Differential Equations. Adam Larios The Orchestra of Partial Differential Equations Adam Larios 19 January 2017 Landscape Seminar Outline 1 Fourier Series 2 Some Easy Differential Equations 3 Some Not-So-Easy Differential Equations Outline

More information

New methods of reduction for ordinary differential equations

New methods of reduction for ordinary differential equations IMA Journal of Applied Mathematics (2001) 66, 111 125 New methods of reduction for ordinary differential equations C. MURIEL AND J. L. ROMERO Departamento de Matemáticas, Universidad de Cádiz, PO Box 40,

More information

Conservation laws for the geodesic equations of the canonical connection on Lie groups in dimensions two and three

Conservation laws for the geodesic equations of the canonical connection on Lie groups in dimensions two and three Appl Math Inf Sci 7 No 1 311-318 (013) 311 Applied Mathematics & Information Sciences An International Journal Conservation laws for the geodesic equations of the canonical connection on Lie groups in

More information

B.7 Lie Groups and Differential Equations

B.7 Lie Groups and Differential Equations 96 B.7. LIE GROUPS AND DIFFERENTIAL EQUATIONS B.7 Lie Groups and Differential Equations Peter J. Olver in Minneapolis, MN (U.S.A.) mailto:olver@ima.umn.edu The applications of Lie groups to solve differential

More information

Modeling using conservation laws. Let u(x, t) = density (heat, momentum, probability,...) so that. u dx = amount in region R Ω. R

Modeling using conservation laws. Let u(x, t) = density (heat, momentum, probability,...) so that. u dx = amount in region R Ω. R Modeling using conservation laws Let u(x, t) = density (heat, momentum, probability,...) so that u dx = amount in region R Ω. R Modeling using conservation laws Let u(x, t) = density (heat, momentum, probability,...)

More information

Symmetry Classification of KdV-Type Nonlinear Evolution Equations

Symmetry Classification of KdV-Type Nonlinear Evolution Equations Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 125 130 Symmetry Classification of KdV-Type Nonlinear Evolution Equations Faruk GÜNGÖR, Victor LAHNO and Renat ZHDANOV Department

More information

Symmetries and reduction techniques for dissipative models

Symmetries and reduction techniques for dissipative models Symmetries and reduction techniques for dissipative models M. Ruggieri and A. Valenti Dipartimento di Matematica e Informatica Università di Catania viale A. Doria 6, 95125 Catania, Italy Fourth Workshop

More information

Applications of Symmetries and Conservation Laws to the Study of Nonlinear Elasticity Equations

Applications of Symmetries and Conservation Laws to the Study of Nonlinear Elasticity Equations Applications of Symmetries and Conservation Laws to the Study of Nonlinear Elasticity Equations A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements

More information

On the Linearization of Second-Order Dif ferential and Dif ference Equations

On the Linearization of Second-Order Dif ferential and Dif ference Equations Symmetry, Integrability and Geometry: Methods and Applications Vol. (006), Paper 065, 15 pages On the Linearization of Second-Order Dif ferential and Dif ference Equations Vladimir DORODNITSYN Keldysh

More information

arxiv: v1 [math-ph] 25 Jul Preliminaries

arxiv: v1 [math-ph] 25 Jul Preliminaries arxiv:1107.4877v1 [math-ph] 25 Jul 2011 Nonlinear self-adjointness and conservation laws Nail H. Ibragimov Department of Mathematics and Science, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

More information

Continuous and Discrete Homotopy Operators with Applications in Integrability Testing. Willy Hereman

Continuous and Discrete Homotopy Operators with Applications in Integrability Testing. Willy Hereman Continuous and Discrete Homotopy Operators with Applications in Integrability Testing Willy Hereman Department of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado, USA http://www.mines.edu/fs

More information

Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications

Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications Euro. Jnl of Applied Mathematics (2002), vol. 13, pp. 545 566. c 2002 Cambridge University Press DOI: 10.1017/S095679250100465X Printed in the United Kingdom 545 Direct construction method for conservation

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

SYMBOLIC SOFTWARE FOR SOLITON THEORY: INTEGRABILITY, SYMMETRIES CONSERVATION LAWS AND EXACT SOLUTIONS. Willy Hereman

SYMBOLIC SOFTWARE FOR SOLITON THEORY: INTEGRABILITY, SYMMETRIES CONSERVATION LAWS AND EXACT SOLUTIONS. Willy Hereman . SYMBOLIC SOFTWARE FOR SOLITON THEORY: INTEGRABILITY, SYMMETRIES CONSERVATION LAWS AND EXACT SOLUTIONS Willy Hereman Dept. of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents The 6th TIMS-OCAMI-WASEDA Joint International Workshop on Integrable Systems and Mathematical Physics March 22-26, 2014 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN

More information

x ct x + t , and the characteristics for the associated transport equation would be given by the solution of the ode dx dt = 1 4. ξ = x + t 4.

x ct x + t , and the characteristics for the associated transport equation would be given by the solution of the ode dx dt = 1 4. ξ = x + t 4. . The solution is ( 2 e x+ct + e x ct) + 2c x+ct x ct sin(s)dx ( e x+ct + e x ct) + ( cos(x + ct) + cos(x ct)) 2 2c 2. To solve the PDE u xx 3u xt 4u tt =, you can first fact the differential operat to

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

Benjamin Bona Mahony Equation with Variable Coefficients: Conservation Laws

Benjamin Bona Mahony Equation with Variable Coefficients: Conservation Laws Symmetry 2014, 6, 1026-1036; doi:10.3390/sym6041026 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Benjamin Bona Mahony Equation with Variable Coefficients: Conservation Laws

More information

Conservation laws for Kawahara equations

Conservation laws for Kawahara equations Conservation laws for Kawahara equations Igor L. Freire Júlio C. S. Sampaio Centro de Matemática, Computação e Cognição, CMCC, UFABC 09210-170, Santo André, SP E-mail: igor.freire@ufabc.edu.br, julio.sampaio@ufabc.edu.br

More information

1 The Stokes System. ρ + (ρv) = ρ g(x), and the conservation of momentum has the form. ρ v (λ 1 + µ 1 ) ( v) µ 1 v + p = ρ f(x) in Ω.

1 The Stokes System. ρ + (ρv) = ρ g(x), and the conservation of momentum has the form. ρ v (λ 1 + µ 1 ) ( v) µ 1 v + p = ρ f(x) in Ω. 1 The Stokes System The motion of a (possibly compressible) homogeneous fluid is described by its density ρ(x, t), pressure p(x, t) and velocity v(x, t). Assume that the fluid is barotropic, i.e., the

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents Winter School on PDEs St Etienne de Tinée February 2-6, 2015 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN SISSA, Trieste Cauchy problem for evolutionary PDEs with

More information

Group Actions and Cohomology in the Calculus of Variations

Group Actions and Cohomology in the Calculus of Variations Group Actions and Cohomology in the Calculus of Variations JUHA POHJANPELTO Oregon State and Aalto Universities Focused Research Workshop on Exterior Differential Systems and Lie Theory Fields Institute,

More information

A NONLINEAR GENERALIZATION OF THE CAMASSA-HOLM EQUATION WITH PEAKON SOLUTIONS

A NONLINEAR GENERALIZATION OF THE CAMASSA-HOLM EQUATION WITH PEAKON SOLUTIONS A NONLINEAR GENERALIZATION OF THE CAMASSA-HOLM EQUATION WITH PEAKON SOLUTIONS STEPHEN C. ANCO 1, ELENA RECIO 1,2, MARÍA L. GANDARIAS2, MARÍA S. BRUZÓN2 1 department of mathematics and statistics brock

More information

Nonlinear Equations for Finite-Amplitude Wave Propagation in Fiber-Reinforced Hyperelastic Media

Nonlinear Equations for Finite-Amplitude Wave Propagation in Fiber-Reinforced Hyperelastic Media Nonlinear Equations for Finite-Amplitude Wave Propagation in Fiber-Reinforced Hyperelastic Media Alexei F. Cheviakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada

More information

Nonlocally related PDE systems for one-dimensional nonlinear elastodynamics

Nonlocally related PDE systems for one-dimensional nonlinear elastodynamics J Eng Math (2008) 62:203 22 DOI 0.007/s0665-008-922-7 Nonlocally related PDE systems for one-dimensional nonlinear elastodynamics G. Bluman A. F. Cheviakov J.-F. Ganghoffer Received: 5 July 2006 / Accepted:

More information

Research Article Equivalent Lagrangians: Generalization, Transformation Maps, and Applications

Research Article Equivalent Lagrangians: Generalization, Transformation Maps, and Applications Journal of Applied Mathematics Volume 01, Article ID 86048, 19 pages doi:10.1155/01/86048 Research Article Equivalent Lagrangians: Generalization, Transformation Maps, and Applications N. Wilson and A.

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Control of Interface Evolution in Multi-Phase Fluid Flows

Control of Interface Evolution in Multi-Phase Fluid Flows Control of Interface Evolution in Multi-Phase Fluid Flows Markus Klein Department of Mathematics University of Tübingen Workshop on Numerical Methods for Optimal Control and Inverse Problems Garching,

More information

Superintegrability? Hidden linearity? Classical quantization? Symmetries and more symmetries!

Superintegrability? Hidden linearity? Classical quantization? Symmetries and more symmetries! Superintegrability? Hidden linearity? Classical quantization? Symmetries and more symmetries! Maria Clara Nucci University of Perugia & INFN-Perugia, Italy Conference on Nonlinear Mathematical Physics:

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents Winter School on PDEs St Etienne de Tinée February 2-6, 2015 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN SISSA, Trieste Lecture 2 Recall: the main goal is to compare

More information

Potential Symmetries and Differential Forms. for Wave Dissipation Equation

Potential Symmetries and Differential Forms. for Wave Dissipation Equation Int. Journal of Math. Analysis, Vol. 7, 2013, no. 42, 2061-2066 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.36163 Potential Symmetries and Differential Forms for Wave Dissipation

More information

Symmetry reductions and exact solutions for the Vakhnenko equation

Symmetry reductions and exact solutions for the Vakhnenko equation XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 1-5 septiembre 009 (pp. 1 6) Symmetry reductions and exact solutions for the Vakhnenko equation M.L.

More information

Math 575-Lecture 26. KdV equation. Derivation of KdV

Math 575-Lecture 26. KdV equation. Derivation of KdV Math 575-Lecture 26 KdV equation We look at the KdV equations and the so-called integrable systems. The KdV equation can be written as u t + 3 2 uu x + 1 6 u xxx = 0. The constants 3/2 and 1/6 are not

More information

Multidimensional partial differential equation systems: Nonlocal symmetries, nonlocal conservation laws, exact solutions

Multidimensional partial differential equation systems: Nonlocal symmetries, nonlocal conservation laws, exact solutions JOURNAL OF MATHEMATICAL PHYSICS 51, 103522 2010 Multidimensional partial differential equation systems: Nonlocal symmetries, nonlocal conservation laws, exact solutions Alexei F. Cheviakov 1,a and George

More information

Traffic Flow Problems

Traffic Flow Problems Traffic Flow Problems Nicodemus Banagaaya Supervisor : Dr. J.H.M. ten Thije Boonkkamp October 15, 2009 Outline Introduction Mathematical model derivation Godunov Scheme for the Greenberg Traffic model.

More information

Nonlinear Wave Propagation in 1D Random Media

Nonlinear Wave Propagation in 1D Random Media Nonlinear Wave Propagation in 1D Random Media J. B. Thoo, Yuba College UCI Computational and Applied Math Seminar Winter 22 Typeset by FoilTEX Background O Doherty and Anstey (Geophysical Prospecting,

More information

A Note on Nonclassical Symmetries of a Class of Nonlinear Partial Differential Equations and Compatibility

A Note on Nonclassical Symmetries of a Class of Nonlinear Partial Differential Equations and Compatibility Commun. Theor. Phys. (Beijing, China) 52 (2009) pp. 398 402 c Chinese Physical Society and IOP Publishing Ltd Vol. 52, No. 3, September 15, 2009 A Note on Nonclassical Symmetries of a Class of Nonlinear

More information

0.3.4 Burgers Equation and Nonlinear Wave

0.3.4 Burgers Equation and Nonlinear Wave 16 CONTENTS Solution to step (discontinuity) initial condition u(x, 0) = ul if X < 0 u r if X > 0, (80) u(x, t) = u L + (u L u R ) ( 1 1 π X 4νt e Y 2 dy ) (81) 0.3.4 Burgers Equation and Nonlinear Wave

More information

On second order sufficient optimality conditions for quasilinear elliptic boundary control problems

On second order sufficient optimality conditions for quasilinear elliptic boundary control problems On second order sufficient optimality conditions for quasilinear elliptic boundary control problems Vili Dhamo Technische Universität Berlin Joint work with Eduardo Casas Workshop on PDE Constrained Optimization

More information

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Info. No lecture on Thursday in a week (March 17) PSet back tonight Lecture 0 8.086 Info No lecture on Thursday in a week (March 7) PSet back tonight Nonlinear transport & conservation laws What if transport becomes nonlinear? Remember: Nonlinear transport A first attempt

More information

Symmetry Properties of Two-Dimensional Ciarlet-Mooney-Rivlin Constitutive Models in Nonlinear Elastodynamics

Symmetry Properties of Two-Dimensional Ciarlet-Mooney-Rivlin Constitutive Models in Nonlinear Elastodynamics Symmetry Properties of Two-Dimensional Ciarlet-Mooney-Rivlin Constitutive Models in Nonlinear Elastodynamics A. F. Cheviakov a, J.-F. Ganghoffer b a Department of Mathematics and Statistics, University

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

Exact solutions through symmetry reductions for a new integrable equation

Exact solutions through symmetry reductions for a new integrable equation Exact solutions through symmetry reductions for a new integrable equation MARIA LUZ GANDARIAS University of Cádiz Department of Mathematics PO.BOX, 1151 Puerto Real, Cádiz SPAIN marialuz.gandarias@uca.es

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents The 6th TIMS-OCAMI-WASEDA Joint International Workshop on Integrable Systems and Mathematical Physics March 22-26, 2014 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN

More information

The second-order 1D wave equation

The second-order 1D wave equation C The second-order D wave equation C. Homogeneous wave equation with constant speed The simplest form of the second-order wave equation is given by: x 2 = Like the first-order wave equation, it responds

More information

Partial Differential Equations, Winter 2015

Partial Differential Equations, Winter 2015 Partial Differential Equations, Winter 215 Homework #2 Due: Thursday, February 12th, 215 1. (Chapter 2.1) Solve u xx + u xt 2u tt =, u(x, ) = φ(x), u t (x, ) = ψ(x). Hint: Factor the operator as we did

More information

Symmetry classification of KdV-type nonlinear evolution equations

Symmetry classification of KdV-type nonlinear evolution equations arxiv:nlin/0201063v2 [nlin.si] 16 Sep 2003 Symmetry classification of KdV-type nonlinear evolution equations F. Güngör Department of Mathematics, Faculty of Science and Letters, Istanbul Technical University,

More information

examples of equations: what and why intrinsic view, physical origin, probability, geometry

examples of equations: what and why intrinsic view, physical origin, probability, geometry Lecture 1 Introduction examples of equations: what and why intrinsic view, physical origin, probability, geometry Intrinsic/abstract F ( x, Du, D u, D 3 u, = 0 Recall algebraic equations such as linear

More information

Differential characteristic set algorithm for PDEs symmetry computation, classification, decision and extension

Differential characteristic set algorithm for PDEs symmetry computation, classification, decision and extension Symposium in honor of George Bluman UBC May 12 16, 2014 Differential characteristic set algorithm for PDEs symmetry computation, classification, decision and extension Chaolu Shanghai Maritime University

More information

ANALYSIS OF A NONLINEAR SURFACE WIND WAVES MODEL VIA LIE GROUP METHOD

ANALYSIS OF A NONLINEAR SURFACE WIND WAVES MODEL VIA LIE GROUP METHOD Electronic Journal of Differential Equations, Vol. 206 (206), No. 228, pp. 8. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ANALYSIS OF A NONLINEAR SURFACE WIND WAVES MODEL

More information

Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN

Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN . Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN Joint work with ÜNAL GÖKTAŞ and Grant Erdmann Graduate Seminar Department

More information

Algorithmic Lie Symmetry Analysis and Group Classication for Ordinary Dierential Equations

Algorithmic Lie Symmetry Analysis and Group Classication for Ordinary Dierential Equations dmitry.lyakhov@kaust.edu.sa Symbolic Computations May 4, 2018 1 / 25 Algorithmic Lie Symmetry Analysis and Group Classication for Ordinary Dierential Equations Dmitry A. Lyakhov 1 1 Computational Sciences

More information

Diagonalization of the Coupled-Mode System.

Diagonalization of the Coupled-Mode System. Diagonalization of the Coupled-Mode System. Marina Chugunova joint work with Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada Collaborators: Mason A. Porter, California Institute

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

Travelling Wave Solutions and Conservation Laws of Fisher-Kolmogorov Equation

Travelling Wave Solutions and Conservation Laws of Fisher-Kolmogorov Equation Gen. Math. Notes, Vol. 18, No. 2, October, 2013, pp. 16-25 ISSN 2219-7184; Copyright c ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in Travelling Wave Solutions and

More information

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations Willy Hereman Department of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado whereman@mines.edu

More information

Group Invariant Solutions of Complex Modified Korteweg-de Vries Equation

Group Invariant Solutions of Complex Modified Korteweg-de Vries Equation International Mathematical Forum, 4, 2009, no. 28, 1383-1388 Group Invariant Solutions of Complex Modified Korteweg-de Vries Equation Emanullah Hızel 1 Department of Mathematics, Faculty of Science and

More information

2.3 Calculus of variations

2.3 Calculus of variations 2.3 Calculus of variations 2.3.1 Euler-Lagrange equation The action functional S[x(t)] = L(x, ẋ, t) dt (2.3.1) which maps a curve x(t) to a number, can be expanded in a Taylor series { S[x(t) + δx(t)]

More information

Journal of Mathematical Analysis and Applications. Complete symmetry group and nonlocal symmetries for some two-dimensional evolution equations

Journal of Mathematical Analysis and Applications. Complete symmetry group and nonlocal symmetries for some two-dimensional evolution equations J. Math. Anal. Appl. 357 (2009) 225 231 Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications www.elsevier.com/locate/jmaa Complete symmetry group and nonlocal symmetries

More information

Boundary conditions. Diffusion 2: Boundary conditions, long time behavior

Boundary conditions. Diffusion 2: Boundary conditions, long time behavior Boundary conditions In a domain Ω one has to add boundary conditions to the heat (or diffusion) equation: 1. u(x, t) = φ for x Ω. Temperature given at the boundary. Also density given at the boundary.

More information

Connecting Euler and Lagrange systems as nonlocally related systems of dynamical nonlinear elasticity

Connecting Euler and Lagrange systems as nonlocally related systems of dynamical nonlinear elasticity Arch. Mech., 63, 4, pp. 1 20, Warszawa 2011 Connecting Euler and Lagrange systems as nonlocally related systems of dynamical nonlinear elasticity G. BLUMAN 1), J. F. GANGHOFFER 2) 1) Mathematics Department

More information

The first three (of infinitely many) conservation laws for (1) are (3) (4) D t (u) =D x (3u 2 + u 2x ); D t (u 2 )=D x (4u 3 u 2 x +2uu 2x ); D t (u 3

The first three (of infinitely many) conservation laws for (1) are (3) (4) D t (u) =D x (3u 2 + u 2x ); D t (u 2 )=D x (4u 3 u 2 x +2uu 2x ); D t (u 3 Invariants and Symmetries for Partial Differential Equations and Lattices Λ Ünal Göktaοs y Willy Hereman y Abstract Methods for the computation of invariants and symmetries of nonlinear evolution, wave,

More information

Conditional symmetries of the equations of mathematical physics

Conditional symmetries of the equations of mathematical physics W.I. Fushchych, Scientific Works 2003, Vol. 5, 9 16. Conditional symmetries of the equations of mathematical physics W.I. FUSHCHYCH We briefly present the results of research in conditional symmetries

More information

On universality of critical behaviour in Hamiltonian PDEs

On universality of critical behaviour in Hamiltonian PDEs Riemann - Hilbert Problems, Integrability and Asymptotics Trieste, September 23, 2005 On universality of critical behaviour in Hamiltonian PDEs Boris DUBROVIN SISSA (Trieste) 1 Main subject: Hamiltonian

More information

Conservation Laws of Fluid Dynamics Models

Conservation Laws of Fluid Dynamics Models Conservation Laws of Fluid Dynamics Models Prof. Alexei Cheviakov (Alt. English spelling: Alexey Shevyakov) Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada June

More information

Introduction of Partial Differential Equations and Boundary Value Problems

Introduction of Partial Differential Equations and Boundary Value Problems Introduction of Partial Differential Equations and Boundary Value Problems 2009 Outline Definition Classification Where PDEs come from? Well-posed problem, solutions Initial Conditions and Boundary Conditions

More information

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007 PARTIAL DIFFERENTIAL EQUATIONS Lecturer: D.M.A. Stuart MT 2007 In addition to the sets of lecture notes written by previous lecturers ([1, 2]) the books [4, 7] are very good for the PDE topics in the course.

More information

Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China

Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China the 3th GCOE International Symposium, Tohoku University, 17-19

More information

Conditional Symmetry Reduction and Invariant Solutions of Nonlinear Wave Equations

Conditional Symmetry Reduction and Invariant Solutions of Nonlinear Wave Equations Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 1, 229 233 Conditional Symmetry Reduction and Invariant Solutions of Nonlinear Wave Equations Ivan M. TSYFRA Institute of Geophysics

More information

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators PDE-SEP-HEAT-1 Partial Differential Equations Separation of Variables 1 Partial Differential Equations and Operators et C = C(R 2 ) be the collection of infinitely differentiable functions from the plane

More information

Potential symmetry and invariant solutions of Fokker-Planck equation in. cylindrical coordinates related to magnetic field diffusion

Potential symmetry and invariant solutions of Fokker-Planck equation in. cylindrical coordinates related to magnetic field diffusion Potential symmetry and invariant solutions of Fokker-Planck equation in cylindrical coordinates related to magnetic field diffusion in magnetohydrodynamics including the Hall current A. H. Khater a,1,

More information

ENERGY PRESERVING INTEGRATION OF BI-HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS

ENERGY PRESERVING INTEGRATION OF BI-HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS TWMS J. App. Eng. Math. V., N.,, pp. 75-86 ENERGY PRESERVING INTEGRATION OF BI-HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS B. KARASÖZEN, G. ŞİMŞEK Abstract. The energy preserving average vector field (AVF

More information

Symbolic computation of conservation laws for nonlinear partial differential equations in multiple space dimensions

Symbolic computation of conservation laws for nonlinear partial differential equations in multiple space dimensions 1 Symbolic computation of conservation laws for nonlinear partial differential equations in multiple space dimensions Douglas Poole and Willy Hereman Department of Mathematical and Computer Sciences, Colorado

More information

Math 46, Applied Math (Spring 2009): Final

Math 46, Applied Math (Spring 2009): Final Math 46, Applied Math (Spring 2009): Final 3 hours, 80 points total, 9 questions worth varying numbers of points 1. [8 points] Find an approximate solution to the following initial-value problem which

More information

A symmetry analysis of Richard s equation describing flow in porous media. Ron Wiltshire

A symmetry analysis of Richard s equation describing flow in porous media. Ron Wiltshire BULLETIN OF THE GREEK MATHEMATICAL SOCIETY Volume 51, 005 93 103) A symmetry analysis of Richard s equation describing flow in porous media Ron Wiltshire Abstract A summary of the classical Lie method

More information

On Reduction and Q-conditional (Nonclassical) Symmetry

On Reduction and Q-conditional (Nonclassical) Symmetry Symmetry in Nonlinear Mathematical Physics 1997, V.2, 437 443. On Reduction and Q-conditional (Nonclassical) Symmetry Roman POPOVYCH Institute of Mathematics of the National Academy of Sciences of Ukraine,

More information

Travelling wave solutions for a CBS equation in dimensions

Travelling wave solutions for a CBS equation in dimensions AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '8), Harvard, Massachusetts, USA, March -6, 8 Travelling wave solutions for a CBS equation in + dimensions MARIA LUZ GANDARIAS University of Cádiz Department

More information

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multi-dimensions

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multi-dimensions . Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multi-dimensions Willy Hereman Department of Mathematical and Computer Sciences Colorado School of Mines Golden,

More information

Generalized evolutionary equations and their invariant solutions

Generalized evolutionary equations and their invariant solutions Generalized evolutionary equations and their invariant solutions Rodica Cimpoiasu, Radu Constantinescu University of Craiova, 13 A.I.Cuza Street, 200585 Craiova, Dolj, Romania Abstract The paper appplies

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin Mario Bukal A. Jüngel and D. Matthes ACROSS - Centre for Advanced Cooperative Systems Faculty of Electrical Engineering and Computing

More information

Partial Differential Equations

Partial Differential Equations M3M3 Partial Differential Equations Solutions to problem sheet 3/4 1* (i) Show that the second order linear differential operators L and M, defined in some domain Ω R n, and given by Mφ = Lφ = j=1 j=1

More information

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov Numerical Methods for Modern Traffic Flow Models Alexander Kurganov Tulane University Mathematics Department www.math.tulane.edu/ kurganov joint work with Pierre Degond, Université Paul Sabatier, Toulouse

More information

arxiv: v2 [nlin.si] 3 Aug 2017

arxiv: v2 [nlin.si] 3 Aug 2017 A generalised multicomponent system of Camassa-Holm-Novikov equations arxiv:1608.04604v2 [nlin.si] 3 Aug 2017 1. Introduction Diego Catalano Ferraioli 1 and Igor Leite Freire 2 Departamento de Matemática

More information