ylto B=wdfqtky=fH yusssi.eattlso.se#ale7a.ti .GL#=vIT+wTascwt-dtce-ft ypfttceht e-ktftessfqdstce.tt daftly )'=ehtfh deftly etty = ftesflslds t C Then

Size: px
Start display at page:

Download "ylto B=wdfqtky=fH yusssi.eattlso.se#ale7a.ti .GL#=vIT+wTascwt-dtce-ft ypfttceht e-ktftessfqdstce.tt daftly )'=ehtfh deftly etty = ftesflslds t C Then"

Transcription

1 Math 307 Week 4

2 Mon Oct 15 Example Review : dfattsysttttbioardifpeg )'ehtfh Lefty integrating factor etty ftesflslds t C Then ektftessfqdstcett y # daftly yay cos C wt ) ypfttceht Try yp # Aaolwttt Bsincwt ) ' Lp H tkypttt wlasincwtttbcoscwtdttbca cos Cutt Bsinlwtl ) nitial value problem fwatkb ) sincwtlscodwt : BwdfqtkyfH As yaw ' ' either { ylto ) yo ht coscwt 91 GL#vT+wTascwtdtceft yusssieattlsose#ale7ati ypasse#wascwtltsywssinlwdyityektftehsflddstyoe 6 where tomy w Exercise Shawtht Consequently s He solution atte V P is { deftly eat y# a syo k4

3 Find Entangle the general lution of the diff eg def they E ht ho ( estyj ebtehtsl etty t t C y ts test + CEST $

4 YH y Special case : The general case : (1) of thy ht ftsds TH n draft plays pit cmamoas Let AH ftplslds Htt N so B 'HpH Lefty ehttkl Then a is est ya ' flsldstc ( et 't ' ya ) ' quintet et 't 't # to guys e ttfehsadstcett et " ya fte ' foods t C yet ) e Pitt femtcssdstceph Note this is of the form : ypltltcyhtt particular hn cliff folium eg of homogeneous 't pity o

5 Eixample hethe initial value problem y 't3tyte ' sod : nitial condition BHsf%ds3gt ' glass # te 4 test e 6 ' ice ' ytttfeticet ce45 fessttdt " sfe4tce3ki@sthgje 5e6 je so etty e%t2+c ft ) ( Gen solution ) d # Eft 2W e T

6 This is a linear diff eg : t µ 024 C5ottPQHs dude t ntegrating factor : B # 3h15Ott ) EPH! e3ht50*) ( 50*30 * 024 Q # to 650Mt c : Qld t fo cgott QH ) 6150ft ) t Thetas is full wear } Vfd 100+2* sds c Ott 245 csottldt at that time Choo )Q %}8% lbygae )3

7 lve Wed lt Oct Eixample the following nitial value problem : lution Write in teetotum The initial condition dfat? yt ycdl ftpsgsdsshlltt4 yields the equation Than BH eat ) elnllttylt#4 " hee ltt ( )yajchtdt 't ntegrate to get ( tt Csl ' Hence )yh fcittttat 4 or yal 4 a ylt HT 4 C 4 HUH CTY 4 Ht

8 Let lution be the Eixample following quiets Consider the L reeler circuit : A5 nvm or current measured clockwise Helly a Then law shows : voltage L t R 9 The Kirchoff voltage Vr across to resistor is R At time t so see the switch is a Consequently Vr lution d shown is closed auth the VP Voltage the increases across the resistor as shown on dkqtts9 Koto following graph : R On ( since Rs daff tf 9 Koto lving gives : THS 9 g e Ft What is the inductance L of the Set t Lf to get! 94 et) inductor in the circuit? * Vratsa 569

9 E Tn Tatts 9C e t4so) RTE ' ) A 450 fo L X lot H Henries ' 10µA

10 Examples solution Consider the electrical TEH is the solution circuit of the R 100 r initial value problem lov c? RC dug t k { at The capacitor is unchanged Taco ) 0 At time t O seconds the switch is closed and the The liton is voltage TEH across the y # to ( e HRC the increases ) capiacitvr # we as shown in the following to ( e graph : TG ood loll " ) e T 63 From the graph 8 4 T 2 8 t TE 3 What is the value of C? 42 t 00 C O See C O Too 10µF Farads

11 lution let w 22 TH s toes wine as hot y) O e bit w est where ton Y wth For t large we ignore the exponential : can TH lots 50 Cut We has to choose is so that f g S2 y) diff w satire hi '

12 htt VH That Remark Note the similarity : duets TA Newton 's Law of Cooling Tr d s LE uan R a dtfrsrtk ) vain Tr R * du Freefall with air resistance Bmw at Not an* m Nf 2mg aya k ( terminal velocity)

13 Let ( KS rl effort Fri Oct 19 reinter Changing the time measured in Tonichdli wmg minutes D whine H Let s he time measured in seconds Suppose yisa quantity that changes the differential img imauodiyt da!t2ddft3y costs) radius HN d dfs Find a diff htt k > o Express this interns oft rattertlans From the homework) a spherical RC circuits raindrop evaporates according tottefdloiydjpqm + d s > o where vvdy chip djgeqmtnvisardrintemsy Sssuyaaaoa r radius Find asinge dependent variable Find Htt c R sak my RtqgNT dip egnsfntfandtc

14 BigPe!Tme \ Autonomous hdntihtfltmynh soames Flyeto fhgl fixed Emuleisodctodtntitnthdf7T?g ( point fthkldtsftglsldstcdftpthysn stage dyagt hlyl hn big h : dit Ce ytdyphtt Blasted"4dds Lp H s e H ftpcsld dfftkyshjlhes/tehsfcsldsdff+sga f t cost ykkagtcelstdfatbyascat/jhacoscwtyltceht

15 O r Rcimt R to C i ooo Lct Live date tir + : Vr Thus A) 33 ( 106 x Farads time constant RC to Tee to Eth ) micro Ucs 208ns 33T D 105 m see

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

ECE2262 Electric Circuit

ECE2262 Electric Circuit ECE2262 Electric Circuit Chapter 7: FIRST AND SECOND-ORDER RL AND RC CIRCUITS Response to First-Order RL and RC Circuits Response to Second-Order RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1 1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Exercise 1: RC Time Constants

Exercise 1: RC Time Constants Exercise 1: RC EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the time constant of an RC circuit by using calculated and measured values. You will verify your results

More information

sections June 11, 2009

sections June 11, 2009 sections 3.2-3.5 June 11, 2009 Population growth/decay When we model population growth, the simplest model is the exponential (or Malthusian) model. Basic ideas: P = P(t) = population size as a function

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 14 121011 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Steady-State Analysis RC Circuits RL Circuits 3 DC Steady-State

More information

MATH 312 Section 3.1: Linear Models

MATH 312 Section 3.1: Linear Models MATH 312 Section 3.1: Linear Models Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Population Growth 2 Newton s Law of Cooling 3 Kepler s Law Second Law of Planetary Motion 4

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Electrical Circuits (2)

Electrical Circuits (2) Electrical Circuits (2) Lecture 7 Transient Analysis Dr.Eng. Basem ElHalawany Extra Reference for this Lecture Chapter 16 Schaum's Outline Of Theory And Problems Of Electric Circuits https://archive.org/details/theoryandproblemsofelectriccircuits

More information

Experiment Guide for RC Circuits

Experiment Guide for RC Circuits Guide-P1 Experiment Guide for RC Circuits I. Introduction 1. Capacitors A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The unit of capacitance is

More information

20D - Homework Assignment 4

20D - Homework Assignment 4 Brian Bowers (TA for Hui Sun) MATH 0D Homework Assignment November, 03 0D - Homework Assignment First, I will give a brief overview of how to use variation of parameters. () Ensure that the differential

More information

Electronics Capacitors

Electronics Capacitors Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists

More information

Mixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem.

Mixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem. page 57 1.7 Modeling Problems Using First-Order Linear Differential Equations 57 For Problems 33 38, use a differential equation solver to determine the solution to each of the initial-value problems and

More information

=================~ NONHOMOGENEOUS LINEAR EQUATIONS. rn y" - y' - 6y = 0. lid y" + 2y' + 2y = 0, y(o) = 2, y'(0) = I

=================~ NONHOMOGENEOUS LINEAR EQUATIONS. rn y - y' - 6y = 0. lid y + 2y' + 2y = 0, y(o) = 2, y'(0) = I ~ EXERCISES rn y" - y' - 6y = 0 3. 4y" + y = 0 5. 9y" - 12y' + 4y = 0 2. y" + 4 y' + 4 y = 0 4. y" - 8y' + 12y = 0 6. 25y" + 9y = 0 dy 8. dt2-6 d1 + 4y = 0 00 y" - 4y' + By = 0 10. y" + 3y' = 0 [ITJ2-+2--y=0

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

More information

Solutions to these tests are available online in some places (but not all explanations are good)...

Solutions to these tests are available online in some places (but not all explanations are good)... The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php

More information

Exam 3--PHYS 102--S14

Exam 3--PHYS 102--S14 Name: Exam 3--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these statements is always true? a. resistors in parallel have the

More information

XXIX Applications of Differential Equations

XXIX Applications of Differential Equations MATHEMATICS 01-BNK-05 Advanced Calculus Martin Huard Winter 015 1. Suppose that the rate at which a population of size yt at time t changes is proportional to the amount present. This gives rise to the

More information

RC, RL, and LCR Circuits

RC, RL, and LCR Circuits RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They

More information

PHYS 241/spring2014: Assignment EXAM02SP11

PHYS 241/spring2014: Assignment EXAM02SP11 PHYS 241/spring2014: Assignment EXAM02SP11 For user = meiles Logout User: meiles sp11ex02q07 [10 points] (Last updated: Mon Apr 11 16:54:40 2011) [meiles] Magnetic field on the axis of solenoid A solenoid

More information

Problem Solving 8: Circuits

Problem Solving 8: Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics OBJECTIVES Problem Solving 8: Circuits 1. To gain intuition for the behavior of DC circuits with both resistors and capacitors or inductors.

More information

AC analysis. EE 201 AC analysis 1

AC analysis. EE 201 AC analysis 1 AC analysis Now we turn to circuits with sinusoidal sources. Earlier, we had a brief look at sinusoids, but now we will add in capacitors and inductors, making the story much more interesting. What are

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Mathematics 256 a course in differential equations for engineering students

Mathematics 256 a course in differential equations for engineering students Mathematics 256 a course in differential equations for engineering students Chapter 1. How things cool off One physical system in which many important phenomena occur is that where an initial uneven temperature

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

More information

Differential Equations and Lumped Element Circuits

Differential Equations and Lumped Element Circuits Differential Equations and Lumped Element Circuits 8 Introduction Chapter 8 of the text discusses the numerical solution of ordinary differential equations. Differential equations and in particular linear

More information

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

More information

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

More information

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EECE25 Circuit Analysis I Set 4: Capacitors, Inductors, and First-Order Linear Circuits Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca

More information

R = (50 W )(1 + [ /C ][- 221C ]) R = (50 W )( ) R = (50 W )(1.1105) R = 55.5 W

R = (50 W )(1 + [ /C ][- 221C ]) R = (50 W )( ) R = (50 W )(1.1105) R = 55.5 W PHY 1160C Homework Chapter 19: Direct-Current Circuits Ch 19: 5, 11, 18, 37, 46, 54, 75, 80, 83 19.5 A carbon resistor has a resistance of 50 W when measured at room temperature. What is its resistance

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

Slide 1 / 26. Inductance by Bryan Pflueger

Slide 1 / 26. Inductance by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

PRACTICE EXAM 1 for Midterm 2

PRACTICE EXAM 1 for Midterm 2 PRACTICE EXAM 1 for Midterm 2 Multiple Choice Questions 1) The figure shows three identical lightbulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness

More information

Physics 2112 Unit 18

Physics 2112 Unit 18 Physics 2112 Unit 18 Today s Concepts: A) Induction B) Circuits Electricity & Magnetism ecture 18, Slide 1 Where we are.. Just finished introducing magnetism Will now apply magnetism to AC circuits Unit

More information

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

What happens when things change. Transient current and voltage relationships in a simple resistive circuit. Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient

More information

Do not fill out the information below until instructed to do so! Name: Signature: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: E-mail: Section Number: No calculators are allowed in the test. Be sure to put a box around your final answers and clearly

More information

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5.

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. 1. Which one of the following statements best explains why tiny bits of paper are attracted to a charged rubber rod? A) Paper

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework. Substitution and Nonexact Differential Equation Made Exact) [0] Solve dy dx = ey + 3e x+y, y0) = 0. Let u := e x, v = e y, and hence dy = v + 3uv) dx, du = u)dx, dv = v)dy = u)dv

More information

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers.

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers. Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers. Objectives To analyze and understand STC circuits with

More information

Lecture 27: FRI 20 MAR

Lecture 27: FRI 20 MAR Physics 2102 Jonathan Dowling Lecture 27: FRI 20 MAR Ch.30.7 9 Inductors & Inductance Nikolai Tesla Inductors: Solenoids Inductors are with respect to the magnetic field what capacitors are with respect

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Math Assignment 6

Math Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Fall 2013 Section 3.7-1, 5, 10, 17, 19 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.7 - Electrical Circuits 3.7.1 This

More information

Response of Second-Order Systems

Response of Second-Order Systems Unit 3 Response of SecondOrder Systems In this unit, we consider the natural and step responses of simple series and parallel circuits containing inductors, capacitors and resistors. The equations which

More information

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33 Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

More information

A capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2

A capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2 Capacitance: Lecture 2: Resistors and Capacitors Capacitance (C) is defined as the ratio of charge (Q) to voltage (V) on an object: C = Q/V = Coulombs/Volt = Farad Capacitance of an object depends on geometry

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

ECE 241L Fundamentals of Electrical Engineering. Experiment 6 AC Circuits

ECE 241L Fundamentals of Electrical Engineering. Experiment 6 AC Circuits ECE 241L Fundamentals of Electrical Engineering Experiment 6 AC Circuits A. Objectives: Objectives: I. Calculate amplitude and phase angles of a-c voltages and impedances II. Calculate the reactance and

More information

Phys 2025, First Test. September 20, minutes Name:

Phys 2025, First Test. September 20, minutes Name: Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 10-1 C / N m e

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

SECTION #1 - The experimental setup

SECTION #1 - The experimental setup Lemon Battery Connected in Series Charging a 2.2 Farad Capacitor SECTION #1 - The experimental setup 1. The goal of this experiment is to see if I can connect 2, 3 or 4 lemons together in a series configuration

More information

PRACTICE EXAM 2 for Midterm 2

PRACTICE EXAM 2 for Midterm 2 PRACTICE EXAM 2 for Midterm 2 Multiple Choice Questions 1) In the circuit shown in the figure, all the lightbulbs are identical. Which of the following is the correct ranking of the brightness of the bulbs?

More information

Electric Circuits Fall 2015 Solution #5

Electric Circuits Fall 2015 Solution #5 RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermeate steps: a correct solution without an explanation will get zero cret.

More information

Compartmental Analysis

Compartmental Analysis Compartmental Analysis Math 366 - Differential Equations Material Covering Lab 3 We now learn how to model some physical phonomena through DE. General steps for modeling (you are encouraged to find your

More information

Linear Second Order ODEs

Linear Second Order ODEs Chapter 3 Linear Second Order ODEs In this chapter we study ODEs of the form (3.1) y + p(t)y + q(t)y = f(t), where p, q, and f are given functions. Since there are two derivatives, we might expect that

More information

Math 315: Differential Equations Lecture Notes Patrick Torres

Math 315: Differential Equations Lecture Notes Patrick Torres Introduction What is a Differential Equation? A differential equation (DE) is an equation that relates a function (usually unknown) to its own derivatives. Example 1: The equation + y3 unknown function,

More information

Linear Circuits. Concept Map 9/10/ Resistive Background Circuits. 5 Power. 3 4 Reactive Circuits. Frequency Analysis

Linear Circuits. Concept Map 9/10/ Resistive Background Circuits. 5 Power. 3 4 Reactive Circuits. Frequency Analysis Linear Circuits Dr. Bonnie Ferri Professor School of Electrical and Computer Engineering An introduction to linear electric components and a study of circuits containing such devices. School of Electrical

More information

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71.

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71. Chapter 6 DRECT CURRENT CRCUTS Recommended Problems: 6,9,,3,4,5,6,9,0,,4,5,6,8,9,30,3,33,37,68,7. RESSTORS N SERES AND N PARALLEL - N SERES When two resistors are connected together as shown we said that

More information

Real Analog Chapter 7: First Order Circuits. 7 Introduction and Chapter Objectives

Real Analog Chapter 7: First Order Circuits. 7 Introduction and Chapter Objectives 1300 Henley Court Pullman, WA 99163 509.334.6306 www.store. digilent.com 7 Introduction and Chapter Objectives First order systems are, by definition, systems whose inputoutput relationship is a first

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18 Circuit Analysis-II Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

More information

Laboratory 7: Charging and Discharging a Capacitor Prelab

Laboratory 7: Charging and Discharging a Capacitor Prelab Phys 132L Fall 2018 Laboratory 7: Charging and Discharging a Capacitor Prelab Consider a capacitor with capacitance C connected in series to a resistor with resistance R as shown in Fig. 1. Theory predicts

More information

PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS

PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS PHYSICS 122 Lab EXPERIMENT NO. 6 AC CIRCUITS The first purpose of this laboratory is to observe voltages as a function of time in an RC circuit and compare it to its expected time behavior. In the second

More information

Some Important Electrical Units

Some Important Electrical Units Some Important Electrical Units Quantity Unit Symbol Current Charge Voltage Resistance Power Ampere Coulomb Volt Ohm Watt A C V W W These derived units are based on fundamental units from the meterkilogram-second

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

Question 1. Question 2. Question 3

Question 1. Question 2. Question 3 Question 1 Switch S in in the figure is closed at time t = 0, to begin charging an initially uncharged capacitor of capacitance C = 18.2 μf through a resistor of resistance R = 22.3 Ω. At what time (in

More information

PHYS 202 Notes, Week 6

PHYS 202 Notes, Week 6 PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic

More information

RC Circuits. Equipment: Capstone with 850 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 3 leads V C = 1

RC Circuits. Equipment: Capstone with 850 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 3 leads V C = 1 R ircuits Equipment: apstone with 850 interface, RL circuit board, 2 voltage sensors (no alligator clips), 3 leads 1 Introduction The 3 basic linear circuits elements are the resistor, the capacitor, and

More information

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4)

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4) UNIT G485 Module 2 5.2.1 Capacitors PRACTICE QUESTIONS (4) 1 A 2200 µf capacitor is charged to a p.d. of 9.0 V and then discharged through a 100 kω resistor. (a) Calculate : (i) The initial charge stored

More information

Circuits Gustav Robert Kirchhoff 12 March October 1887

Circuits Gustav Robert Kirchhoff 12 March October 1887 Welcome Back to Physics 1308 Circuits Gustav Robert Kirchhoff 12 March 1824 17 October 1887 Announcements Assignments for Thursday, October 18th: - Reading: Chapter 28.1-28.2, 28.4 - Watch Video: https://youtu.be/39vkt4cc5nu

More information

Lab 10: DC RC circuits

Lab 10: DC RC circuits Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit

More information

Assignment 13 Assigned Mon Oct 4

Assignment 13 Assigned Mon Oct 4 Assignment 3 Assigned Mon Oct 4 We refer to the integral table in the back of the book. Section 7.5, Problem 3. I don t see this one in the table in the back of the book! But it s a very easy substitution

More information

REVIEW EXERCISES. 2. What is the resulting action if switch (S) is opened after the capacitor (C) is fully charged? Se figure 4.27.

REVIEW EXERCISES. 2. What is the resulting action if switch (S) is opened after the capacitor (C) is fully charged? Se figure 4.27. REVIEW EXERCISES Circle the letter of the correct answer to each question. 1. What is the current and voltage relationship immediately after the switch is closed in the circuit in figure 4-27, which shows

More information

ECE 241L Fundamentals of Electrical Engineering. Experiment 5 Transient Response

ECE 241L Fundamentals of Electrical Engineering. Experiment 5 Transient Response ECE 241L Fundamentals of Electrical Engineering Experiment 5 Transient Response NAME PARTNER A. Objectives: I. Learn how to use the function generator and oscilloscope II. Measure step response of RC and

More information

2006 #3 10. a. On the diagram of the loop below, indicate the directions of the magnetic forces, if any, that act on each side of the loop.

2006 #3 10. a. On the diagram of the loop below, indicate the directions of the magnetic forces, if any, that act on each side of the loop. 1992 1 1994 2 3 3 1984 4 1991 5 1987 6 1980 8 7 9 2006 #3 10 1985 2006E3. A loop of wire of width w and height h contains a switch and a battery and is connected to a spring of force constant k, as shown

More information

PHYSICS QUESTION PAPER CLASS-XII

PHYSICS QUESTION PAPER CLASS-XII PHYSICS QUESTION PAPER CLASS-XII Time : 3.00 Hours] [Maximum Marks : 100 Instructions : 1. There are A, B, C and D sections, containing 60 questions in this question paper. 2. Symbols used in this question

More information

PHY 131 Review Session Fall 2015 PART 1:

PHY 131 Review Session Fall 2015 PART 1: PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being

More information

8. Introduction and Chapter Objectives

8. Introduction and Chapter Objectives Real Analog - Circuits Chapter 8: Second Order Circuits 8. Introduction and Chapter Objectives Second order systems are, by definition, systems whose input-output relationship is a second order differential

More information

AP Physics C. Inductance. Free Response Problems

AP Physics C. Inductance. Free Response Problems AP Physics C Inductance Free Response Problems 1. Two toroidal solenoids are wounded around the same frame. Solenoid 1 has 800 turns and solenoid 2 has 500 turns. When the current 7.23 A flows through

More information

To find the step response of an RC circuit

To find the step response of an RC circuit To find the step response of an RC circuit v( t) v( ) [ v( t) v( )] e tt The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t ) To find the step response of an RL circuit

More information

PROBLEMS TO BE SOLVED IN CLASSROOM

PROBLEMS TO BE SOLVED IN CLASSROOM PROLEMS TO E SOLVED IN LSSROOM Unit 0. Prerrequisites 0.1. Obtain a unit vector perpendicular to vectors 2i + 3j 6k and i + j k 0.2 a) Find the integral of vector v = 2xyi + 3j 2z k along the straight

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 20 121101 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapters 1-3 Circuit Analysis Techniques Chapter 10 Diodes Ideal Model

More information

Physics 116A Notes Fall 2004

Physics 116A Notes Fall 2004 Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second edition,

More information

Homework 1 solutions

Homework 1 solutions Electric Circuits 1 Homework 1 solutions (Due date: 2014/3/3) This assignment covers Ch1 and Ch2 of the textbook. The full credit is 100 points. For each question, detailed derivation processes and accurate

More information

Circuits Practice Websheet 18.1

Circuits Practice Websheet 18.1 Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10-Ω resistors? a. 24

More information

ELECTRO MAGNETIC INDUCTION

ELECTRO MAGNETIC INDUCTION ELECTRO MAGNETIC INDUCTION 1) A Circular coil is placed near a current carrying conductor. The induced current is anti clock wise when the coil is, 1. Stationary 2. Moved away from the conductor 3. Moved

More information

8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0.

8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. Spring 2015, Exam #5, Problem #1 4t Answer: e tut 8 sin 3 V 1 For the circuit

More information

LAPLACE TRANSFORMATION AND APPLICATIONS. Laplace transformation It s a transformation method used for solving differential equation.

LAPLACE TRANSFORMATION AND APPLICATIONS. Laplace transformation It s a transformation method used for solving differential equation. LAPLACE TRANSFORMATION AND APPLICATIONS Laplace transformation It s a transformation method used for solving differential equation. Advantages The solution of differential equation using LT, progresses

More information

First Order RC and RL Transient Circuits

First Order RC and RL Transient Circuits First Order R and RL Transient ircuits Objectives To introduce the transients phenomena. To analyze step and natural responses of first order R circuits. To analyze step and natural responses of first

More information

= e = e 3 = = 4.98%

= e = e 3 = = 4.98% PHYS 212 Exam 2 - Practice Test - Solutions 1E In order to use the equation for discharging, we should consider the amount of charge remaining after three time constants, which would have to be q(t)/q0.

More information

Where, τ is in seconds, R is in ohms and C in Farads. Objective of The Experiment

Where, τ is in seconds, R is in ohms and C in Farads. Objective of The Experiment Introduction The famous multivibrator circuit was first introduced in a publication by Henri Abraham and Eugene Bloch in 1919. Multivibrators are electronic circuits designed for the purpose of applying

More information

The RLC circuits have a wide range of applications, including oscillators and frequency filters

The RLC circuits have a wide range of applications, including oscillators and frequency filters 9. The RL ircuit The RL circuits have a wide range of applications, including oscillators and frequency filters This chapter considers the responses of RL circuits The result is a second-order differential

More information