Math Assignment 6

Size: px
Start display at page:

Download "Math Assignment 6"

Transcription

1 Math Assignment 6 Dylan Zwick Fall 2013 Section 3.7-1, 5, 10, 17, 19 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1

2 Section Electrical Circuits This problem deals with the RL circuit pictured below. It is a se ries circuit containing an inductor with an inductance of L henries, a resistor with a resistance of R ohms, and a source of electromotive force (emf), but no capacitor. In this case the equation governing our system is the first-order equation LI + RI = E(t). C Suppose that L = 511, R = 25Q, and the source E of emf is a battery supplying 1OOl to the circuit. Suppose also that the switch has been in position 1 for a long time, so that a steady current of 4A is flowing in the circuit. At time t = 0, the switch is thrown to position 2, so thatl(0)=r4ande=ofort>0. FindI(t). Solution - The ODE that describes this system is: = 0. We can rewrite this as: I + SI = 0. 2

3 This is a first-order linear ODE, and the corresponding integrating factor is ρ(t) = e R 5dt = e 5t. Multiplying both sides of the ODE by this integrating factor we get: e 5t I + 5e 5t I = 0 d dt ( e 5t I ) = 0. Integrating both sides of the above equation we get: e 5t I = C I(t) = Ce 5t. If we plug in the initial condition I(0) = 4 = C we get the final solution: I(t) = 4e 5t. 3

4 In the circuit from Problem 3.7.1, with the switch in position 1, suppose that E(t) = 100e 10t cos 60t, R = 20, L = 2, and I(0) = 0. Find I(t). Solution - The differential equation governing this system will be: 2I + 20I = 100e 10t cos (60t). If we divide both sides by 2 we get the ODE: I + 10I = 50e 10t cos (60t). The integrating factor for this first-order linear ODE will be ρ(t) = e R 10dt = e 10t. Multiplying both sides of our equation by this integrating factor we get: d ( e 10t I ) = 50 cos(60t). dt Integrating both sides of this equation gives us: e 10t I = 5 sin (60t) + C 6 I(t) = 5 6 e 10t sin (60t) + Ce 10t. If we plug in the initial condition I(0) = 0 we get C = 0, and our solution is: I(t) = 5 6 e 10t sin (60t). 4

5 This problem deals with an RC circuit pictured below, containing a resistor (R ohms), a capacitor (C farads), a switch, a source of emf, but no inductor. This system is governed by the linear first-order differential equation dq 1 R-- + = E(t). for the charge Q Q (t). = Q(t) on the capacitor at time t. Note that 1(t) C Suppose an emf of voltage E(t) = B0 cos wt is applied to the RC circuit at time t = 0 (with the switch closed), and Q(0) = 0. Substitute Q5(t) = A cos wt + B sin wt in the differential equation to show that the steady periodic charge on the capacitor is E0C Q5 (t) = p cos (wt 3) where /3 = tan (wrc). 5

6 Solution - Our steady periodic charge will be of the form: Q sp = A cos (ωt) + B sin (ωt). Its derivative will is: Q sp = ωa sin(ωt) + ωb cos (ωt). If we plug these values into the ODE: RQ sp + 1 C Q sp = E 0 cos (ωt), we get: ARω sin (ωt) + BRω cos (ωt) + A C cos (ωt) + B C sin (ωt) = E 0 cos (ωt). Grouping like terms together and multiplying both sides by C we have: (B AωRC) sin (ωt) + (A + BωRC) cos (ωt) = CE 0 cos (ωt). Equating coefficients we get B AωRC = 0, which means B = AωRC. Plugging these into the above equation gives us: A(1 + ω 2 R 2 C 2 ) cos (ωt) = CE 0 cos (ωt). So, A = E 0 C 1 + ω 2 R 2 C, and B = E 0C 2 ωr. From this we get: ω 2 R 2 C2 6

7 Q sp = If we define α = tan 1 (ωrc) then E 0 C (cos (ωt) + ωrc sin (ωt)). 1 + ω 2 R 2 C2 sin α = cos α = ωrc 1 + ω2 R 2 C 2, ω2 R 2 C 2. Using these we can rewrite Q sp as: Q sp = E 0 C (cos (α)cos (ωt) + sin (α) sin (ωt)). 1 + ω2 R 2 C2 If we use the trigonometric identity cos (θ φ) = cos (θ) cos (φ) + sin (θ) sin (φ) we can rewrite the above equation as: Q sp = E 0 C cos (ωt α). 1 + ω2 R 2 C2 This is our desired form. 7

8 For the RLC circuit pictured below find the current 1(t) using the given values of R, L, C and V(t), and the given initial values. L C(7 R = 16Q, L = 2H, C =.02F; E(t) = 100V; 1(0) = 0, Q(0) 5. Solution - The differential equation that governs this system is: i-50Q= 100. We can rewrite this as: I Q 50. The corresponding homogeneous equation is: I Q = 0. The characteristic polynomial for this linear homogeneous ODE is: r+8r+25, 8

9 which has roots: 8 ± 8 2 4(1)(25) 2 = 4 ± 3i. So, the corresponding homogeneous solution is: Q h (t) = c 1 e 4t cos (3t) + c 2 e 4t sin (3t). As for a particular solution, we guess our particular solution is of the form Q p (t) = A. Plugging this into our ODE we get: 25A = 50, so A = 2. Therefore the solution to our differential equation is: Q(t) = c 1 e 4t cos (3t) + c 2 e 4t sin (3t) + 2. Its derivative is: I(t) = 3c 1 e 4t sin (3t) 4c 1 e 4t cos (3t) + 3c 2 e 4t cos (3t) 4c 2 e 4t sin (3t). Plugging in our initial conditions gives us: Q(0) = c = 5, I(0) = 4c 1 + 3c 2 = 0. Solving this system of equations gives us c 1 = 3, c 2 = 4. So, our solution is: 9

10 Q(t) = 3e 4t cos (3t) + 4e 4t sin (3t) + 2, and I(t) = 25e 4t sin (3t). 10

11 Same instructions as Problem , but with the values: R = 60Ω, L = 2H, C =.0025F ; E(t) = 100e 10t V ; I(0) = 0, Q(0) = 1. Solution - The differential equation that governs this circuit is: 2I + 60I + 400Q = 100e 10t. We can rewrite this ODE as: I + 30I + 200Q = 50e 10t. The corresponding homogeneous equation is: I + 30I + 200Q = 0. This has characteristic polynomial: r r = (r + 20)(r + 10). The roots of this polynomial are: r = 10, 20, and so the homogeneous solution is: Q h = c 1 e 20t + c 2 e 10t. 11

12 As for a particular solution, our first guess is the particular solution will be of the form Ae 10t, but this would not be linearly independent of our homogeneous solution, so we need to use the guess Ate 10t. With this guess we get: Q p = Ate 10t, Q p = A( 10te 10t + e 10t ), Q p = A(100te 10t 20e 10t ). Plugging these into the ODE we get: 100Ate 10t 20Ae 10t 300Ate 10t + 30Ae 10t + 200Ate 10t = 10Ae 10t = 50e 10t So, our solution is: Its derivative is: A = 5. Q(t) = 5te 10t + c 1 e 20t + c 2 e 10t. Q (t) = I(t) = 50te 10t + 5e 10t 20c 1 e 20t 10c 2 e 10t. Plugging in our initial conditions we get: Q(0) = c 1 + c 2 = 1, I(0) = 5 20c 1 10c 2 = 0. Solving this system we get c 1 = 3 2, c 2 = 1, and our current will be: 2 I(t) = 10e 20t 10e 10t 50te 10t. 12

13 Section Endpoint Problems and Eigenvalues For the eigenvalue problem y + λy = 0; y (0) = 0, y(1) = 0, first determine whether λ = 0 is an eigenvalue; then find the positive eigenvalues and associated eigenfunctions. Solution - First, if λ = 0 then the solution to the differential equation y = 0 is y = Ax + B. From this we get y = A, and so if y (0) = 0 we must have A = 0. This would mean y = B, and if y(1) = 0 then B = 0. So, only the trivial solution A = B = 0 works, and therefore λ = 0 is not an eigenvalue. For λ > 0 the characteristic polynomial for our linear differential equation is: r 2 + λ = 0, which has roots r = ± λ. The corresponding solution to our ODE will be: y = A cos( λx) + B sin ( λx). with derivative y = A λ sin ( λx) + B λcos ( λx). 13

14 So, y (0) = B λ, and therefore if y (0) = 0 then we must have B = 0, as λ > 0. So, our solution must be of the form: y = A cos ( λx). If we plug in y(1) = 0 we get: y(1) = A cos ( λ) = 0. If A 0 we must have cos( λ) = 0, which is true only if λ = π + nπ. So, the eigenvalues are: 2 λ n = ( ( )) 2 1 π 2 + n, with n N, and corresponding eigenfunctions (( π ) ) y n = cos 2 + nπ x. 14

15 3.8.3 Same instructions as Problem 3.8.1, but for the eigenvalue problem: y + λy = 0; y( π) = 0, y(π) = 0. Solution - If λ = 0 then, as in Problem 3.8.1, our solution will be of the form: y = Ax + B. This means y(π) = Aπ + B = 0, and y( π) = Aπ + B = 0. Adding these two equations we get 2B = 0, which means B = 0. If B = 0 then Aπ = 0, which means A = 0. So, the only solution is the trivial solution A = B = 0, and therefore λ = 0 is not an eigenvalue. Now if λ > 0 then again just as in Problem we ll have a solution of the form: y(x) = A cos ( λx) + B sin ( λx). If we plug in our endpoint values we get: y(π) = A cos ( λπ) + B sin ( λπ) = 0, y( π) = A cos ( λπ) + B sin ( λπ) = A cos ( λπ) B sin ( λπ) = 0, where in the second line above we use that cos is an even function, while sin is odd. If we add these two equations together we get: 2A cos ( λπ) = 0. 15

16 This is true if either A = 0 or ( ) 1 λ = 2 + n. If ( ) 1 λ = 2 + n then (( ) ) 1 y(π) = B sin 2 + n π = 0. (( ) ) 1 As sin 2 + n π = ±1 we must have B = 0. On the other hand, if A = 0 above then we have: y(π) = B sin ( λπ). If B 0 then we must have λ = n. Combining our two results we get that the possible eigenvalues are: λ n = n2 4, for n N, and n > 0, with corresponding eigenfunctions: { ( cos n y n (x) = x) n odd 2 sin ( n x) n even 2 16

17 3.8.5 Same instructions as Problem 3.8.1, but for the eigenvalue problem: y + λy = 0; y( 2) = 0, y (2) = 0. Solution - If λ = 0 then, just as in Problem 3.8.1, the solution to the ODE will be: y(x) = Ax + B, y (x) = A. If we plug in our endpoint conditions we get y( 2) = 2A + B = 0 and y (2) = A = 0. These equations are satisfied if and only if A = B = 0, which is the trivial solution. So, λ = 0 is not an eigenvalue. If λ > 0 then, just as in Problem 3.8.1, the solution to the ODE will be of the form: y(x) = A cos ( λx) + B sin ( λx), with y (x) = A λsin ( λx) + B λ cos ( λx). Plugging in the endpoint conditions, and using that cos is even and sin is odd, we get: y( 2) = A cos ( 2 λ) + B sin ( 2 λ) = A cos (2 λ) B sin (2 λ) = 0, y (2) = A λ sin (2 λ) + B λcos (2 λ) = 0. If we divide both sides of the second equality by λ we get 17

18 A sin (2 λ) + B cos (2 λ) = 0. From these equations we get: A cos (2 λ) = B sin (2 λ) A B = tan (2 λ), B cos (2 λ) = A sin (2 λ) B A = tan (2 λ). So, A B = B A A2 = B 2. So, either A = B or A = B. If A = B then tan (2 λ) = 1, which means 2 λ = π 4 therefore + nπ, and (( ) n λ = π). 8 If A = B then tan(2 λ) = 1, which means 2 λ = 3π 4 therefore + nπ, and (( ) n λ = π). 8 So, the eigenvalues are: 18

19 (( ) ) n λ n = π 8 with n N and n > 0, with corresponding eigenfunctions: { (( cos 1+2n ) ) (( y n = 8 πx + sin 1+2n ) ) 8 πx n even cos (( ) ) (( 1+2n 8 πx sin 1+2n ) ) 8 πx n odd 19

20 Consider the eigenvalue problem y + λy = 0; y(0) = 0 y(1) = y (1) (not a typo).; all its eigenvalues are nonnegative. (a) Show that λ = 0 is an eigenvalue with associated eigenfunction y 0 (x) = x. (b) Show that the remaining eigenfunctions are given by y n (x) = sin β n x, where β n is the nth positive root of the equation tanz = z. Draw a sketch showing these roots. Deduce from this sketch that β n (2n + 1)π/2 when n is large. Solution - (a) - If λ = 0 then the solution to the ODE will be of the form: y(x) = Ax + B, with y (x) = A. So, y(0) = B = 0, and y(1) = A = y (1). So, any function of the form y(x) = Ax will work, and our eigenfunction for λ = 0 is: y 0 = x. (b) - For λ > 0 the solutions will all be of the form: y(x) = A cos(λx) + B sin (λx). If we plug in y(0) = A = 0 we get the solutions are of the form: 20

21 y(x) = Bsin(\/ 5x), with = Bvcos (\/I). If we plug in the other endpoint values we get: y(l) = Bsin(v) = BVcos(v ) = y (l). If B 0 then we must have: tan(/)= So, v X works if it s a root of the equation tan z = z, and if 8, is the iith such root, then the associated eigenfunction is: sin(/ 3x). A sketch intersect: of z and tan z are below. The roots are where they L As ii gets large it occurs at approximately /277 + in J7F. 2 21

22 Consider the eigenvalue problem y + 2y + λy = 0; y(0) = y(1) = 0. (a) Show that λ = 1 is not an eigenvalue. (b) Show that there is no eigenvalue λ such that λ < 1. (c) Show that the nth positive eigenvalue is λ n = n 2 π 2 + 1, with associated eigenfunction y n (x) = e x sin (nπx). Solution - (a) - If λ = 1 then the characteristic polynomial is: r 2 + 2r + 1 = (r + 1) 2, which has roots r = 1, 1. So, 1 is a root with multiplicity 2. The corresponding solution to the ODE will be: y(x) = Ae x + Bxe x. If we plug in the endpoint values we get: y(0) = A = 0, y(1) = Ae 1 + Be 1 = Be 1 = 0. From these we see the only solution is the trivial solution A = B = 0, so λ = 1 is not an eigenvalue. 22

23 (b) - If λ < 1 then the characteristic polynomial will be: r 2 + 2r + λ, which has roots r = 2 ± 2 2 4(1)λ 2 = 1 ± 1 λ. If λ < 1 then 1 λ will be real, and the solution to our ODE will be of the form: y(x) = Ae ( 1+ 1 λ)x + Be ( 1 1 λ)x. Plugging in our endpoint values we get: y(0) = A + B = 0, y(1) = Ae 1+ 1 λ + Be 1 1 λ = 0. From these we get, after a little algebra: A(1 e 2 1 λ ) = 0. If λ < 1 then e 2 1 λ < 1, and therefore 1 e 2 1 λ > 0. So, for the above equality to be true we must have A = 0, which means B = 0, and so the only solution is the trivial solution A = B = 0. Therefore, no value λ < 1 is an eigenvalue. (c) - If λ > 1 then again using the roots from the quadratic equation in part (b) we get that our solutions will be of the form: 23

24 y(x) = Ae x cos ( λ 1x) + Be x sin ( λ 1x). If we plug in the endpoint values we get: y(0) = A = 0, and so y(x) = Be x sin ( λ 1x). If we plug in our other endpoint value we get: y(1) = Be 1 sin ( λ 1) = 0. If B 0 then we must have sin ( λ 1) = 0, which is only possible if λ 1 = nπ, λ n = n 2 π So, the eigenvalues are given above, and the corresponding eigenfunctions are: y n = e x sin (nπx), for n N, n > 0. 24

25 Section First-Order Systems and Applications Transform the given differential equation into an equivalent system of first-order differential equations. x + 3x + 7x = t 2. Solution - If we define x = x 1 then define: x 1 = x 2, x 2 = t2 3x 2 7x 1. So, the system is: x 1 = x 2 x 2 = 7x 1 3x 2 + t 2. 25

26 Transform the given differential equation into an equivalent system of first-order differential equations. x (4) + 6x 3x + x = cos 3t. Solution - Define x = x 1. Then the equivalent system is: x 1 = x 2 x 2 = x 3 x 3 = x 4 x 4 = 6x 3 + 3x 2 x 1 + cos (3t). 26

27 Find the particular solution to the system of differential equations below. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the given system. x = 2y, y = 2x; x(0) = 1, y(0) = 0. Solution - If we differentiate y = 2x, we get y = 2x = 4y. So, we have the differential equation: y + 4y = 0. The solution to this ODE is: y(t) = A cos (2t) + B sin (2t). Now, x(t) = 1 2 y = 1 ( 2A sin (2t) + 2B cos (2t)) = A sin (2t) + B cos (2t). 2 If we plug in x(0) = B = 1 and y(0) = A = 0 we get: x(t) = cos (2t) y(t) = sin (2t). 27

28 More room, if necessary, for Problem Pirec lvi V 4 / 7 o( Ndfe; 5hoI) be CI(cIJ 40 A 1 I bei 19

29 Find the general solution to the system of differential equations below. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the given system. x = 1 2 y, y = 8x. Solution - If we differentiate y = 8x we get y = 8x = 4y. So, our ODE is: y + 4y = 0. The solution to this ODE is: y(t) = A cos (2t) + B sin (2t). The function x(t) is: x(t) = 1 8 y (t) = A 4 sin (2t) + B 4 cos (2t). So, the general solution to this system of ODEs is: x(t) = A 4 sin (2t) + B 4 cos (2t) y(t) = A cos (2t) + B sin (2t). 29

30 Pirecio More room, if necessary, for Problem

31 (a) - Beginning with the general solution of the system from Problem 13, calculate x 2 + y 2 to show that the trajectories are circles. (b) - Show similarly that the trajectories of the system from Problem 15 are ellipses of the form 16x 2 + y 2 = C 2. (a) - The general solution to the system of ODEs from Problem is: From these we get: x(t) = A sin (2t) + B cos (2t) y(t) = A cos (2t) + B sin (2t). x(t) 2 + y(t) 2 = ( A sin (2t) + B cos (2t)) 2 + (A cos (2t) + B sin (2t)) 2 = A 2 sin 2 (2t) 2AB sin (2t) cos (2t) + B 2 cos 2 (2t) + A 2 cos 2 (2t) + 2AB sin (2t) cos (2t) + B 2 sin 2 (2t) So, circles. = A 2 + B 2. (b) - The general solution to the system of ODEs from Problem is: x(t) = A 4 sin (2t) + B 4 cos (2t) y(t) = A cos (2t) + B sin (2t). So, 16x(t) 2 = A 2 sin 2 (2t) 2AB sin (2t) cos (2t) + B 2 cos 2 (2t), y(t) 2 = A 2 cos 2 (2t) + 2AB sin (2t) cos (2t) + B 2 sin 2 (2t). Combining these we get 16x(t) 2 + y(t) 2 = A 2 + B 2 = C 2. So, ellipses. 31

32 Section The Method of Elimination Find a general solution to the linear system below. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the system. x = x + 3y y = 2y Solution - The differential equation y = 2y has the solution y(t) = Ae 2t. So, x = x + 3Ae 2t x + x = 3Ae 2t. This is a first-order linear ODE. Its integrating factor is: ρ(t) = e R 1dt = e t. Multiplying both sides by this integrating factor our linear ODE becomes: d ( e t x ) = 3Ae 3t. dt 32

33 33 The direction field looks kind of like this: (I)4(i)2t+B(i)t We can write this in vector form as: j(t) = Ae 2t. x(t) = Ae 2t + Be_t, So, the general solution to this system is: x Ae 2 + Be. etx = Ae 3t + B Integrating both sides we get:

34 Find a particular solution to the given system of differential equations that satisfies the given initial conditions. x + 2y = 4x + 5y, 2x y = 3x; x(0) = 1, y(0) = 1. Solution - If we add 2 times the second equation to the first we get: 5x = 10x + 5y. If we subtract 2 times the first equation from the second we get: 5y = 5x 10y 5y = 5x + 10y. Differentiating 5x = 10x+5y and plugging in 5y = 5x+10y we get: 5x = 10x + 5y = 10x + (5x + 10y) 5x = 10x + (5x + 10x 20x) 5x = 20x 15x x = 4x 3x. The linear homogeneous differential equation x 4x + 3x = 0 has characteristic equation: r 2 4r + 3 = (r 3)(r 1). 34

35 So, the roots are r = 3, 1, and the general solution to the ODE is: x(t) = c 1 e 3t + c 2 e t. From the equation 5y = 5x + 10y we get y = x + 2y, and therefore: y 2y = c 1 e 3t + c 2 e t. If we multiply both sides by the integrating factor e 2t we get: d ( e 2t y ) = c 1 e t + c 2 e t. dt Integrating both sides we get: e 2t y = c 1 e t c 2 e t + C, and so: y(t) = c 1 e 3t c 2 e t + Ce 2t. Plugging this into any of the equations in our system gives us C = 0. So, y(t) = c 1 e 3t c 2 e t. We can write this solution in matrix form as: x(t) = c 1 ( 1 1 ) e 3t + c 2 ( 1 1 ) e t. 35

36 If we plug in x(0) = ( 1 1 ) ( 1 = c 1 1 ) + c 2 ( 1 1 ) we can see immediately that c 1 = 0 and c 2 = 1. So, the solution to our initial value problem is: x(t) = ( 1 1 ) e t. 36

37 Find a general solution to the given system of differential equations. x = 4x 2y, y = 4x + 4y 2z, z = 4y + 4z. Solution - If we differentiate the first equation we get: x = 4x 2y = 4x 2( 4x + 4y 2z) x = 4x + 8x 8y + 4z. Differentiating again we get: x (3) = 4x + 8x 8y + 4z = 4x + 8x 8y + 4( 4y + 4z) x (3) = 4x + 8x 8y 16y + 16z x (3) = 4x + 8x 8y 16y + 8( y 4x + 4y) x (3) = 4x + 8x 16y + 16y 32x x (3) = 4x + 8x 8(4x x ) + 8(4x x ) 32x x (3) = 12x 32x x (3) 12x + 32x = 0. The characteristic equation for this ODE is r 3 12r r = r(r 8)(r 4). So, 37

38 x(t) = c 1 + c 2 e 8t + c 3 e 4t. From this we get: x (t) = 8c 2 e 8t + 4c 3 e 4t and y(t) = 2x 1 2 x = 2c 1 2c 2 e 8t. Finally, z(t) = 2x (t) + 2y(t) 1 2 y (t) = 2c 1 + 2c 2 e 8t 2c 3 e 4t. So, x(t) = c 1 + c 2 e 8t + c 3 e 4t, y(t) = 2c 1 2c 2 e 8t, z(t) = 2c 1 + 2c 2 e 8t 2c 3 e 4t. 38

39 For the system below first calculate the operational determinant to determine how many arbitrary constants should appear in a general solution. Then attempt to solve the system explicitly so as to find such a general solution. (D 2 + D)x + D 2 y = 2e t (D 2 1)x + (D 2 D)y = 0 Solution - The operational determinant of the system above is: (D 2 +D)(D 2 D) D 2 (D 2 1) = D 4 D 3 +D 3 D 2 D 4 +D 2 = 0. So, there are 0(!) arbitrary constants. How is this possible? Well, if we subtract the second relation from the first we get: (D + 1)x + Dy = 2e t Dy = 2e t (D + 1)x D 2 y = 2e t (D 2 + D)x (D 2 + D)x + D 2 y = 2e t. However, this cannot be, as our first relation above is: (D 2 + D)x + D 2 y = 2e t, and 2e t 2e t. So, there is no solution to the system. 39

Math Assignment 14

Math Assignment 14 Math 2280 - Assignment 14 Dylan Zwick Spring 2014 Section 9.5-1, 3, 5, 7, 9 Section 9.6-1, 3, 5, 7, 14 Section 9.7-1, 2, 3, 4 1 Section 9.5 - Heat Conduction and Separation of Variables 9.5.1 - Solve the

More information

Mixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem.

Mixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem. page 57 1.7 Modeling Problems Using First-Order Linear Differential Equations 57 For Problems 33 38, use a differential equation solver to determine the solution to each of the initial-value problems and

More information

Math Assignment 5

Math Assignment 5 Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

2. Higher-order Linear ODE s

2. Higher-order Linear ODE s 2. Higher-order Linear ODE s 2A. Second-order Linear ODE s: General Properties 2A-1. On the right below is an abbreviated form of the ODE on the left: (*) y + p()y + q()y = r() Ly = r() ; where L is the

More information

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn. 1.0 Introduction Linear differential equations is all about to find the total solution y(t), where : y(t) = homogeneous solution [ y h (t) ] + particular solution y p (t) General form of differential equation

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

1. Solve the boundary-value problems or else show that no solutions exist. y (x) = c 1 e 2x + c 2 e 3x. (3)

1. Solve the boundary-value problems or else show that no solutions exist. y (x) = c 1 e 2x + c 2 e 3x. (3) Diff. Eqns. Problem Set 6 Solutions. Solve the boundary-value problems or else show that no solutions exist. a y + y 6y, y, y 4 b y + 9y x + e x, y, yπ a Assuming y e rx is a solution, we get the characteristic

More information

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie Make sure this exam has 15 pages. Math 310 Introduction to Ordinary Differential Equations inal Examination August 9, 2006 Instructor: John Stockie Name: (Please Print) Student Number: Special Instructions

More information

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0 HOMEWORK 4: MATH 265: SOLUTIONS. Find the solution to the initial value problems y + 9y = cos(ωt) with y(0) = 0, y (0) = 0 (account for all ω > 0). Draw a plot of the solution when ω = and when ω = 3.

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 14 121011 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Steady-State Analysis RC Circuits RL Circuits 3 DC Steady-State

More information

x gm 250 L 25 L min y gm min

x gm 250 L 25 L min y gm min Name NetID MATH 308 Exam 2 Spring 2009 Section 511 Hand Computations P. Yasskin Solutions 1 /10 4 /30 2 /10 5 /30 3 /10 6 /15 Total /105 1. (10 points) Tank X initially contains 250 L of sugar water with

More information

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Shawn D. Ryan Spring 2012 Last Time: We finished Chapter 9: Nonlinear Differential Equations and Stability. Now

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

MA 226 FINAL EXAM. Show Your Work. Problem Possible Actual Score

MA 226 FINAL EXAM. Show Your Work. Problem Possible Actual Score Name: MA 226 FINAL EXAM Show Your Work Problem Possible Actual Score 1 36 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 8 TOTAL 100 1.) 30 points (3 each) Short Answer: The answers to these questions need only consist

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework. Substitution and Nonexact Differential Equation Made Exact) [0] Solve dy dx = ey + 3e x+y, y0) = 0. Let u := e x, v = e y, and hence dy = v + 3uv) dx, du = u)dx, dv = v)dy = u)dv

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

Response of Second-Order Systems

Response of Second-Order Systems Unit 3 Response of SecondOrder Systems In this unit, we consider the natural and step responses of simple series and parallel circuits containing inductors, capacitors and resistors. The equations which

More information

Problem (p.613) Determine all solutions, if any, to the boundary value problem. y + 9y = 0; 0 < x < π, y(0) = 0, y (π) = 6,

Problem (p.613) Determine all solutions, if any, to the boundary value problem. y + 9y = 0; 0 < x < π, y(0) = 0, y (π) = 6, Problem 10.2.4 (p.613) Determine all solutions, if any, to the boundary value problem y + 9y = 0; 0 < x < π, y(0) = 0, y (π) = 6, by first finding a general solution to the differential equation. Solution.

More information

1. (10 points) Find the general solution to the following second-order differential equation:

1. (10 points) Find the general solution to the following second-order differential equation: Math 307A, Winter 014 Midterm Solutions Page 1 of 8 1. (10 points) Find the general solution to the following second-order differential equation: 4y 1y + 9y = 9t. To find the general solution to this nonhomogeneous

More information

Solutions of Math 53 Midterm Exam I

Solutions of Math 53 Midterm Exam I Solutions of Math 53 Midterm Exam I Problem 1: (1) [8 points] Draw a direction field for the given differential equation y 0 = t + y. (2) [8 points] Based on the direction field, determine the behavior

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November 6 2017 Name: Student ID Number: I understand it is against the rules to cheat or engage in other academic misconduct

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

INDUCTANCE Self Inductance

INDUCTANCE Self Inductance NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 20 121101 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapters 1-3 Circuit Analysis Techniques Chapter 10 Diodes Ideal Model

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations for Engineers and Scientists Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International

More information

4.4 Using partial fractions

4.4 Using partial fractions CHAPTER 4. INTEGRATION 43 Eample 4.9. Compute ln d. (Classic A-Level question!) ln d ln d ln d (ln ) + C. Eample 4.0. Find I sin d. I sin d sin p d p sin. 4.4 Using partial fractions Sometimes we want

More information

Ordinary differential equations

Ordinary differential equations Class 7 Today s topics The nonhomogeneous equation Resonance u + pu + qu = g(t). The nonhomogeneous second order linear equation This is the nonhomogeneous second order linear equation u + pu + qu = g(t).

More information

ODE. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAP / 92

ODE. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAP / 92 ODE Philippe Rukimbira Department of Mathematics Florida International University PR (FIU) MAP 2302 1 / 92 4.4 The method of Variation of parameters 1. Second order differential equations (Normalized,

More information

To find the step response of an RC circuit

To find the step response of an RC circuit To find the step response of an RC circuit v( t) v( ) [ v( t) v( )] e tt The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t ) To find the step response of an RL circuit

More information

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01 ENGI 940 Lecture Notes - ODEs Page.0. Ordinary Differential Equations An equation involving a function of one independent variable and the derivative(s) of that function is an ordinary differential equation

More information

MATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam

MATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam MATH 51 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam A collection of previous exams could be found at the coordinator s web: http://www.math.psu.edu/tseng/class/m51samples.html

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Complex numbers Complex numbers are expressions of the form z = a + ib, where both a and b are real numbers, and i

More information

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3 IV ORDINARY DIFFERENTIAL EQUATIONS REFERENCE: CROFT & DAVISON CHAPTER 0 BLOCKS 1-3 INTRODUCTION AND TERMINOLOGY INTRODUCTION A differential equation (d.e.) e) is an equation involving an unknown function

More information

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular

More information

Section 1.4 Circles. Objective #1: Writing the Equation of a Circle in Standard Form.

Section 1.4 Circles. Objective #1: Writing the Equation of a Circle in Standard Form. 1 Section 1. Circles Objective #1: Writing the Equation of a Circle in Standard Form. We begin by giving a definition of a circle: Definition: A Circle is the set of all points that are equidistant from

More information

HOMEWORK 7 SOLUTIONS

HOMEWORK 7 SOLUTIONS HOMEWORK 7 SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Using the method of Lagrange multipliers, find the largest and smallest values of the function f(x, y) xy on the ellipse x + y 1. Solution: The

More information

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline Motivation The Laplace Transform The Laplace Transform

More information

Yell if you have any questions

Yell if you have any questions Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

More information

4.2 Homogeneous Linear Equations

4.2 Homogeneous Linear Equations 4.2 Homogeneous Linear Equations Homogeneous Linear Equations with Constant Coefficients Consider the first-order linear differential equation with constant coefficients a 0 and b. If f(t) = 0 then this

More information

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations June 20 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations The topics covered in this exam can be found in An introduction to differential equations

More information

Homework #5 Solutions

Homework #5 Solutions Homework #5 Solutions Math 123: Mathematical Modeling, Spring 2019 Instructor: Dr. Doreen De Leon 1. Exercise 7.2.5. Stefan-Boltzmann s Law of Radiation states that the temperature change dt/ of a body

More information

Source-Free RC Circuit

Source-Free RC Circuit First Order Circuits Source-Free RC Circuit Initial charge on capacitor q = Cv(0) so that voltage at time 0 is v(0). What is v(t)? Prof Carruthers (ECE @ BU) EK307 Notes Summer 2018 150 / 264 First Order

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

More information

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations ENGI 344 - Second Order Linear ODEs age -01. Second Order Linear Ordinary Differential Equations The general second order linear ordinary differential equation is of the form d y dy x Q x y Rx dx dx Of

More information

AC analysis. EE 201 AC analysis 1

AC analysis. EE 201 AC analysis 1 AC analysis Now we turn to circuits with sinusoidal sources. Earlier, we had a brief look at sinusoids, but now we will add in capacitors and inductors, making the story much more interesting. What are

More information

XXIX Applications of Differential Equations

XXIX Applications of Differential Equations MATHEMATICS 01-BNK-05 Advanced Calculus Martin Huard Winter 015 1. Suppose that the rate at which a population of size yt at time t changes is proportional to the amount present. This gives rise to the

More information

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS)

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS) Name: November 8, 011 Worksheet # : Higher Order Linear ODEs (SOLUTIONS) 1. A set of n-functions f 1, f,..., f n are linearly independent on an interval I if the only way that c 1 f 1 (t) + c f (t) +...

More information

+ i. cos(t) + 2 sin(t) + c 2.

+ i. cos(t) + 2 sin(t) + c 2. MATH HOMEWORK #7 PART A SOLUTIONS Problem 7.6.. Consider the system x = 5 x. a Express the general solution of the given system of equations in terms of realvalued functions. b Draw a direction field,

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 6. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C is the general solution of a differential

More information

Linear Second Order ODEs

Linear Second Order ODEs Chapter 3 Linear Second Order ODEs In this chapter we study ODEs of the form (3.1) y + p(t)y + q(t)y = f(t), where p, q, and f are given functions. Since there are two derivatives, we might expect that

More information

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

More information

PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see

PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see PHYSICS 11A : CLASSICAL MECHANICS HW SOLUTIONS (1) Taylor 5. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see 1.5 1 U(r).5.5 1 4 6 8 1 r Figure 1: Plot for problem

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

a + b Time Domain i(τ)dτ.

a + b Time Domain i(τ)dτ. R, C, and L Elements and their v and i relationships We deal with three essential elements in circuit analysis: Resistance R Capacitance C Inductance L Their v and i relationships are summarized below.

More information

Chapter 26 Direct-Current Circuits

Chapter 26 Direct-Current Circuits Chapter 26 Direct-Current Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing

More information

sections June 11, 2009

sections June 11, 2009 sections 3.2-3.5 June 11, 2009 Population growth/decay When we model population growth, the simplest model is the exponential (or Malthusian) model. Basic ideas: P = P(t) = population size as a function

More information

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,

More information

20D - Homework Assignment 4

20D - Homework Assignment 4 Brian Bowers (TA for Hui Sun) MATH 0D Homework Assignment November, 03 0D - Homework Assignment First, I will give a brief overview of how to use variation of parameters. () Ensure that the differential

More information

Physics 4 Spring 1989 Lab 5 - AC Circuits

Physics 4 Spring 1989 Lab 5 - AC Circuits Physics 4 Spring 1989 Lab 5 - AC Circuits Theory Consider the series inductor-resistor-capacitor circuit shown in figure 1. When an alternating voltage is applied to this circuit, the current and voltage

More information

Plot of temperature u versus x and t for the heat conduction problem of. ln(80/π) = 820 sec. τ = 2500 π 2. + xu t. = 0 3. u xx. + u xt 4.

Plot of temperature u versus x and t for the heat conduction problem of. ln(80/π) = 820 sec. τ = 2500 π 2. + xu t. = 0 3. u xx. + u xt 4. 10.5 Separation of Variables; Heat Conduction in a Rod 579 u 20 15 10 5 10 50 20 100 30 150 40 200 50 300 x t FIGURE 10.5.5 Example 1. Plot of temperature u versus x and t for the heat conduction problem

More information

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown:

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown: ircuits onsider the R and series circuits shown: ++++ ---- R ++++ ---- Suppose that the circuits are formed at t with the capacitor charged to value. There is a qualitative difference in the time development

More information

EE102 Homework 2, 3, and 4 Solutions

EE102 Homework 2, 3, and 4 Solutions EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self-paced Course MODULE 26 APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Complex numbers and alternating currents 2. Complex impedance 3.

More information

Math 54. Selected Solutions for Week 10

Math 54. Selected Solutions for Week 10 Math 54. Selected Solutions for Week 10 Section 4.1 (Page 399) 9. Find a synchronous solution of the form A cos Ωt+B sin Ωt to the given forced oscillator equation using the method of Example 4 to solve

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

PENRITH HIGH SCHOOL MATHEMATICS EXTENSION HSC Trial

PENRITH HIGH SCHOOL MATHEMATICS EXTENSION HSC Trial PENRITH HIGH SCHOOL MATHEMATICS EXTENSION 013 Assessor: Mr Ferguson General Instructions: HSC Trial Total marks 100 Reading time 5 minutes Working time 3 hours Write using black or blue pen. Black pen

More information

Announcements: Today: RL, LC and RLC circuits and some maths

Announcements: Today: RL, LC and RLC circuits and some maths Announcements: Today: RL, LC and RLC circuits and some maths RL circuit (from last lecture) Kirchhoff loop: First order linear differential equation with general solution: i t = A + Be kt ε A + Be kt R

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

MATH 312 Section 3.1: Linear Models

MATH 312 Section 3.1: Linear Models MATH 312 Section 3.1: Linear Models Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Population Growth 2 Newton s Law of Cooling 3 Kepler s Law Second Law of Planetary Motion 4

More information

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C.

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C. Midterm 1 33B-1 015 October 1 Find the exact solution of the initial value problem. Indicate the interval of existence. y = x, y( 1) = 0. 1 + y Solution. We observe that the equation is separable, and

More information

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2 November 3, 203. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to

More information

Chapter 4 Transients. Chapter 4 Transients

Chapter 4 Transients. Chapter 4 Transients Chapter 4 Transients Chapter 4 Transients 1. Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response. 1 3. Relate the transient response of first-order

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 Voltage-Current Measurements... 8 7.6

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

Name:... Section:... Physics 208 Quiz 8. April 11, 2008; due April 18, 2008

Name:... Section:... Physics 208 Quiz 8. April 11, 2008; due April 18, 2008 Name:... Section:... Problem 1 (6 Points) Physics 8 Quiz 8 April 11, 8; due April 18, 8 Consider the AC circuit consisting of an AC voltage in series with a coil of self-inductance,, and a capacitor of

More information

Linear Algebra and ODEs review

Linear Algebra and ODEs review Linear Algebra and ODEs review Ania A Baetica September 9, 015 1 Linear Algebra 11 Eigenvalues and eigenvectors Consider the square matrix A R n n (v, λ are an (eigenvector, eigenvalue pair of matrix A

More information

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

More information

Computer Problems for Methods of Solving Ordinary Differential Equations

Computer Problems for Methods of Solving Ordinary Differential Equations Computer Problems for Methods of Solving Ordinary Differential Equations 1. Have a computer make a phase portrait for the system dx/dt = x + y, dy/dt = 2y. Clearly indicate critical points and separatrices.

More information

MATH 135: COMPLEX NUMBERS

MATH 135: COMPLEX NUMBERS MATH 135: COMPLEX NUMBERS (WINTER, 010) The complex numbers C are important in just about every branch of mathematics. These notes 1 present some basic facts about them. 1. The Complex Plane A complex

More information

Chapter 28 Solutions

Chapter 28 Solutions Chapter 8 Solutions 8.1 (a) P ( V) R becomes 0.0 W (11.6 V) R so R 6.73 Ω (b) V IR so 11.6 V I (6.73 Ω) and I 1.7 A ε IR + Ir so 15.0 V 11.6 V + (1.7 A)r r 1.97 Ω Figure for Goal Solution Goal Solution

More information

MAE 105 Introduction to Mathematical Physics HOMEWORK 1. Due on Thursday October 1st 2015

MAE 105 Introduction to Mathematical Physics HOMEWORK 1. Due on Thursday October 1st 2015 MAE 5 Introduction to Mathematical Physics HOMEWORK Due on Thursday October st 25 PROBEM : Evaluate the following integrals (where n =, 2, 3,... is an integer) and show all your steps: (a) x nπx We use

More information

z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1)

z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1) 11 Complex numbers Read: Boas Ch. Represent an arb. complex number z C in one of two ways: z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1) Here i is 1, engineers call

More information