, (primary somatosensory cortex, S ) (neurobiotin), Acta Physiologica Si nica Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

Size: px
Start display at page:

Download ", (primary somatosensory cortex, S ) (neurobiotin), Acta Physiologica Si nica Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved."

Transcription

1 , , 51 (1), Acta Physiologica Si nica (, ),, ,,, (5117 %) (111 %) (17 %) 85, : ; ; ; ; ; : R818, R8125,,,, [1 ],,,, [2, ] [,4 ],,,,,, (primary somatosensory cortex, S ), (neurobiotin),,, , kg (No ) :,

2 2 51, (40 mg/ kg), (greater splanchnic nerve, GSN ), ( 215 mm),, 11 12,, S GSN (AP, 2 mm ; L R, 4 mm) [5 ], , [6, ] m, mol/ L KCl, (Sigmar ) S GSN, RP 40 mv 5 min, MEZ28201 VC210,, A TAC250, X2Y GSN ms, ma, A C,,,, : 1 na 220 ms 1 Hz, 15 min, ( ), (70 m) 11 HRP Strepavidin, PBS, DAB,,, ( 1 ) 114, t, P < Fig11 Microp hotograp h of t he neu2 ron labelled by neurobiotin in S area lamina ( 85) Scale bar, 10 m (, ), GSN ( visceral nociceptive neurons, VNNs, %), ( non2visceral noci2 ceptive neurons, NVNNs, %) VNNs, VNNs ( specific visceronociceptive neurons, SVNNs), VNNs ( non2

3 1 : specific visceronociceptive neurons, NSVNNs) RP > 70 mv S GSN VNNs GSN VNNs, 6 ( 2) 2 S VNNs Fig12 Modes of biological electric activities of visceral noci2 ceptive neurons in S area A : Non2discharges in resting state1 B : Synaptic noise activites. C : Occasionally discharges. D : Continous tonic discharges. E : Rhythmic high frequence discharges. F : Pair2spikes., VNNs NVNNs,, 1 NVNNs VNNs 100 VNNs NVNNs, VNNs NVNNs,, VNNs NVNNs 1 S VNNs NVNNs Table 1 Comparison of partial characterisitics between VNNs and NVNNs Resting potential / mv Cells having discharge Cells without discharge Frequency of discharges Amplitude of discharges / mv Depth distributed H/ m VNNs ( n ) NVNNs ( n ) Statistic analysis ( n = 100) ( n = 100) P < ( n = 100) 2 ( n = 100) ( n = 45) ( n = 25) P < ( n = 45) ( n = 25) P > ( n = 45) ( n = 25) P < 0101 x s. P < 0101 significantly different from VNNs VNNs (1) : GSN, NSVNNs, 014 ma,, EPSP, 016 ma,, 016 ma, 115 GSN (2) VNNs : (51170 %) (111 %) (1710 %) VNNs,, ( EPSP) ( IPSP),, 5 ms, 70 ms, ms EPSP (018

4 ) ms ( n = 0) IPSP ( ) ms, ( n = 10) S [ EPSP( ) ms, IPSP( ) ms, n = 10 ] ( P : EPSP VNNs Fig1 Excitatory responses in variety of VNNs evoked by stimulating GSN A : Uni2EPSP. B : Poly2EPSPs. C : Spikes on EPSP. D : Uni2spike. E : Spikes on EPSP in spontaneous dis2 charges condition. F : Increased discharges (upper curve as control) 1 < 0101), SVNNs [ EPSP ( ) ms, n = 15 ] [ ( ) ms, n = 10 ] ( P < 0101), VNNs [ ( ) ms n = 50 ] [ ( ) ms n = 20 ] ( P < 0101 ), VNNs IPSP (1812 %) IP2 SP (91 %) : (1),,, 21 ( ) (2) : ( IPSP) ( 4) () : EPSP2IPSP 4, VNNs Fig14 Inhibitory responses of VNNs in S evoked by stimulating GSN A : Uni2IPSP. B : Double IPSPs. C : IP2 SP (in discharges). D : Poly IPSPs(in dis2 charges). E : Discharges vanished gradual2 ly. 212 GSN S VNNs, 1 mg/ kg, 1 min, min, 20 min VNNs, 10, 21 S 26 GSN, 2 [1 85 ( 2 %) ( 5), ], 7215 %,, 2, 20 ms,,

5 1 : 5, 5 Fig15 Convergence of splanchnic and in2 tercostal nerve upon t he same neuron The responses induced by stimulating GSN (latency 70 ms) ( A ) and intercostal nerve (latency 56 ms) ( B ) 11 GSN VNNs 1111 [,4, Follett ] GSN, S GSN, ms [8 A ], GNS S C2CEP, ( ) ms, C, [2, A ] VNNs 0 ms, 70 ms A, 140 ms C,, VNNs GSN, 1112 S ( P < 0101), C, C (21 ) EP2 SP2IPSP (4 ) 2 (29 ), [7, ], VNNs,,,, VNNs,, EPSP IPSP,,,,,,,

6 6 51, : [9 ] [10 ], 1212 VNNs NVNNs, NVNNs VNNs RP, VNNs, [14 ] 1, S : VNNs S,,, Neuroitin, VNNs, NVNNs [11 1 ( P < 0101), ] S GSN VNNs %, (2168 %), VNNs IPSP, VNNs,, VNNs,,,,,, VNNs, [1 ] Gebhart GF, Ness TJ. Mechanisms of visceral pain. In : Bond M, Charton J E, Wolf CJ Eds. Proceedings of the th World Congress on Pain. Amsterdam : Elsevier Science Publishers BV, 1991, [2 ] Chen PX ( ), Chen ZH ( ). Average evoked potential in the somatosensory cortex elicited by SPL A and C fiber imput. Acupunct Res ( ), 1987, 12 (2) : (in Chinese with English abstract). [ ] Follett KA, Dirks B. Characterization of responses of primary somatosensory cerebral cortex neurons to nox2 ious visceral stimulation in the rats. B rain Res, 1994, 656 (1) : [4 ] Follett KA, dirks B. Responses of neurons in ventrolateral orbital cortex to noxious visceral stimulation in the rat. B rain Res, 1995, 669 (2) : [5 ] Tyner CF. Splanchnic nerve activation of single cells in the cat s post2crucriate motosensory cortex. Ex p Neurol, 1979, 6 (1) : [6 ] Kang R. Convergence of sensory inputs in somatosensory cortex : Interactions from separate afferent. Ex p B rain Res, 1985, 57 : [7 ] Teng GX ( ), Gong YS ( ), Liu SJ ( ), et al. Influence of stimulation of nerve of hind limb on intracellular potentials of the neurons in primary sensory cortex of cat. J Chin Med U niv ( ), 1996, 25 (6) : (in Chinese with English abstract). [8 ] Sha L ( ), Ding W ( ), Teng GX ( ). Responses of neurons in the somatosensory area to electric stimulation of nerve peroneus communis. Acupunct Res ( ), 1992, 17 () : (in Chinese with English abstract).

7 1 : 7 [ 9 ] Linas RR. The intrinsic electrophysiological properties of mammalian neurons : Insights into central neu2 rons system function. Science, 1988, 242 : [10 ] Shepherd GM, Koch C. Introduction to synaptic circuits. In : Shepherd GM, ed. The S ynaptic Organiz a2 tion of the B rain. rd, ed. London : Oxford University Press, 1990, 1 1. [11 ] Lamour Y, Willer J C, Guilboud G. Rat somatosensory cortex : I. Characteristics of neuronal responses to noxious stimulation and comparison with responses to non2noxious stimulation. Ex p B rain Res, 198, 49 : [12 ] Yamamura H, Iwata K, Truboi Y, et al. Morphological electrophysiological properties of ACCx nociceptive neurons in rats. B rain Res, 1996, 75 : [ 1 ] Yamamoto T, Samejima A, Oka H. The mode of synaptic activation of pyramidal neuron in cat primary so2 matosensory cortex : an intracellullar HRP study. Ex p B rain Res, 1990, 80 : [ 14 ] Chen J H ( ), Teng GX ( ). Comparsion of membrane electrophysiological characteristics of vis2 ceral and non2visceronociceptive neurons in cortex S area. Chin Sci B ull ( ), 1998, 4 (14) : (in Chinese). Acta Physiologica Si nica Feb. 1999, 51 (1), 1 7 INTRACELL ULAR EL ECTROP HYSIOLOGICAL CHARACTERISTICS OF VISCERAL NOCICEPTIVE NEURONS IN CORTEX S AREA OF CATS CHEN J IN G2HON G, TEN G GUO2XI ( L aboratory of Neurophysiology, B rain Research Institute, China Medical U niversity, S henyang ) ABSTRACT In t he present work we investigated electrop hysiological properties of visceral nociceptive neurons in the primary somatosensory cortex (S ). Intracellular record2 ings of 851 neurons in the representing area of greater splanchnic nerve ( GSN) in S area were made in 22 cats. The neurons showed a variaty of modes in sponteneous discharges, which could be classified into visceral nociceptive neurons ( VNNs) and non2visceral nociceptive neurons ( NVNNs). VNNs (412) could be f urt her divided into specific and non2specific subtypes, wit h t hree distinct response modes : excitato2 ry, inhibitory, and mixed response. These responses were characterized by longer la2 tency and complex responsive fashion. In addition, 85 single convergence neurons in2 duced by input f rom GSN and intercostal nerve were observed. Neurobiotin was in2 jected into some of the cells by electrophoresis to identify the depth and morphology following recordings. The results indicated that VNNs were located in the S area. Key words : somatosensory cortex ; visceral ; nociceptive ; int racellular recording ; labeling ; pain Supported by the National Natural Science Foundation of China (No )

Effect of acetylcholine on the discharge of presympathetic neurons of the rostral ventrolateral medulla of rats 3

Effect of acetylcholine on the discharge of presympathetic neurons of the rostral ventrolateral medulla of rats 3 468, Dec. 2000, 52 (6) : 468 472 Acta Physiologica Sinica 3, 1 3 3,,, (, 200433 ; 1, 230000) :, (ACh) (RVLM) RVLM 35, ACh ( P < 0105), 22 M (ATR) ( P < 0105) ACh ; 7 6 (ACh N 1 N 2 ) (ACh N 1 ) ACh, RVLM

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

The Role of Corticothalamic Feedback in the Response Mode Transition of Thalamus

The Role of Corticothalamic Feedback in the Response Mode Transition of Thalamus ADAPTIVE 0 : The Third International Conference on Adaptive and Self-Adaptive Systems and Applications The Role of Corothalamic Feedback in the Response Mode Transition of Thalamus Jia-xin Cui Institute

More information

Compartmental Modelling

Compartmental Modelling Modelling Neurons Computing and the Brain Compartmental Modelling Spring 2010 2 1 Equivalent Electrical Circuit A patch of membrane is equivalent to an electrical circuit This circuit can be described

More information

لجنة الطب البشري رؤية تنير دروب تميزكم

لجنة الطب البشري رؤية تنير دروب تميزكم 1) Hyperpolarization phase of the action potential: a. is due to the opening of voltage-gated Cl channels. b. is due to prolonged opening of voltage-gated K + channels. c. is due to closure of the Na +

More information

Decision-making and Weber s law: a neurophysiological model

Decision-making and Weber s law: a neurophysiological model European Journal of Neuroscience, Vol. 24, pp. 901 916, 2006 doi:10.1111/j.14-9568.2006.04940.x Decision-making and Weber s law: a neurophysiological model Gustavo Deco 1 and Edmund T. Rolls 2 1 Institucio

More information

A MODEL OF A NEURONAL STRUCTURE ABLE TO GENERATE COLLECTIVE OSCILLATIONS SIMILAR TO HUMAN PARIETAL ALPHA RHYTHM

A MODEL OF A NEURONAL STRUCTURE ABLE TO GENERATE COLLECTIVE OSCILLATIONS SIMILAR TO HUMAN PARIETAL ALPHA RHYTHM MODEL OF NEURONL STRUCTURE LE TO GENERTE COLLECTIVE OSCILLTIONS SIMILR TO HUMN PRIETL LPH RHYTHM Otilia Păduraru *, Hariton Costin *+ * Institute for Theoretical Computer Science, Romanian cademy, Iaşi

More information

Modeling of Retinal Ganglion Cell Responses to Electrical Stimulation with Multiple Electrodes L.A. Hruby Salk Institute for Biological Studies

Modeling of Retinal Ganglion Cell Responses to Electrical Stimulation with Multiple Electrodes L.A. Hruby Salk Institute for Biological Studies Modeling of Retinal Ganglion Cell Responses to Electrical Stimulation with Multiple Electrodes L.A. Hruby Salk Institute for Biological Studies Introduction Since work on epiretinal electrical stimulation

More information

Math in systems neuroscience. Quan Wen

Math in systems neuroscience. Quan Wen Math in systems neuroscience Quan Wen Human brain is perhaps the most complex subject in the universe 1 kg brain 10 11 neurons 180,000 km nerve fiber 10 15 synapses 10 18 synaptic proteins Multiscale

More information

Housekeeping, 26 January 2009

Housekeeping, 26 January 2009 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Neurons and conductance-based models

Neurons and conductance-based models Neurons and conductance-based models Jaeseung Jeong, Ph.D Department of Bio and Brain Engineering, KAIST Bilateralization ( 양측편재화 ): HAROLD:Hemispheric Asymmetry Reduction in Older Adults Prototypical

More information

arxiv:physics/ v1 [physics.bio-ph] 19 Feb 1999

arxiv:physics/ v1 [physics.bio-ph] 19 Feb 1999 Odor recognition and segmentation by coupled olfactory bulb and cortical networks arxiv:physics/9902052v1 [physics.bioph] 19 Feb 1999 Abstract Zhaoping Li a,1 John Hertz b a CBCL, MIT, Cambridge MA 02139

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #4 Wednesday, October 4, 2006 7. CHEMICAL SYNAPSES AND GAP JUNCTIONS We will look at: Chemical synapses in the nervous system Gap junctions in

More information

How do biological neurons learn? Insights from computational modelling of

How do biological neurons learn? Insights from computational modelling of How do biological neurons learn? Insights from computational modelling of neurobiological experiments Lubica Benuskova Department of Computer Science University of Otago, New Zealand Brain is comprised

More information

How to read a burst duration code

How to read a burst duration code Neurocomputing 58 60 (2004) 1 6 www.elsevier.com/locate/neucom How to read a burst duration code Adam Kepecs a;, John Lisman b a Cold Spring Harbor Laboratory, Marks Building, 1 Bungtown Road, Cold Spring

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

Modulation of central pattern generator output by peripheral sensory cells in Drosophila larvae. BioNB4910 Cornell University.

Modulation of central pattern generator output by peripheral sensory cells in Drosophila larvae. BioNB4910 Cornell University. Modulation of central pattern generator output by peripheral sensory cells in Drosophila larvae BioNB4910 Cornell University Goals 1) Observe the behavioral effects of remotely activating different populations

More information

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor

Nervous system. 3 Basic functions of the nervous system !!!! !!! 1-Sensory. 2-Integration. 3-Motor Nervous system 3 Basic functions of the nervous system 1-Sensory 2-Integration 3-Motor I. Central Nervous System (CNS) Brain Spinal Cord I. Peripheral Nervous System (PNS) 2) Afferent towards afferent

More information

A Model for Real-Time Computation in Generic Neural Microcircuits

A Model for Real-Time Computation in Generic Neural Microcircuits A Model for Real-Time Computation in Generic Neural Microcircuits Wolfgang Maass, Thomas Natschläger Institute for Theoretical Computer Science Technische Universitaet Graz A-81 Graz, Austria maass, tnatschl

More information

Action Potential Initiation in the Hodgkin-Huxley Model

Action Potential Initiation in the Hodgkin-Huxley Model Action Potential Initiation in the Hodgkin-Huxley Model The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Published Version

More information

(agmatine, AGM) 1994 Li. (alpha 22adrenergic re2 ceptor, 2 2AR) (imidazoline receptor, IR) (0 4 ) Krebs2Henseleit ( K2H)

(agmatine, AGM) 1994 Li. (alpha 22adrenergic re2 ceptor, 2 2AR) (imidazoline receptor, IR) (0 4 ) Krebs2Henseleit ( K2H) , 1999 6, 51 (3), 321 326 321 Acta Physiologica Sinica 3 (, 050017), (agmatine, AGM) : (1) AGM ; (2), AGM (1 mmol/ L),, ; (3) L2NAME (015 mmol/ L), AGM (1 mmol/ L) ; (4) (imidazoline receptor, IR) 2 2

More information

What are neurons for?

What are neurons for? 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh 1. Finish Solutes Water 2. Neurons Neurons Chapter 11

More information

Ch. 5. Membrane Potentials and Action Potentials

Ch. 5. Membrane Potentials and Action Potentials Ch. 5. Membrane Potentials and Action Potentials Basic Physics of Membrane Potentials Nerve and muscle cells: Excitable Capable of generating rapidly changing electrochemical impulses at their membranes

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Dynamic Causal Modelling for evoked responses J. Daunizeau

Dynamic Causal Modelling for evoked responses J. Daunizeau Dynamic Causal Modelling for evoked responses J. Daunizeau Institute for Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Overview 1 DCM: introduction 2 Neural

More information

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing Tuning tuning curves So far: Receptive fields Representation of stimuli Population vectors Today: Contrast enhancment, cortical processing Firing frequency N 3 s max (N 1 ) = 40 o N4 N 1 N N 5 2 s max

More information

Structure and Measurement of the brain lecture notes

Structure and Measurement of the brain lecture notes Structure and Measurement of the brain lecture notes Marty Sereno 2009/2010!"#$%&'(&#)*%$#&+,'-&.)"/*"&.*)*-'(0&1223 Neurons and Models Lecture 1 Topics Membrane (Nernst) Potential Action potential/voltage-gated

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

Dendritic computation

Dendritic computation Dendritic computation Dendrites as computational elements: Passive contributions to computation Active contributions to computation Examples Geometry matters: the isopotential cell Injecting current I

More information

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell

Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell Effects of Betaxolol on Hodgkin-Huxley Model of Tiger Salamander Retinal Ganglion Cell 1. Abstract Matthew Dunlevie Clement Lee Indrani Mikkilineni mdunlevi@ucsd.edu cll008@ucsd.edu imikkili@ucsd.edu Isolated

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1 Multiplicative scaling of the granule cell input-output relation is not dependent on input rate. Input-output relations with short-term depression (STD) from Fig. 1d after normalizing by the

More information

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations Peripheral Nerve II Amelyn Ramos Rafael, MD Anatomical considerations 1 Physiologic properties of the nerve Irritability of the nerve A stimulus applied on the nerve causes the production of a nerve impulse,

More information

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995)

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995) Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten Lecture 2a The Neuron - overview of structure From Anderson (1995) 2 Lect_2a_Mathematica.nb Basic Structure Information flow:

More information

INVERSE PROBLEMS FOR THE HODGKIN-HUXLEY MODEL

INVERSE PROBLEMS FOR THE HODGKIN-HUXLEY MODEL Proceedings of the Czech Japanese Seminar in Applied Mathematics 2005 Kuju Training Center, Oita, Japan, September 15-18, 2005 pp. 88 94 INVERSE PROBLEMS FOR THE HODGKIN-HUXLEY MODEL MASAYOSHI KUBO 1 Abstract.

More information

Neocortical Pyramidal Cells Can Control Signals to Post-Synaptic Cells Without Firing:

Neocortical Pyramidal Cells Can Control Signals to Post-Synaptic Cells Without Firing: Neocortical Pyramidal Cells Can Control Signals to Post-Synaptic Cells Without Firing: a model of the axonal plexus Erin Munro Department of Mathematics Boston University 4/14/2011 Gap junctions on pyramidal

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

Will Penny. 21st April The Macroscopic Brain. Will Penny. Cortical Unit. Spectral Responses. Macroscopic Models. Steady-State Responses

Will Penny. 21st April The Macroscopic Brain. Will Penny. Cortical Unit. Spectral Responses. Macroscopic Models. Steady-State Responses The The 21st April 2011 Jansen and Rit (1995), building on the work of Lopes Da Sliva and others, developed a biologically inspired model of EEG activity. It was originally developed to explain alpha activity

More information

Characterizing the firing properties of an adaptive

Characterizing the firing properties of an adaptive Characterizing the firing properties of an adaptive analog VLSI neuron Daniel Ben Dayan Rubin 1,2, Elisabetta Chicca 2, and Giacomo Indiveri 2 1 Department of Bioengineering, Politecnico di Milano, P.zza

More information

Introduction to Neural Networks. Daniel Kersten. Lecture 2. Getting started with Mathematica. Review this section in Lecture 1

Introduction to Neural Networks. Daniel Kersten. Lecture 2. Getting started with Mathematica. Review this section in Lecture 1 Introduction to Neural Networks Daniel Kersten Lecture 2 Getting started with Mathematica Review this section in Lecture 1 2 Lect_2_TheNeuron.nb The Neuron - overview of structure From Anderson (1995)

More information

Introduction and summary of the chapters

Introduction and summary of the chapters Introduction and summary of the chapters 1. Electroreception Electroreception is the ability of animal species to detect weak electric fields. It is mediated by a sensory system that occurs in some aquatic

More information

Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Neural Modeling and Computational Neuroscience. Claudio Gallicchio Neural Modeling and Computational Neuroscience Claudio Gallicchio 1 Neuroscience modeling 2 Introduction to basic aspects of brain computation Introduction to neurophysiology Neural modeling: Elements

More information

A realistic neocortical axonal plexus model has implications for neocortical processing and temporal lobe epilepsy

A realistic neocortical axonal plexus model has implications for neocortical processing and temporal lobe epilepsy A realistic neocortical axonal plexus model has implications for neocortical processing and temporal lobe epilepsy Neocortical Pyramidal Cells Can Send Signals to Post-Synaptic Cells Without Firing Erin

More information

Linearization of F-I Curves by Adaptation

Linearization of F-I Curves by Adaptation LETTER Communicated by Laurence Abbott Linearization of F-I Curves by Adaptation Bard Ermentrout Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. We show that negative

More information

Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity

Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity Jorge F. Mejias 1,2 and Joaquín J. Torres 2 1 Department of Physics and Center for

More information

Neurophysiology. Membrane Potential. body is electrically neutral. = resting membrane potential

Neurophysiology. Membrane Potential. body is electrically neutral. = resting membrane potential Membrane Potential body is electrically neutral Neurophysiology there are small differences in electrical charge between inside and outside of cell membranes à due to differences in + and ions on inside

More information

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS Elementary Neuro Physiology Neuron: A neuron nerve cell is an electricallyexcitable cell that processes and transmits information

More information

Dynamic Modeling of Brain Activity

Dynamic Modeling of Brain Activity 0a Dynamic Modeling of Brain Activity EIN IIN PC Thomas R. Knösche, Leipzig Generative Models for M/EEG 4a Generative Models for M/EEG states x (e.g. dipole strengths) parameters parameters (source positions,

More information

1. Neurons & Action Potentials

1. Neurons & Action Potentials Lecture 6, 30 Jan 2008 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2008 Kevin Bonine & Kevin Oh 1. Intro Nervous System Fxn (slides 32-60 from Mon 28 Jan; Ch10) 2. Neurons

More information

Morphology of physiologically identified neurons in the visual cortex of the cat

Morphology of physiologically identified neurons in the visual cortex of the cat 344 Brain Research, 172 (1979) ~44-348 O Elsevier/North-Holland Biomedical Presg Morphology of physiologically identified neurons in the visual cortex of the cat C.-S. LIN*, MICHAEL J. FRIEDLANDER** and

More information

Single-Trial Evoked Potentials Extraction Based on Sparsifying Transforms

Single-Trial Evoked Potentials Extraction Based on Sparsifying Transforms Journal of Pharmacy and Pharmacology 3 (5) 556-56 doi:.765/38-5/5..3 D DAVID PUBLISHING Single-Trial Evoked Potentials Extraction Based on Sparsifying Transforms Nannan Yu, Qisheng Ding and Hanbing Lu.

More information

Neurophysiology. + = Na + - = Cl - Proteins HOW? HOW?

Neurophysiology. + = Na + - = Cl - Proteins HOW? HOW? All animal cells have electric potential differences (voltages) across plasma s only electrically excitable cells can respond with APs Luigi Galvani (1791) Animal electricity Electrical fluid passed through

More information

ANALYSIS OF INTERVAL FLUCTUATION OF THE SENSORY NERVE IMPULSE

ANALYSIS OF INTERVAL FLUCTUATION OF THE SENSORY NERVE IMPULSE ANALYSIS OF INTERVAL FLUCTUATION OF THE SENSORY NERVE IMPULSE Department SUSUMU HAGIWARA* of Physiology, Tokyo Medical and Dental University, Tokyo A considerable amount of work has been done on the rhythmic

More information

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

MEMBRANE POTENTIALS AND ACTION POTENTIALS: University of Jordan Faculty of Medicine Department of Physiology & Biochemistry Medical students, 2017/2018 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Review: Membrane physiology

More information

Activity types in a neural mass model

Activity types in a neural mass model Master thesis Activity types in a neural mass model Jurgen Hebbink September 19, 214 Exam committee: Prof. Dr. S.A. van Gils (UT) Dr. H.G.E. Meijer (UT) Dr. G.J.M. Huiskamp (UMC Utrecht) Contents 1 Introduction

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico BIOLOGICALLY INSPIRED COMPUTER MODELS FOR VISUAL RECOGNITION Ângelo Cardoso 27 May, 2010 Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico Index Human Vision Retinal Ganglion Cells Simple

More information

Exercise 15 : Cable Equation

Exercise 15 : Cable Equation Biophysics of Neural Computation : Introduction to Neuroinformatics WS 2008-2009 Prof. Rodney Douglas, Kevan Martin, Hans Scherberger, Matthew Cook Ass. Frederic Zubler fred@ini.phys.ethz.ch http://www.ini.uzh.ch/

More information

All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model

All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model S. A. Sadegh Zadeh, C. Kambhampati International Science Index, Mathematical and Computational Sciences waset.org/publication/10008281

More information

Roles of Fluctuations. in Pulsed Neural Networks

Roles of Fluctuations. in Pulsed Neural Networks Ph.D. Thesis Roles of Fluctuations in Pulsed Neural Networks Supervisor Professor Yoichi Okabe Takashi Kanamaru Department of Advanced Interdisciplinary Studies, Faculty of Engineering, The University

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 6 2401 : Anatomy/Physiology Action Potentials NeuroPhysiology TextBook Readings Pages 400 through 408 Make use of the figures in your textbook ; a picture is worth a thousand words!

More information

Biological Modeling of Neural Networks

Biological Modeling of Neural Networks Week 4 part 2: More Detail compartmental models Biological Modeling of Neural Networks Week 4 Reducing detail - Adding detail 4.2. Adding detail - apse -cable equat Wulfram Gerstner EPFL, Lausanne, Switzerland

More information

4 min, (20 mg/ kg, im),

4 min, (20 mg/ kg, im), 56, 1999 6, 51 (), 56 60 Acta Physiologica Sinica NA (,, 210009) 62 (62hydroxydopamine,62OHDA), 1014 % O 2 0 min, 62OHDA (NA) ( - 815 %) ; ( - 12 %) 1014 % O 2, : NA : ; ; ; 62 : Q426 2 2 (HPA) [1 CRH(

More information

Computational Neuroscience. Lubica Benuskova Lecture 1

Computational Neuroscience. Lubica Benuskova Lecture 1 Computational Neuroscience Lubica Benuskova Lecture 1 1 Outline Brief history of Computational Neuroscience, i.e. computational modelling of biological neurons Blue Brain project Basic concepts of computational

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

Cortical neural networks: light-microscopy-based anatomical reconstruction, numerical simulation and analysis

Cortical neural networks: light-microscopy-based anatomical reconstruction, numerical simulation and analysis Cortical neural networks: light-microscopy-based anatomical reconstruction, numerical simulation and analysis Hans-Christian Hege Berlin Workshop on Statistics and Neuroimaging 2011, Weierstrass Institute,

More information

Passive Membrane Properties

Passive Membrane Properties Passive Membrane Properties Communicating through a leaky garden hose... Topics I Introduction & Electrochemical Gradients Passive Membrane Properties Action Potentials Voltage-Gated Ion Channels Topics

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

Chapter 48 Neurons, Synapses, and Signaling

Chapter 48 Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer Neurons are nerve cells that transfer information within the body Neurons

More information

NOTES: CH 48 Neurons, Synapses, and Signaling

NOTES: CH 48 Neurons, Synapses, and Signaling NOTES: CH 48 Neurons, Synapses, and Signaling A nervous system has three overlapping functions: 1) SENSORY INPUT: signals from sensory receptors to integration centers 2) INTEGRATION: information from

More information

Sparse Coding as a Generative Model

Sparse Coding as a Generative Model Sparse Coding as a Generative Model image vector neural activity (sparse) feature vector other stuff Find activations by descending E Coefficients via gradient descent Driving input (excitation) Lateral

More information

Neurophysiology of a VLSI spiking neural network: LANN21

Neurophysiology of a VLSI spiking neural network: LANN21 Neurophysiology of a VLSI spiking neural network: LANN21 Stefano Fusi INFN, Sezione Roma I Università di Roma La Sapienza Pza Aldo Moro 2, I-185, Roma fusi@jupiter.roma1.infn.it Paolo Del Giudice Physics

More information

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms.

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms. 9.16 Problem Set #4 In the final problem set you will combine the pieces of knowledge gained in the previous assignments to build a full-blown model of a plastic synapse. You will investigate the effects

More information

Chapter 9. Nerve Signals and Homeostasis

Chapter 9. Nerve Signals and Homeostasis Chapter 9 Nerve Signals and Homeostasis A neuron is a specialized nerve cell that is the functional unit of the nervous system. Neural signaling communication by neurons is the process by which an animal

More information

Neurophysiology. Review from 12b. Topics in neurophysiology 7/08/12. Lecture 11b BIOL241

Neurophysiology. Review from 12b. Topics in neurophysiology 7/08/12. Lecture 11b BIOL241 Neurophysiology Lecture 11b BIOL241 Review from 12b. CNS brain and spinal cord PNS nerves SNS (somatic) ANS (autonomic) Sympathetic NS Parasympathetic NS Afferent vs efferent (SAME) Cells of the nervous

More information

Layer 3 patchy recurrent excitatory connections may determine the spatial organization of sustained activity in the primate prefrontal cortex

Layer 3 patchy recurrent excitatory connections may determine the spatial organization of sustained activity in the primate prefrontal cortex Neurocomputing 32}33 (2000) 391}400 Layer 3 patchy recurrent excitatory connections may determine the spatial organization of sustained activity in the primate prefrontal cortex Boris S. Gutkin *, G. Bard

More information

37 Neurons, Synapses, and Signaling

37 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Lines of Communication

More information

Topological target patterns and population oscillations in a network with random gap junctional coupling

Topological target patterns and population oscillations in a network with random gap junctional coupling 0 0 0 0 Neurocomputing }0 (00) } Topological target patterns and population oscillations in a network with random gap junctional coupling Timothy J. Lewis*, John Rinzel Center for Neural Science and Courant

More information

High-conductance states in a mean-eld cortical network model

High-conductance states in a mean-eld cortical network model Neurocomputing 58 60 (2004) 935 940 www.elsevier.com/locate/neucom High-conductance states in a mean-eld cortical network model Alexander Lerchner a;, Mandana Ahmadi b, John Hertz b a Oersted-DTU, Technical

More information

Physiology 2 nd year. Neuroscience Optional Lecture

Physiology 2 nd year. Neuroscience Optional Lecture Academic year 2018/2019 Physiology 2 nd year Semester 1 Curricula Nervous system physiology Blood physiology Acid-base equilibrium Bibliography: Boron & Boulpaep Medical Physiology, 3 rd edition Physiology

More information

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau Motivation, Brain and Behaviour group, ICM, Paris, France Overview 1 DCM: introduction 2 Dynamical systems theory 3 Neural states dynamics

More information

Synchronized Oscillatory Discharges of Mitral/Tufted Cells With Different Molecular Receptive Ranges in the Rabbit Olfactory Bulb

Synchronized Oscillatory Discharges of Mitral/Tufted Cells With Different Molecular Receptive Ranges in the Rabbit Olfactory Bulb Synchronized Oscillatory Discharges of Mitral/Tufted Cells With Different Molecular Receptive Ranges in the Rabbit Olfactory Bulb HIDEKI KASHIWADANI, 1,2 YASNORY F. SASAKI, 1 NAOSHIGE UCHIDA, 1 AND KENSAKU

More information

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons CAMPBELL BIOLOGY TENTH EDITION 48 Reece Urry Cain Wasserman Minorsky Jackson Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 1. Overview of Neurons Communication

More information

A. Visceral and somatic divisions. B. Sympathetic and parasympathetic divisions. C. Central and peripheral divisions

A. Visceral and somatic divisions. B. Sympathetic and parasympathetic divisions. C. Central and peripheral divisions Ch 8: Neurons: Cellular and Network Properties, Part 1 Review of the Nervous System Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve cell

More information

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 425 430 c International Academic Publishers Vol. 42, No. 3, September 15, 2004 Absorption-Amplification Response with or Without Spontaneously Generated

More information

What is it? Where is it? How strong is it? Perceived quantity. Intensity Coding in Sensory Systems. What must sensory systems encode?

What is it? Where is it? How strong is it? Perceived quantity. Intensity Coding in Sensory Systems. What must sensory systems encode? Sensory Neurophysiology Neural response Intensity Coding in Sensory Systems Behavioral Neuroscience Psychophysics Percept What must sensory systems encode? What is it? Where is it? How strong is it? Perceived

More information

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 466 470 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire

More information

Molecular biology of neural communication

Molecular biology of neural communication Molecular biology of neural communication One picture - two information Where do I feel the pain? Real and Virtual Consciousness Almost all neural process is pervaded by the consciousness We not only perceive

More information

Single Neuron Dynamics for Retaining and Destroying Network Information?

Single Neuron Dynamics for Retaining and Destroying Network Information? Single Neuron Dynamics for Retaining and Destroying Network Information? Michael Monteforte, Tatjana Tchumatchenko, Wei Wei & F. Wolf Bernstein Center for Computational Neuroscience and Faculty of Physics

More information

Modeling retinal high and low contrast sensitivity lters. T. Lourens. Abstract

Modeling retinal high and low contrast sensitivity lters. T. Lourens. Abstract Modeling retinal high and low contrast sensitivity lters T. Lourens Department of Computer Science University of Groningen P.O. Box 800, 9700 AV Groningen, The Netherlands E-mail: tino@cs.rug.nl Abstract

More information

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation.

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation. 26th May 2011 Dynamic Causal Modelling Dynamic Causal Modelling is a framework studying large scale brain connectivity by fitting differential equation models to brain imaging data. DCMs differ in their

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. In vitro screening of recombinant R-CaMP2 variants.

Nature Methods: doi: /nmeth Supplementary Figure 1. In vitro screening of recombinant R-CaMP2 variants. Supplementary Figure 1 In vitro screening of recombinant R-CaMP2 variants. Baseline fluorescence compared to R-CaMP1.07 at nominally zero calcium plotted versus dynamic range ( F/F) for 150 recombinant

More information

Temporal whitening by power-law adaptation in neocortical neurons

Temporal whitening by power-law adaptation in neocortical neurons Temporal whitening by power-law adaptation in neocortical neurons Christian Pozzorini, Richard Naud, Skander Mensi and Wulfram Gerstner School of Computer and Communication Sciences and School of Life

More information

Biological membranes and bioelectric phenomena

Biological membranes and bioelectric phenomena Lectures on Medical Biophysics Dept. Biophysics, Medical faculty, Masaryk University in Brno Biological membranes and bioelectric phenomena A part of this lecture was prepared on the basis of a presentation

More information

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer 48 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 48.1: Neuron organization

More information

11/19/14. Dendri,c processing in real neurons

11/19/14. Dendri,c processing in real neurons Dendri,c processing in real neurons N Spruston (2008) Pyramidal neurons: dendri,c structure and synap,c integra,on. Nature Rev. Neurosci. 9:206-221. Dendri,c tree representa,on for a spinal cord alpha

More information

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Nervous system Organization of the nervous system Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Autonomic and somatic efferent pathways Reflex arc - a neural pathway that

More information

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests J. Benda, M. Bethge, M. Hennig, K. Pawelzik & A.V.M. Herz February, 7 Abstract Spike-frequency adaptation is a common feature of

More information

The ionic mechanism of postsynaptic inhibition

The ionic mechanism of postsynaptic inhibition J O H N C A R E W E C C L E S The ionic mechanism of postsynaptic inhibition Nobel Lecture, December 11, 1943 The body and dendrites of a nerve cell are specialized for the reception and integration of

More information