ELECTRONIC TRANSPORT IN GRAPHENE

Size: px
Start display at page:

Download "ELECTRONIC TRANSPORT IN GRAPHENE"

Transcription

1 ELECTRONIC TRANSPORT IN GRAPHENE J. González Instituto de Estructura de la Materia, CSIC, Spain

2

3 ELECTRONIC TRANSPORT IN GRAPHENE Graphene has opened the way to understand the behaior of an electron system in D = z remarable properties are obsered from the theoretical point of iew z it has spared great expectations of reaching ery large mobilities rom E. Stolyaroa et al., Proc. Natl. Acad. Sci. 14, 99 (7) But some challenges hae to be faced: z samples hae significant corrugation z the interaction with the substrate and boundary conditions modify significantly the transport properties rom E. Stolyaroa et al., Proc. Natl. Acad. Sci. 14, 99 (7)

4 ELECTRONIC TRANSPORT IN GRAPHENE The first experimental obserations and measurement of unusual transport properties pointed at the existence of a conical dispersion of uasiparticles in graphene the electric field effect shows that a substantial concentration of electrons (holes) can be induced by changes in the gate oltage n V g rom K. S. Nooselo et al., Nature 438, 197 (5) the response to a magnetic field is also unusual, as obsered in particular in the uantum Hall effect σ xy 4e = ( N + 1/ ) h rom K. S. Nooselo et al., Nature 438, 197 (5)

5 ELECTRONIC TRANSPORT IN GRAPHENE The obsered properties were actually consistent with the dispersion expected for electrons in a honeycomb lattice The undoped electron system has isolated ermi points at the corners of an hexagonal Brillouin zone The conical dispersion is a genuine property of two component fermions (Dirac fermions) with hamiltonian H = x + i y x i y We hae to introduce a Dirac fermion for each independent ermi point, at which ε ( ) = ±, n( ε ) ε

6 ELECTRONIC TRANSPORT IN GRAPHENE A direct eidence of the conical dispersion has been obtained with angle resoled photoemission spectroscopy A. Bostwic et al.,, Nature Phys. 3, 36 (7) These experiments are also useful to proide a measure of the interaction effects in graphene A. Bostwic et al.,, Nature Phys. 3, 36 (7)

7 QUANTUM HALL EECT IN GRAPHENE The peculiar uantization of the Hall conductiity can be explained satisfactorily by the coupling of the Dirac fermions to gauge fields: H tb = t r, r + ψ ( r ) exp( i( e / hc) A dl) ψ ( r) r r which corresponds to the gauge prescription H = σ σ ( A) c e This leads to Landau leels uantized according to the expression E N = sgn( N ) eh N B

8 QUANTUM HALL EECT IN GRAPHENE The uantum Hall effect is actually uite robust and should persist een in the presence of curature of the samples.. In the case of the shells of MWNTs with radius R = nm, for instance, we can predict the seuence of band structures for magnetic field strength B =, 5, 1, T : S. Bellucci,, J. G.,. Guinea, P. Onorato and E. Perfetto, J. Phys.: Condens.. Matter 19,, (7)

9 ELECTRONIC TRANSPORT IN GRAPHENE Howeer, there are open uestions in the case of the conductiity. This is usually computed in Boltzmann transport theory in terms of the density of states D as σ ( μ) = e D( μ) τ ( μ) The linear dependence obsered experimentally on gate oltage implies that σ should be proportional to the electron density. in the case of short range range scatterers, t 1/, implies that σ = const. in the case of charged long range scatterers, t, implies that, implies that σ μ² This argument seems to be also in agreement with recent experiments where the influence of the bacground dielectric constant is shown. The best fit to the conductiity is gien by 1 σ ( μ) = e n( μ) μ σ l s rom C. Jang et al.,, Phys. Re. Lett.. 11, (8)

10 JOSEPHSON EECT IN GRAPHENE There hae been also obserations of supercurrents,, when graphene is contacted with superconducting electrodes rom H. B. Heersche et al., Nature 446,, 56 (7) The reason why supercurrents may exist at the Dirac point is that Cooper pairs hae a nonanishing propagation een at anishing charge density D () (, ) = T = 8 1 rom J. G. and E. Perfetto, Phys. Re. B 76, (7)

11 ELECTRONIC TRANSPORT IN GRAPHENE The scattering by impurities is uite unconentinal in graphene,, due to the chirality of electrons. When a uasiparticle encircles a closed path in momentum space, it pics up a Berry phase of π Ψ iπ e Ψ In the absence of scatterers that may induce a large momentum transfer, transfer, bacscattering is then suppressed (H. Suzuura and T. Ando, Phys. Re. Lett.. 89,6663 (). This also explains the peculiar properties of electrons when tunneling neling across potential barriers: the transmission probability is eual to 1 at normal incidence, and for bacscattering M. I. Katsnelson,, K. S. Nooselo,, and A. K. Geim,, Nature Physics,, 6 (6)

12 MANY BODY EECTS IN GRAPHENE Graphene is a system with remarable many body properties, starting with the behaior of its electron hole excitations. The polarization is Π (, ) = 8 In the undoped system, there are no electron hole excitations nor plasmons into which the electrons can decay (J. G.,. Guinea and M.A.H. Vozmediano, Nucl. Phys. B44, 595 (1994)) The single particle properties are significantly renormalized due to the strong Coulomb interaction: 1 G = 1 G Σ σ γ ( g) log( E c / ) σ β( g) log( E c / ) (J. G.,. Guinea and M. A. H. Vozmediano, Phys. Re. B 59, 474 (1999)) with g e / 16

13 MANY BODY EECTS IN GRAPHENE The imaginary part of the self energy energy is e Im Σ(, ) log ( ) Howeer, this does nor imply a linear QP decay, as reflected in the singular behaior Im Σ(, + ε ) Im Σ(, ε ) = (J. G.,. Guinea and M. A. H. Vozmediano, Phys. Re. Lett. 77,, 3589 (1996)) In the doped system, the decay of uasiparticles is possible due to intraband electron hole excitations: The QP decay rate is now: τ 1 ( ) log ( ) E. H. Hwang, Ben Yu Kuang Hu, and S. Das Sarma, Phys. Re. B 76,, (7)

14 MANY BODY EECTS IN GRAPHENE We now turn to phonons as the releant source of scattering at low carrier densities. At sufficiently large energy/temperature we hae the contribution of optical phonons. The QP decay rate is τ 1 = Im Σ(, Im ig d ) d + σ ( ) D(, ) ( ) + ( ) iε This gies rise to a decay rate linearly proportional to the QP energy, aboe the phonon energy. Using Boltzmann transport theory, we obtain a resistiity that does not depend on carrier density and is lineraly proportional to temperature σ ( μ) = e D( μ) τ ( μ) J. G., E. Perfetto,, Phys. Re. Lett.. (in press) E. H. Hwang and S. Das Sarma, Phys. Re. B 77, (8)

15 MANY BODY EECTS IN GRAPHENE There is also interesting physics below the scale of the out of of plane phonons. These couple to the electron charge and hae therefore a strong hybridization with electrone lectron hole pairs. In the RPA, D(, ) + iε g 8 / / We obsere the appearance of ery soft phonon modes near the K point of graphene,, which are right below the particle hole continuum The hybrid states gie rise to a cubic dependence of the QP decay rate on energy, that competes with the lower bound gien at ery low energies by the decay into acoustic phonons J. G., E. Perfetto,, Phys. Re. Lett.. (in press)

16 LOW LOW ENERGY ELECTRONIC PROPERTIES ENERGY ELECTRONIC PROPERTIES The existence of soft phonon modes changes significantly the low The existence of soft phonon modes changes significantly the low energy electronic energy electronic properties. We hae for instance the properties. We hae for instance the uasiparticle uasiparticle decay rate decay rate We hae now uite different behaiors depending on the energy ra We hae now uite different behaiors depending on the energy range: nge: 8 / / ), ( = g Q ( ) ), ( ), ( ) ( ) ( ) ( Im ), ( Im ) ( 1 γ Ω Ω Ω + + Σ = Q d d g D i d d ig a δ φ ε τ < > τ g g, where, where (consistent with C. (consistent with C. H. Par H. Par et al. et al., Phys. Re. Phys. Re. Lett Lett , 8684 (7) ), 8684 (7) ) J. G. and E. J. G. and E. Perfetto Perfetto, Phys. Re. Phys. Re. Lett Lett. (in press). (in press)

17 LOW ENERGY ELECTRONIC PROPERTIES or comparison, we may derie the uasiparticle decay rate in the case of a screened Coulomb interaction: τ 1 = Im Σ(, Im ie d ) d ( a) + γ ( ) V (, ) ( ) + ( ) iε e 4 d + δ dω φ Ω 1 + l Ω In the limit δ, we hae a finite uasiparticle decay rate, with two different regimes τ 1 e e l 3 > l < l 1 1 (J. G.,. Guinea and M. A. H. Vozmediano, Phys. Re. Lett. 77,, 3589 (1996), also consistent with E. H. Hwang, B. Y. K. Hu,, and S. Das Sarma,, Phys. Re. B 76,, (7))

18 RESISTIVITY AND MOBILITY IN GRAPHENE The theoretical results hae to matched with the experimental measures of the resistiity. It is assumed that the resistiity has a T independent contribution from impurities, another from acoustic phonon scattering, and some extra contribution giing the nonlinear behaior ρ V, T ) = ρ ( V ) + ρ ( T ) + ρ ( V ( g imp g ac nl g, T ) J. H. Chen et al., Nature Nanotech. 3, 6 (8) J. H. Chen et al., Nature Nanotech. 3, 6 (8) The hope is to be able to remoe the contribution from impurities to remain with the intrinsic source of resistiity (phonons), in which case the mobility would dierge at low carrier density as 1 μ = ne ρ

19 To conclude, Graphene seems a uite exciting material from the experimental as well as from the theoretical point of iew from the theoretical point of iew, the uestion of the minimum conductiity is still a matter of debate from a practical point of iew, one has to be able to tailor the graphene structure at the nanoscale,, as well as to suppress the extrinsic scattering mechanisms that t are the main source of resistiity at present

Graphene: massless electrons in flatland.

Graphene: massless electrons in flatland. Graphene: massless electrons in flatland. Enrico Rossi Work supported by: University of Chile. Oct. 24th 2008 Collaorators CMTC, University of Maryland Sankar Das Sarma Shaffique Adam Euyuong Hwang Roman

More information

Inelastic carrier lifetime in graphene

Inelastic carrier lifetime in graphene PHYSICAL REVIEW B 76, 5434 27 Inelastic carrier lifetime in graphene E. H. Hwang, Ben Yu-Kuang Hu, 2, and S. Das Sarma Condensed Matter Theory Center, Department of Physics, University of Maryland, College

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Impact of Calcium on Transport Property of Graphene. Jyoti Katoch and Masa Ishigami*

Impact of Calcium on Transport Property of Graphene. Jyoti Katoch and Masa Ishigami* Impact of Calcium on Transport Property of Graphene Jyoti Katoch and Masa Ishigami* Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, FL, 32816 *Corresponding

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Outline. Part II - Electronic Properties of Solids Lecture 13: The Electron Gas Continued (Kittel Ch. 6) E. Electron Gas in 3 dimensions

Outline. Part II - Electronic Properties of Solids Lecture 13: The Electron Gas Continued (Kittel Ch. 6) E. Electron Gas in 3 dimensions Part II - lectronic Properties of Solids Lecture 13: The lectron Gas Continued (Kittel Ch. 6) quilibrium - no field Physics 460 F 2006 Lect 13 1 Outline From last time: Success of quantum mechanics Pauli

More information

Superconductivity Induced Transparency

Superconductivity Induced Transparency Superconductivity Induced Transparency Coskun Kocabas In this paper I will discuss the effect of the superconducting phase transition on the optical properties of the superconductors. Firstly I will give

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Low Bias Transport in Graphene: An Introduction

Low Bias Transport in Graphene: An Introduction Lecture Notes on Low Bias Transport in Graphene: An Introduction Dionisis Berdebes, Tony Low, and Mark Lundstrom Network for Computational Nanotechnology Birck Nanotechnology Center Purdue University West

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Quantum Oscillations in Graphene in the Presence of Disorder

Quantum Oscillations in Graphene in the Presence of Disorder WDS'9 Proceedings of Contributed Papers, Part III, 97, 9. ISBN 978-8-778-- MATFYZPRESS Quantum Oscillations in Graphene in the Presence of Disorder D. Iablonskyi Taras Shevchenko National University of

More information

Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer

Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer S.V. Morozov 1,, K.S. Novoselov 1, M.I. Katsnelson, F. Schedin 1, D.C. Elias 1, J.A. Jaszczak, A.K. Geim 1 1 Manchester Centre for Mesoscience

More information

1. Theoretical predictions for charged impurity scattering in graphene

1. Theoretical predictions for charged impurity scattering in graphene Supplementary Information 1. Theoretical predictions for charged impurity scattering in graphene We briefly review the state of theoretical and experimental work on zeromagnetic-field charge transport

More information

arxiv: v1 [cond-mat.mes-hall] 19 Jul 2007

arxiv: v1 [cond-mat.mes-hall] 19 Jul 2007 Quantum Hall effect in carbon nanotubes and curved graphene strips E. Perfetto 1,3, J. González 1, F. Guinea, S. Bellucci 3 and P. Onorato 3,4 1 Instituto de Estructura de la Materia. Consejo Superior

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS В. К. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Introduction 1 Simple Models of the Electron-Phonon Interaction 1.1 General remarks

More information

I. TOPOLOGICAL INSULATORS IN 1,2 AND 3 DIMENSIONS. A. Edge mode of the Kitaev model

I. TOPOLOGICAL INSULATORS IN 1,2 AND 3 DIMENSIONS. A. Edge mode of the Kitaev model I. TOPOLOGICAL INSULATORS IN,2 AND 3 DIMENSIONS A. Edge mode of the Kitae model Let s assume that the chain only stretches between x = and x. In the topological phase there should be a Jackiw-Rebbi state

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Graphene-based long-wave infrared TM surface plasmon modulator

Graphene-based long-wave infrared TM surface plasmon modulator Graphene-based long-wave infrared TM surface plasmon modulator David R. Andersen 1, 1 Department of Electrical and Computer Engineering, Department of Physics and Astronomy, The University of Iowa, Iowa

More information

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples.

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. (a,b) Magneto-transmission ratio spectra T(B)/T(B 0 ) of graphene/h-bn

More information

Many-body excitations in undoped Graphene

Many-body excitations in undoped Graphene Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran M. Ebrahimkhas: Tehran, Iran E. Ghorbani: Isfahan, Iran A. Gruneis: Vienna, Austria Oct. 20, 2011 Phase diagram of correlations

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

ICTP Conference Graphene Week 2008

ICTP Conference Graphene Week 2008 1960-3 ICTP Conference Graphene Week 2008 25-29 August 2008 Current-induced cleaning of graphene J. Moser CIN2 Barcelona, Campus UAB, Bellaterra, Spain A. Barreiro CIN2 Barcelona, Campus UAB, Bellaterra,

More information

arxiv: v2 [cond-mat.str-el] 24 Oct 2008

arxiv: v2 [cond-mat.str-el] 24 Oct 2008 Localized Spins on Graphene P. S. Cornaglia, Gonzalo Usaj, and C. A. Balseiro Centro Atómico Bariloche and Instituto Balseiro, CNEA, 84 Bariloche, Argentina and Consejo Nacional de Investigaciones Científicas

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Soft Carrier Multiplication by Hot Electrons in Graphene

Soft Carrier Multiplication by Hot Electrons in Graphene Soft Carrier Multiplication by Hot Electrons in Graphene Anuj Girdhar 1,3 and J.P. Leburton 1,2,3 1) Department of Physics 2) Department of Electrical and Computer Engineering, and 3) Beckman Institute

More information

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88 VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 A QUANTUM MECHANICAL VIEW OF THE BASICS OF N ONLINEAR OPTICS 46 In what follows we draw on

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Plasmon Generation through Electron Tunneling in Graphene SUPPORTING INFORMATION

Plasmon Generation through Electron Tunneling in Graphene SUPPORTING INFORMATION Plasmon Generation through Electron Tunneling in Graphene SUPPORTING INFORMATION Sandra de Vega 1 and F. Javier García de Abajo 1, 2 1 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac cones reshaped by interaction effects in suspended graphene D. C. Elias et al #1. Experimental devices Graphene monolayers were obtained by micromechanical cleavage of graphite on top of an oxidized

More information

Jörg Schmalian. Population inversion and stimulated emission of dense Dirac fermions in graphene.

Jörg Schmalian. Population inversion and stimulated emission of dense Dirac fermions in graphene. Population inverion and timulated emiion of dene Dirac fermion in graphene Jörg Schmalian (TKM), Center for Functional Nanotructure (CFN), Karlruhe Intitute of Technology (KIT) KIT Univerity of the State

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material]

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] S. K. Panda, I. dasgupta, E. Şaşıoğlu, S. Blügel, and D. D. Sarma Partial DOS, Orbital projected band structure

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

Hopping magnetoresistance in monolayer graphene disordered by ion irradiation

Hopping magnetoresistance in monolayer graphene disordered by ion irradiation Hopping magnetoresistance in monolayer graphene disordered by ion irradiation Issai Shlimak Jack and Pearl Resnick Institute of Advanced Technology, Physics Department, Bar Ilan University In cooperation

More information

Electronic properties of graphene. Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay)

Electronic properties of graphene. Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay) Electronic properties of graphene Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay) Cargèse, September 2012 3 one-hour lectures in 2 x 1,5h on electronic properties of graphene

More information

Dirac fermions in Graphite:

Dirac fermions in Graphite: Igor Lukyanchuk Amiens University, France, Yakov Kopelevich University of Campinas, Brazil Dirac fermions in Graphite: I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, 166402 (2004) - Phys. Rev.

More information

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Uwe-Jens Wiese Bern University LATTICE08, Williamsburg, July 14, 008 S. Chandrasekharan (Duke University) F.-J. Jiang, F.

More information

Infrared magneto-spectroscopy of graphene-based systems

Infrared magneto-spectroscopy of graphene-based systems Infrared magneto-spectroscopy of graphene-based systems M. Orlita, C. Faugeras, G. Martinez P. Neugebauer, M. Potemski Laboratoire National des Champs Magnétiques Intenses CNRS, Grenoble, France Collaborators:

More information

Imaging electrostatically confined Dirac fermions in graphene

Imaging electrostatically confined Dirac fermions in graphene Imaging electrostatically confined Dirac fermions in graphene quantum dots 3 4 5 Juwon Lee, Dillon Wong, Jairo Velasco Jr., Joaquin F. Rodriguez-Nieva, Salman Kahn, Hsin- Zon Tsai, Takashi Taniguchi, Kenji

More information

Interaction of static charges in graphene

Interaction of static charges in graphene Journal of Physics: Conference Series PAPER OPEN ACCESS Interaction of static charges in graphene To cite this article: V V Braguta et al 5 J. Phys.: Conf. Ser. 67 7 Related content - Radiative Properties

More information

Observing Wigner Crystals in Double Sheet Graphene Systems in Quantum Hall Regime

Observing Wigner Crystals in Double Sheet Graphene Systems in Quantum Hall Regime Recent Progress in Two-dimensional Systems Institute for Research in Fundamental Sciences, Tehran October 2014 Observing Wigner Crystals in Double Sheet Graphene Systems in Quantum Hall Regime Bahman Roostaei

More information

IS THERE ANY KLEIN PARADOX? LOOK AT GRAPHENE! D. Dragoman Univ. Bucharest, Physics Dept., P.O. Box MG-11, Bucharest,

IS THERE ANY KLEIN PARADOX? LOOK AT GRAPHENE! D. Dragoman Univ. Bucharest, Physics Dept., P.O. Box MG-11, Bucharest, 1 IS THERE ANY KLEIN PARADOX? LOOK AT GRAPHENE! D. Dragoman Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: danieladragoman@yahoo.com Abstract It is demonstrated that

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Optoelectronic and Transport Properties of Gapped Graphene

Optoelectronic and Transport Properties of Gapped Graphene 0 Optoelectronic and Transport Properties of Gapped Graphene Godfrey Gumbs, Danhong Huang, Andrii Iurov, and Bo Gao CONTENTS Abstract... 489 0. Introduction... 489 0. Dirac Fermions, Chirality, and Tunable

More information

Summary lecture VII. Boltzmann scattering equation reads in second-order Born-Markov approximation

Summary lecture VII. Boltzmann scattering equation reads in second-order Born-Markov approximation Summary lecture VII Boltzmann scattering equation reads in second-order Born-Markov approximation and describes time- and momentum-resolved electron scattering dynamics in non-equilibrium Markov approximation

More information

One-Dimensional Coulomb Drag: Probing the Luttinger Liquid State - I

One-Dimensional Coulomb Drag: Probing the Luttinger Liquid State - I One-Dimensional Coulomb Drag: Probing the Luttinger Liquid State - Although the LL description of 1D interacting electron systems is now well established theoretically, experimental effort to study the

More information

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment Harald Ibach Hans Lüth SOLID-STATE PHYSICS An Introduction to Theory and Experiment With 230 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Dirac matter: Magneto-optical studies

Dirac matter: Magneto-optical studies Dirac matter: Magneto-optical studies Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UGA/UPS/INSA/EMFL MOMB nd International Conference

More information

Magneto-plasmonic effects in epitaxial graphene

Magneto-plasmonic effects in epitaxial graphene Magneto-plasmonic effects in epitaxial graphene Alexey Kuzmenko University of Geneva Graphene Nanophotonics Benasque, 4 March 13 Collaborators I. Crassee, N. Ubrig, I. Nedoliuk, J. Levallois, D. van der

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

KAVLI v F. Curved graphene revisited. María A. H. Vozmediano. Instituto de Ciencia de Materiales de Madrid CSIC

KAVLI v F. Curved graphene revisited. María A. H. Vozmediano. Instituto de Ciencia de Materiales de Madrid CSIC KAVLI 2012 v F Curved graphene revisited María A. H. Vozmediano Instituto de Ciencia de Materiales de Madrid CSIC Collaborators ICMM(Graphene group) http://www.icmm.csic.es/gtg/ A. Cano E. V. Castro J.

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Klein tunneling in graphene p-n-p junctions

Klein tunneling in graphene p-n-p junctions 10.1149/1.3569920 The Electrochemical Society Klein tunneling in graphene p-n-p junctions E. Rossi 1,J.H.Bardarson 2,3,P.W.Brouwer 4 1 Department of Physics, College of William and Mary, Williamsburg,

More information

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

Spin Transport in III-V Semiconductor Structures

Spin Transport in III-V Semiconductor Structures Spin Transport in III-V Semiconductor Structures Ki Wook Kim, A. A. Kiselev, and P. H. Song Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911 We

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Ground state of 2D Graphene in presence of Random Charged impurities

Ground state of 2D Graphene in presence of Random Charged impurities Ground state of 2D Graphene in presence of Random Charged impurities Enrico Rossi.. APS March Meeting, Pittsburgh 2009 Session H1. Collaborators Sankar Das Sarma Shaffique Adam. Euyheon Hwang http://www.physics.umd.edu/cmtc/

More information

Phonon-mediated superconductivity in silicene

Phonon-mediated superconductivity in silicene epl draft Header will be proided by the publisher Phonon-mediated superconductiity in silicene WENHUI WAN, YANENG GE, AN YANG and YUGUI YAO (a) School of Physics, Beijing Institute of Technology - Beijing

More information

Non-Continuum Energy Transfer: Phonons

Non-Continuum Energy Transfer: Phonons Non-Continuum Energy Transfer: Phonons D. B. Go Slide 1 The Crystal Lattice The crystal lattice is the organization of atoms and/or molecules in a solid simple cubic body-centered cubic hexagonal a NaCl

More information

Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties

Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties Cocoyoc 2012 Something about graphene and microwave billiards Dirac spectrum in a photonic crystal Experimental

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

Nonlinear optical conductance in a graphene pn junction in the terahertz regime

Nonlinear optical conductance in a graphene pn junction in the terahertz regime University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2010 Nonlinear optical conductance in a graphene pn junction in the terahertz

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

GRAPHENE the first 2D crystal lattice

GRAPHENE the first 2D crystal lattice GRAPHENE the first 2D crystal lattice dimensionality of carbon diamond, graphite GRAPHENE realized in 2004 (Novoselov, Science 306, 2004) carbon nanotubes fullerenes, buckyballs what s so special about

More information

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM Solid State Physics GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pisa, and INFM GIUSEPPE PASTORI PARRAVICINI Professor of Solid State Physics, Department of Physics,

More information

Supporting Information for Graphene Plasmonics: A Platform for Strong Light-Matter Interaction

Supporting Information for Graphene Plasmonics: A Platform for Strong Light-Matter Interaction Supporting Information for Graphene Plasmonics: A Platform for Strong Light-Matter Interaction rank H. L. Koppens, 1, Darrick E. Chang, 2 3, 4, and. Javier García de Abajo 1 ICO-Institut de Ciéncies otóniques,

More information

SiC Graphene Suitable For Quantum Hall Resistance Metrology.

SiC Graphene Suitable For Quantum Hall Resistance Metrology. SiC Graphene Suitable For Quantum Hall Resistance Metrology. Samuel Lara-Avila 1, Alexei Kalaboukhov 1, Sara Paolillo, Mikael Syväjärvi 3, Rositza Yakimova 3, Vladimir Fal'ko 4, Alexander Tzalenchuk 5,

More information

lattice that you cannot do with graphene! or... Antonio H. Castro Neto

lattice that you cannot do with graphene! or... Antonio H. Castro Neto Theoretical Aspects What you can do with cold atomsof on agraphene honeycomb lattice that you cannot do with graphene! or... Antonio H. Castro Neto 2 Outline 1. Graphene for beginners 2. Fermion-Fermion

More information

DEFECTS IN 2D MATERIALS: HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES

DEFECTS IN 2D MATERIALS: HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES DEFECTS IN 2D MATERIALS: HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES Johannes Lischner Imperial College London LISCHNER GROUP AT IMPERIAL COLLEGE LONDON Theory and simulation of materials: focus on

More information

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n zigzag armchair Three major categories of nanotube structures can be identified based on the values of m and n m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Nature 391, 59, (1998) chiral J. Tersoff,

More information

Transport properties through double-magnetic-barrier structures in graphene

Transport properties through double-magnetic-barrier structures in graphene Chin. Phys. B Vol. 20, No. 7 (20) 077305 Transport properties through double-magnetic-barrier structures in graphene Wang Su-Xin( ) a)b), Li Zhi-Wen( ) a)b), Liu Jian-Jun( ) c), and Li Yu-Xian( ) c) a)

More information

Charged Impurity Scattering in Graphene

Charged Impurity Scattering in Graphene 1 Charged Impurity Scattering in Graphene J.H. Chen 1,4*, C. Jang 1,2,4*, M. S. Fuhrer 1,2,4, and E. D. Williams 1,3,4,5, and M. Ishigami 4 1 Materials Research Science and Engineering Center, 2 Center

More information

The Quantum Hall Effects

The Quantum Hall Effects The Quantum Hall Effects Integer and Fractional Michael Adler July 1, 2010 1 / 20 Outline 1 Introduction Experiment Prerequisites 2 Integer Quantum Hall Effect Quantization of Conductance Edge States 3

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Scaling Anomaly and Atomic Collapse Collective Energy Propagation at Charge Neutrality

Scaling Anomaly and Atomic Collapse Collective Energy Propagation at Charge Neutrality Scaling Anomaly and Atomic Collapse Collective Energy Propagation at Charge Neutrality Leonid Levitov (MIT) Electron Interactions in Graphene FTPI, University of Minnesota 05/04/2013 Scaling symmetry:

More information

Quantum Superposition States of Two Valleys in Graphene

Quantum Superposition States of Two Valleys in Graphene Quantum Superposition States of Two Valleys in Graphene Jia-Bin Qiao, Zhao-Dong Chu, Liang-Mei Wu, Lin He* Department of Physics, Beijing Normal University, Beijing, 100875, People s Republic of China

More information

4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion.

4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion. 4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion. We now hae deeloped a ector model that allows the ready isualization

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

From optical graphene to topological insulator

From optical graphene to topological insulator From optical graphene to topological insulator Xiangdong Zhang Beijing Institute of Technology (BIT), China zhangxd@bit.edu.cn Collaborator: Wei Zhong (PhD student, BNU) Outline Background: From solid

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Basic Semiconductor Physics

Basic Semiconductor Physics Chihiro Hamaguchi Basic Semiconductor Physics With 177 Figures and 25 Tables Springer 1. Energy Band Structures of Semiconductors 1 1.1 Free-Electron Model 1 1.2 Bloch Theorem 3 1.3 Nearly Free Electron

More information

Electronic structure and properties of a few-layer black phosphorus Mikhail Katsnelson

Electronic structure and properties of a few-layer black phosphorus Mikhail Katsnelson Electronic structure and properties of a few-layer black phosphorus Mikhail Katsnelson Main collaborators: Sasha Rudenko Shengjun Yuan Rafa Roldan Milton Pereira Sergey Brener Motivation Plenty of 2D materials

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method

Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method Journal of Optoelectronical anostructures Islamic Azad University Summer 016 / Vol. 1, o. Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method Marjan

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2286 Surface conduction of topological Dirac electrons in bulk insulating Bi 2 Se 3 Dohun Kim* 1, Sungjae Cho* 1, Nicholas P. Butch 1, Paul Syers 1, Kevin Kirshenbaum

More information