Mario A. Nascimento. Univ. of Alberta, Canada http: //

Size: px
Start display at page:

Download "Mario A. Nascimento. Univ. of Alberta, Canada http: //"

Transcription

1 DATA CACHING IN W Mario A. Nascimento Univ. of Alberta, Canada http: // With R. Alencar and A. Brayner. Work partially supported by NSERC and CBIE (Canada) and CAPES (Brazil)

2 Outline Motivation Cache-Aware Query Processing Cache-Aware Query Optimization Query Partitioning 2 Cached Data Selection Cache Maintenance Experimental Results 2 /23

3 (One) Application Scenario User Satellite User User Base Station 3 W User 3 /23

4 Using Previous (Cached) Queries { P i } : Set of previous queries Q : Current query P2 Q : Q minus {P i } P 1 Q 4 Q P3 (a) (b) 4 /23

5 Query Partitioning Overhead BS BS (a) 5 (b) Query Processing: query is forwarded, locally flooded, results are collected and shipped back Query processing cost is estimated through an analytical cost-model 5 /23

6 Overall Architecture Current query User Answer Q D(Q) Cache Manager Q, P,!! Query Processor P, D(P ) D(!) Q P Q, P P,! 6 W Cache Index Base Station Query Optimizer Subset of relevant queries and sub-queries (min: query cost) Relevant Cached Queries Non-stale subset of P and its dataset 6 /23

7 Query Plan Problem (QSP) 7 Less larger sub-queries vs. more smaller sub-queries For obtaining Q we used the General Polygon Clipper library. For partitioning Q into the set of sub-queries Θ we used a O(v log v) algorithm which finds a sub-optimal solution (minimizing the number of sub-queries). 7 /23

8 B+B (Heuristic) Solution to QSP P = P For each node Q is clipped using a subset of P, a set of sub-queries is generated and its cost is obtained. The search stops at a local minimun. 8 P = P \ {P 1 } P = P \ {P 2 } P = P \ {P 3 } P = P \ {P 4 } P = P \ {P 2, P 1} P = P \ {P 2, P 4 } P = P \ {P 2, P 3} 8 /23

9 Other Heuristic Solutions to QSP In addition to the B+B we also used two more aggressive greedy heuristics: GrF (GrE) starts with all (no) cached queries removing (inserting) the smallest (largest) cached query as long as there is some gain. 9 P = P GrF path P = P \ {P 1 } P = P \ {P 2 } P = P \ {P 3 } P = P \ {P 4 } P = P \ {P 2, P 1} P = P \ {P 2, P 4 } P = P \ {P 2, P 3} 9 /23

10 Cache Maintenance Q P, D(P ) P, P,! Query Processor Cache Reader P \ P Cache 10 Updater Cache Manager (internals) Q P Q, P \ P, P \ P,! Cache Index 10 /23

11 Cache Maintenance P 1(dropped) P 2 (used) Data that can be used to refresh P s data 1 P 1,1 P1,2 P 2 11 P 3 Q Q (a) (b) (c) 11 /23

12 Losses wrt Optimal Solution Frequency [%] B+B GrF GrE 0 <1 (1-10] (20-30] (40-50] >100 (80-90] (60-70] Energy loss (range) wrt OPT [%] B+B is the Branch-and-Bound heuristic. GrF (GrE) is an aggressive greedy heuristic, starting with all (no) cache and removing (inserting) the smallest (largest) cached queries available as long as there is some gain. 12 /23

13 Gains wrt NOT Using Cache Frequency [%] (0-10] (20-30] 13 (40-50] B+B GrF GrE (60-70] (80-90] Energy savings (range) wrt no cache [%] By design GrE cannot be any worse that no using any cache. 13 /23

14 Gains wrt Using ALL Cache Frequency [%] (0-10] (40-50] B+B GrF GrE (20-30] (60-70] (80-90] Energy savings (range) wrt FC [%] By design GrF cannot be any worse that using all of the cache. 14 /23

15 Detailed results or skip to main conclusions? /23

16 Detailed results We investigate the performance of the proposed approach wrt efficiency (for finding the query plan) and effectiveness (cost of solution) when varying: Number of sensors Size of cache (number of cached queries) Query size (wrt total area) Validity time (of cached results) /23

17 Varying # of Sensors Energy cost loss wrt OPT [%] B+B FC GrF GrE Number of sensors (x 1,000) Number of states explored GrE GrF B+B OPT Number of sensors (x 1,000) 17 /23

18 Varying Cache Size Energy cost loss wrt OPT [%] B+B FC GrF GrE Cache size [# Queries] Number of states explored GrE GrF B+B OPT Cache size [# Queries] /23

19 Varying Query Size Energy cost loss wrt OPT [%] B+B FC GrF GrE Query size [% of total area] Number of explored states GrE GrF B+B OPT Query size [% total area] /23

20 Varying Query Validity Time 12 Energy cost loss wrt OPT [%] B+B FC GrF GrE Validity time [number of timestamps] 20 Number of states explored GrE GrF B+B OPT Validity time [# timestamps] 20 /23

21 Conclusions The cached query selection, query clipping and subqueries generation amounts to a fairly complex and combinatorial problem 21 Although a query cost model is needed, our proposal is orthogonal to it If nothing can be done your best shot is to use all of the cache, but 21 /23

22 Conclusions The Branch-and-Bound heuristic : Finds a query plan orders of magnitude faster than the exhaustive search Is typically less than 2% more expensive than the optimal query cost 22 Is robust with respect to a number of different parameters Next stop: Aggregation queries 22 /23

23 Thanks /23

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 4: Query Optimization Query Optimization Cost estimation Strategies for exploring plans Q min CS 347 Notes 4 2 Cost Estimation Based on

More information

Window-aware Load Shedding for Aggregation Queries over Data Streams

Window-aware Load Shedding for Aggregation Queries over Data Streams Window-aware Load Shedding for Aggregation Queries over Data Streams Nesime Tatbul Stan Zdonik Talk Outline Background Load shedding in Aurora Windowed aggregation queries Window-aware load shedding Experimental

More information

Skylines. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

Skylines. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yufei Tao ITEE University of Queensland Today we will discuss problems closely related to the topic of multi-criteria optimization, where one aims to identify objects that strike a good balance often optimal

More information

where X is the feasible region, i.e., the set of the feasible solutions.

where X is the feasible region, i.e., the set of the feasible solutions. 3.5 Branch and Bound Consider a generic Discrete Optimization problem (P) z = max{c(x) : x X }, where X is the feasible region, i.e., the set of the feasible solutions. Branch and Bound is a general semi-enumerative

More information

CMPUT651: Differential Privacy

CMPUT651: Differential Privacy CMPUT65: Differential Privacy Homework assignment # 2 Due date: Apr. 3rd, 208 Discussion and the exchange of ideas are essential to doing academic work. For assignments in this course, you are encouraged

More information

An Optimized Interestingness Hotspot Discovery Framework for Large Gridded Spatio-temporal Datasets

An Optimized Interestingness Hotspot Discovery Framework for Large Gridded Spatio-temporal Datasets IEEE Big Data 2015 Big Data in Geosciences Workshop An Optimized Interestingness Hotspot Discovery Framework for Large Gridded Spatio-temporal Datasets Fatih Akdag and Christoph F. Eick Department of Computer

More information

2.6 Complexity Theory for Map-Reduce. Star Joins 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51

2.6 Complexity Theory for Map-Reduce. Star Joins 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51 Star Joins A common structure for data mining of commercial data is the star join. For example, a chain store like Walmart keeps a fact table whose tuples each

More information

Treedy: A Heuristic for Counting and Sampling Subsets

Treedy: A Heuristic for Counting and Sampling Subsets 1 / 27 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Treedy: A Heuristic for Counting and Sampling Subsets Teppo Niinimäki, Mikko Koivisto July 12, 2013 University of Helsinki Department

More information

Discovering Spatial and Temporal Links among RDF Data Panayiotis Smeros and Manolis Koubarakis

Discovering Spatial and Temporal Links among RDF Data Panayiotis Smeros and Manolis Koubarakis Discovering Spatial and Temporal Links among RDF Data Panayiotis Smeros and Manolis Koubarakis WWW2016 Workshop: Linked Data on the Web (LDOW2016) April 12, 2016 - Montréal, Canada Outline Introduction

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 11: Probabilistic Information Retrieval 1 Outline Basic Probability Theory Probability Ranking Principle Extensions 2 Basic Probability Theory For events A

More information

Tailored Bregman Ball Trees for Effective Nearest Neighbors

Tailored Bregman Ball Trees for Effective Nearest Neighbors Tailored Bregman Ball Trees for Effective Nearest Neighbors Frank Nielsen 1 Paolo Piro 2 Michel Barlaud 2 1 Ecole Polytechnique, LIX, Palaiseau, France 2 CNRS / University of Nice-Sophia Antipolis, Sophia

More information

P Q1 Q2 Q3 Q4 Q5 Tot (60) (20) (20) (20) (60) (20) (200) You are allotted a maximum of 4 hours to complete this exam.

P Q1 Q2 Q3 Q4 Q5 Tot (60) (20) (20) (20) (60) (20) (200) You are allotted a maximum of 4 hours to complete this exam. Exam INFO-H-417 Database System Architecture 13 January 2014 Name: ULB Student ID: P Q1 Q2 Q3 Q4 Q5 Tot (60 (20 (20 (20 (60 (20 (200 Exam modalities You are allotted a maximum of 4 hours to complete this

More information

Behavioral Simulations in MapReduce

Behavioral Simulations in MapReduce Behavioral Simulations in MapReduce Guozhang Wang, Marcos Vaz Salles, Benjamin Sowell, Xun Wang, Tuan Cao, Alan Demers, Johannes Gehrke, Walker White Cornell University 1 What are Behavioral Simulations?

More information

Speculative Parallelism in Cilk++

Speculative Parallelism in Cilk++ Speculative Parallelism in Cilk++ Ruben Perez & Gregory Malecha MIT May 11, 2010 Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 1 / 33 Parallelizing Embarrassingly Parallel

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Environment (Parallelizing Query Optimization)

Environment (Parallelizing Query Optimization) Advanced d Query Optimization i i Techniques in a Parallel Computing Environment (Parallelizing Query Optimization) Wook-Shin Han*, Wooseong Kwak, Jinsoo Lee Guy M. Lohman, Volker Markl Kyungpook National

More information

A subtle problem. An obvious problem. An obvious problem. An obvious problem. No!

A subtle problem. An obvious problem. An obvious problem. An obvious problem. No! A subtle problem An obvious problem when LC = t do S doesn t make sense for Lamport clocks! there is no guarantee that LC will ever be S is anyway executed after LC = t Fixes: if e is internal/send and

More information

Cuts. Cuts. Consistent cuts and consistent global states. Global states and cuts. A cut C is a subset of the global history of H

Cuts. Cuts. Consistent cuts and consistent global states. Global states and cuts. A cut C is a subset of the global history of H Cuts Cuts A cut C is a subset of the global history of H C = h c 1 1 hc 2 2...hc n n A cut C is a subset of the global history of H The frontier of C is the set of events e c 1 1,ec 2 2,...ec n n C = h

More information

Chapter 6: Classification

Chapter 6: Classification Chapter 6: Classification 1) Introduction Classification problem, evaluation of classifiers, prediction 2) Bayesian Classifiers Bayes classifier, naive Bayes classifier, applications 3) Linear discriminant

More information

Enhancing Reuse of Constraint Solutions to Improve Symbolic Execution

Enhancing Reuse of Constraint Solutions to Improve Symbolic Execution Enhancing Reuse of Constraint Solutions to Improve Symbolic Execution Xiangyang Jia (Wuhan University) Carlo Ghezzi (Politecnico di Milano) Shi Ying (Wuhan University) Outline Motivation Logical Basis

More information

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 )

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 ) Algorithms Chapter 5: The Tree Searching Strategy - Examples 1 / 11 Chapter 5: The Tree Searching Strategy 1. Ex 5.1Determine the satisfiability of the following Boolean formulas by depth-first search

More information

Optimal Geographical Caching in Heterogeneous Cellular Networks

Optimal Geographical Caching in Heterogeneous Cellular Networks 1 Optimal Geographical Caching in Heterogeneous Cellular Networks Berksan Serbetci, and Jasper Goseling arxiv:1710.09626v2 [cs.ni] 22 Nov 2018 Abstract We investigate optimal geographical caching in heterogeneous

More information

UpdatingtheStationary VectorofaMarkovChain. Amy Langville Carl Meyer

UpdatingtheStationary VectorofaMarkovChain. Amy Langville Carl Meyer UpdatingtheStationary VectorofaMarkovChain Amy Langville Carl Meyer Department of Mathematics North Carolina State University Raleigh, NC NSMC 9/4/2003 Outline Updating and Pagerank Aggregation Partitioning

More information

Making Fast Buffer Insertion Even Faster via Approximation Techniques

Making Fast Buffer Insertion Even Faster via Approximation Techniques Making Fast Buffer Insertion Even Faster via Approximation Techniques Zhuo Li, C. N. Sze, Jiang Hu and Weiping Shi Department of Electrical Engineering Texas A&M University Charles J. Alpert IBM Austin

More information

Evaluation of Probabilistic Queries over Imprecise Data in Constantly-Evolving Environments

Evaluation of Probabilistic Queries over Imprecise Data in Constantly-Evolving Environments Evaluation of Probabilistic Queries over Imprecise Data in Constantly-Evolving Environments Reynold Cheng, Dmitri V. Kalashnikov Sunil Prabhakar The Hong Kong Polytechnic University, Hung Hom, Kowloon,

More information

CS6375: Machine Learning Gautam Kunapuli. Decision Trees

CS6375: Machine Learning Gautam Kunapuli. Decision Trees Gautam Kunapuli Example: Restaurant Recommendation Example: Develop a model to recommend restaurants to users depending on their past dining experiences. Here, the features are cost (x ) and the user s

More information

Fast Algorithms for Segmented Regression

Fast Algorithms for Segmented Regression Fast Algorithms for Segmented Regression Jayadev Acharya 1 Ilias Diakonikolas 2 Jerry Li 1 Ludwig Schmidt 1 1 MIT 2 USC June 21, 2016 1 / 21 Statistical vs computational tradeoffs? General Motivating Question

More information

Optimal Spatial Dominance: An Effective Search of Nearest Neighbor Candidates

Optimal Spatial Dominance: An Effective Search of Nearest Neighbor Candidates Optimal Spatial Dominance: An Effective Search of Nearest Neighbor Candidates X I A O YA N G W A N G 1, Y I N G Z H A N G 2, W E N J I E Z H A N G 1, X U E M I N L I N 1, M U H A M M A D A A M I R C H

More information

Nearest Neighbor Search with Keywords in Spatial Databases

Nearest Neighbor Search with Keywords in Spatial Databases 776 Nearest Neighbor Search with Keywords in Spatial Databases 1 Sphurti S. Sao, 2 Dr. Rahila Sheikh 1 M. Tech Student IV Sem, Dept of CSE, RCERT Chandrapur, MH, India 2 Head of Department, Dept of CSE,

More information

Algorithms: Lecture 12. Chalmers University of Technology

Algorithms: Lecture 12. Chalmers University of Technology Algorithms: Lecture 1 Chalmers University of Technology Today s Topics Shortest Paths Network Flow Algorithms Shortest Path in a Graph Shortest Path Problem Shortest path network. Directed graph G = (V,

More information

Lecture 4 Scheduling 1

Lecture 4 Scheduling 1 Lecture 4 Scheduling 1 Single machine models: Number of Tardy Jobs -1- Problem 1 U j : Structure of an optimal schedule: set S 1 of jobs meeting their due dates set S 2 of jobs being late jobs of S 1 are

More information

Data Exploration and Unsupervised Learning with Clustering

Data Exploration and Unsupervised Learning with Clustering Data Exploration and Unsupervised Learning with Clustering Paul F Rodriguez,PhD San Diego Supercomputer Center Predictive Analytic Center of Excellence Clustering Idea Given a set of data can we find a

More information

ICS 252 Introduction to Computer Design

ICS 252 Introduction to Computer Design ICS 252 fall 2006 Eli Bozorgzadeh Computer Science Department-UCI References and Copyright Textbooks referred [Mic94] G. De Micheli Synthesis and Optimization of Digital Circuits McGraw-Hill, 1994. [CLR90]

More information

Introduction to integer programming II

Introduction to integer programming II Introduction to integer programming II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

Constrained Maximization of Non-Monotone Submodular Functions

Constrained Maximization of Non-Monotone Submodular Functions Constrained Maximization of Non-Monotone Submodular Functions Anupam Gupta Aaron Roth September 15, 2009 Abstract The problem of constrained submodular maximization has long been studied, with near-optimal

More information

QUANTIZED SYSTEMS AND CONTROL. Daniel Liberzon. DISC HS, June Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign

QUANTIZED SYSTEMS AND CONTROL. Daniel Liberzon. DISC HS, June Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign QUANTIZED SYSTEMS AND CONTROL Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign DISC HS, June 2003 HYBRID CONTROL Plant: u y

More information

A practical introduction to active automata learning

A practical introduction to active automata learning A practical introduction to active automata learning Bernhard Steffen, Falk Howar, Maik Merten TU Dortmund SFM2011 Maik Merten, learning technology 1 Overview Motivation Introduction to active automata

More information

CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators

CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators Sandeep D souza and Ragunathan (Raj) Rajkumar Carnegie Mellon University High (Energy) Cost of Accelerators Modern-day

More information

Part III: Traveling salesman problems

Part III: Traveling salesman problems Transportation Logistics Part III: Traveling salesman problems c R.F. Hartl, S.N. Parragh 1/282 Motivation Motivation Why do we study the TSP? c R.F. Hartl, S.N. Parragh 2/282 Motivation Motivation Why

More information

Computing Possibly Optimal Solutions for Multi-Objective Constraint Optimisation with Tradeoffs

Computing Possibly Optimal Solutions for Multi-Objective Constraint Optimisation with Tradeoffs Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 215) Computing Possibly Optimal Solutions for Multi-Objective Constraint Optimisation with Tradeoffs Nic

More information

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices Communities Via Laplacian Matrices Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices The Laplacian Approach As with betweenness approach, we want to divide a social graph into

More information

Resilient and energy-aware algorithms

Resilient and energy-aware algorithms Resilient and energy-aware algorithms Anne Benoit ENS Lyon Anne.Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit CR02-2016/2017 Anne.Benoit@ens-lyon.fr CR02 Resilient and energy-aware algorithms 1/

More information

Catching Elephants with Mice

Catching Elephants with Mice Catching Elephants with Mice Sparse Sampling for Monitoring Sensor Networks S. Gandhi, S. Suri, E. Welzl M. Schaufelberger, Seminar in Distributed Computing 10.12.2008 Outline Introduction VC-Dimension

More information

Feasibility Pump Heuristics for Column Generation Approaches

Feasibility Pump Heuristics for Column Generation Approaches 1 / 29 Feasibility Pump Heuristics for Column Generation Approaches Ruslan Sadykov 2 Pierre Pesneau 1,2 Francois Vanderbeck 1,2 1 University Bordeaux I 2 INRIA Bordeaux Sud-Ouest SEA 2012 Bordeaux, France,

More information

TASM: Top-k Approximate Subtree Matching

TASM: Top-k Approximate Subtree Matching TASM: Top-k Approximate Subtree Matching Nikolaus Augsten 1 Denilson Barbosa 2 Michael Böhlen 3 Themis Palpanas 4 1 Free University of Bozen-Bolzano, Italy augsten@inf.unibz.it 2 University of Alberta,

More information

Probabilistic Near-Duplicate. Detection Using Simhash

Probabilistic Near-Duplicate. Detection Using Simhash Probabilistic Near-Duplicate Detection Using Simhash Sadhan Sood, Dmitri Loguinov Presented by Matt Smith Internet Research Lab Department of Computer Science and Engineering Texas A&M University 27 October

More information

TDT4173 Machine Learning

TDT4173 Machine Learning TDT4173 Machine Learning Lecture 3 Bagging & Boosting + SVMs Norwegian University of Science and Technology Helge Langseth IT-VEST 310 helgel@idi.ntnu.no 1 TDT4173 Machine Learning Outline 1 Ensemble-methods

More information

Energy-efficient scheduling

Energy-efficient scheduling Energy-efficient scheduling Guillaume Aupy 1, Anne Benoit 1,2, Paul Renaud-Goud 1 and Yves Robert 1,2,3 1. Ecole Normale Supérieure de Lyon, France 2. Institut Universitaire de France 3. University of

More information

Dissertation Defense

Dissertation Defense Clustering Algorithms for Random and Pseudo-random Structures Dissertation Defense Pradipta Mitra 1 1 Department of Computer Science Yale University April 23, 2008 Mitra (Yale University) Dissertation

More information

Correlated subqueries. Query Optimization. Magic decorrelation. COUNT bug. Magic example (slide 2) Magic example (slide 1)

Correlated subqueries. Query Optimization. Magic decorrelation. COUNT bug. Magic example (slide 2) Magic example (slide 1) Correlated subqueries Query Optimization CPS Advanced Database Systems SELECT CID FROM Course Executing correlated subquery is expensive The subquery is evaluated once for every CPS course Decorrelate!

More information

Chapter 14 Combining Models

Chapter 14 Combining Models Chapter 14 Combining Models T-61.62 Special Course II: Pattern Recognition and Machine Learning Spring 27 Laboratory of Computer and Information Science TKK April 3th 27 Outline Independent Mixing Coefficients

More information

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Learning Neural Networks Classifier Short Presentation INPUT: classification data, i.e. it contains an classification (class) attribute.

More information

Simulation of Gene Regulatory Networks

Simulation of Gene Regulatory Networks Simulation of Gene Regulatory Networks Overview I have been assisting Professor Jacques Cohen at Brandeis University to explore and compare the the many available representations and interpretations of

More information

Skyline Snippets. Markus Endres and Werner Kießling

Skyline Snippets. Markus Endres and Werner Kießling Skyline Snippets Markus Endres and Werner Kießling Outline 1. Skyline and Preference Queries 2. Skyline Snippets 3. Performance Benchmarks 4. Summary and Outlook 2 1. Skyline Queries 3 Skyline Queries

More information

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017 Machine Learning Regularization and Feature Selection Fabio Vandin November 14, 2017 1 Regularized Loss Minimization Assume h is defined by a vector w = (w 1,..., w d ) T R d (e.g., linear models) Regularization

More information

Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem

Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem Nicolas Jozefowiez 1, Gilbert Laporte 2, Frédéric Semet 3 1. LAAS-CNRS, INSA, Université de Toulouse, Toulouse, France,

More information

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano ... Our contribution PIPS-PSBB*: Multi-level parallelism for Stochastic

More information

CS 561, Lecture: Greedy Algorithms. Jared Saia University of New Mexico

CS 561, Lecture: Greedy Algorithms. Jared Saia University of New Mexico CS 561, Lecture: Greedy Algorithms Jared Saia University of New Mexico Outline Greedy Algorithm Intro Activity Selection Knapsack 1 Greedy Algorithms Greed is Good - Michael Douglas in Wall Street A greedy

More information

FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016)

FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016) FINAL EXAM PRACTICE PROBLEMS CMSC 451 (Spring 2016) The final exam will be on Thursday, May 12, from 8:00 10:00 am, at our regular class location (CSI 2117). It will be closed-book and closed-notes, except

More information

Land Cover Data Processing Land cover data source Description and documentation Download Use Use

Land Cover Data Processing Land cover data source Description and documentation Download Use Use Land Cover Data Processing This document provides a step by step procedure on how to build the land cover data required by EnSim. The steps provided here my be long and there may be short cuts (like using

More information

Variable Elimination (VE) Barak Sternberg

Variable Elimination (VE) Barak Sternberg Variable Elimination (VE) Barak Sternberg Basic Ideas in VE Example 1: Let G be a Chain Bayesian Graph: X 1 X 2 X n 1 X n How would one compute P X n = k? Using the CPDs: P X 2 = x = x Val X1 P X 1 = x

More information

Distributed power allocation for D2D communications underlaying/overlaying OFDMA cellular networks

Distributed power allocation for D2D communications underlaying/overlaying OFDMA cellular networks Distributed power allocation for D2D communications underlaying/overlaying OFDMA cellular networks Marco Moretti, Andrea Abrardo Dipartimento di Ingegneria dell Informazione, University of Pisa, Italy

More information

Introduction to Convolutional Neural Networks 2018 / 02 / 23

Introduction to Convolutional Neural Networks 2018 / 02 / 23 Introduction to Convolutional Neural Networks 2018 / 02 / 23 Buzzword: CNN Convolutional neural networks (CNN, ConvNet) is a class of deep, feed-forward (not recurrent) artificial neural networks that

More information

An Analysis of the Highest-Level Selection Rule in the Preflow-Push Max-Flow Algorithm

An Analysis of the Highest-Level Selection Rule in the Preflow-Push Max-Flow Algorithm An Analysis of the Highest-Level Selection Rule in the Preflow-Push Max-Flow Algorithm Joseph Cheriyan Kurt Mehlhorn August 20, 1998 Abstract Consider the problem of finding a maximum flow in a network.

More information

Today s Outline. CS 561, Lecture 15. Greedy Algorithms. Activity Selection. Greedy Algorithm Intro Activity Selection Knapsack

Today s Outline. CS 561, Lecture 15. Greedy Algorithms. Activity Selection. Greedy Algorithm Intro Activity Selection Knapsack Today s Outline CS 561, Lecture 15 Jared Saia University of New Mexico Greedy Algorithm Intro Activity Selection Knapsack 1 Greedy Algorithms Activity Selection Greed is Good - Michael Douglas in Wall

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/24/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016 Lecture 1: Introduction and Review We begin with a short introduction to the course, and logistics. We then survey some basics about approximation algorithms and probability. We also introduce some of

More information

Time-Expanded vs Time-Dependent Models for Timetable Information

Time-Expanded vs Time-Dependent Models for Timetable Information Time-Expanded vs Time-Dependent Models for Timetable Information Evangelia Pirga Computer Technology Institute & University of Patras Frank Schulz University of Konstanz Dorothea Wagner University of Konstanz

More information

Faster than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search

Faster than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search Faster than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search Jordan Thayer and Wheeler Ruml {jtd7, ruml} at cs.unh.edu Jordan Thayer (UNH) Optimistic Search 1 / 45 Motivation Motivation

More information

Comparison of Modern Stochastic Optimization Algorithms

Comparison of Modern Stochastic Optimization Algorithms Comparison of Modern Stochastic Optimization Algorithms George Papamakarios December 214 Abstract Gradient-based optimization methods are popular in machine learning applications. In large-scale problems,

More information

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS The 20 Military Communications Conference - Track - Waveforms and Signal Processing TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS Gam D. Nguyen, Jeffrey E. Wieselthier 2, Sastry Kompella,

More information

Robust optimization for resource-constrained project scheduling with uncertain activity durations

Robust optimization for resource-constrained project scheduling with uncertain activity durations Robust optimization for resource-constrained project scheduling with uncertain activity durations Christian Artigues 1, Roel Leus 2 and Fabrice Talla Nobibon 2 1 LAAS-CNRS, Université de Toulouse, France

More information

Introduction to Randomized Algorithms III

Introduction to Randomized Algorithms III Introduction to Randomized Algorithms III Joaquim Madeira Version 0.1 November 2017 U. Aveiro, November 2017 1 Overview Probabilistic counters Counting with probability 1 / 2 Counting with probability

More information

Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems

Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems Jian-Jia Chen *, Chuan Yue Yang, Tei-Wei Kuo, and Chi-Sheng Shih Embedded Systems and Wireless Networking Lab. Department of Computer

More information

Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, et al. Google arxiv:1609.08144v2 Reviewed by : Bill

More information

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Anna C. Gilbert Department of Mathematics University of Michigan Intuition from ONB Key step in algorithm: r, ϕ j = x c i ϕ i, ϕ j

More information

Making Nearest Neighbors Easier. Restrictions on Input Algorithms for Nearest Neighbor Search: Lecture 4. Outline. Chapter XI

Making Nearest Neighbors Easier. Restrictions on Input Algorithms for Nearest Neighbor Search: Lecture 4. Outline. Chapter XI Restrictions on Input Algorithms for Nearest Neighbor Search: Lecture 4 Yury Lifshits http://yury.name Steklov Institute of Mathematics at St.Petersburg California Institute of Technology Making Nearest

More information

Performance and Scalability. Lars Karlsson

Performance and Scalability. Lars Karlsson Performance and Scalability Lars Karlsson Outline Complexity analysis Runtime, speedup, efficiency Amdahl s Law and scalability Cost and overhead Cost optimality Iso-efficiency function Case study: matrix

More information

Algorithms for Calculating Statistical Properties on Moving Points

Algorithms for Calculating Statistical Properties on Moving Points Algorithms for Calculating Statistical Properties on Moving Points Dissertation Proposal Sorelle Friedler Committee: David Mount (Chair), William Gasarch Samir Khuller, Amitabh Varshney January 14, 2009

More information

Recap & Interval Scheduling

Recap & Interval Scheduling Lecture 2 Recap & Interval Scheduling Supplemental reading in CLRS: Section 6.; Section 4.4 2. Recap of Median Finding Like MERGE-SORT, the median-of-medians algorithm SELECT calls itself recursively,

More information

Simple Techniques for Improving SGD. CS6787 Lecture 2 Fall 2017

Simple Techniques for Improving SGD. CS6787 Lecture 2 Fall 2017 Simple Techniques for Improving SGD CS6787 Lecture 2 Fall 2017 Step Sizes and Convergence Where we left off Stochastic gradient descent x t+1 = x t rf(x t ; yĩt ) Much faster per iteration than gradient

More information

Multiple-Site Distributed Spatial Query Optimization using Spatial Semijoins

Multiple-Site Distributed Spatial Query Optimization using Spatial Semijoins 11 Multiple-Site Distributed Spatial Query Optimization using Spatial Semijoins Wendy OSBORN a, 1 and Saad ZAAMOUT a a Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge,

More information

Loop Scheduling and Software Pipelining \course\cpeg421-08s\topic-7.ppt 1

Loop Scheduling and Software Pipelining \course\cpeg421-08s\topic-7.ppt 1 Loop Scheduling and Software Pipelining 2008-04-24 \course\cpeg421-08s\topic-7.ppt 1 Reading List Slides: Topic 7 and 7a Other papers as assigned in class or homework: 2008-04-24 \course\cpeg421-08s\topic-7.ppt

More information

CS320 The knapsack problem

CS320 The knapsack problem CS320 The knapsack problem 1 Search and Discrete Optimization Discrete Optimization Problem (S,f) S: space of feasible solutions (satisfying some constraints) f : S R function that maps all feasible solutions

More information

A Gentle Introduction to Reinforcement Learning

A Gentle Introduction to Reinforcement Learning A Gentle Introduction to Reinforcement Learning Alexander Jung 2018 1 Introduction and Motivation Consider the cleaning robot Rumba which has to clean the office room B329. In order to keep things simple,

More information

CS3233 Competitive i Programming

CS3233 Competitive i Programming This course material is now made available for public usage. Special acknowledgement to School of Computing, National University of Singapore for allowing Steven to prepare and distribute these teaching

More information

Sequential Minimal Optimization (SMO)

Sequential Minimal Optimization (SMO) Data Science and Machine Intelligence Lab National Chiao Tung University May, 07 The SMO algorithm was proposed by John C. Platt in 998 and became the fastest quadratic programming optimization algorithm,

More information

Task Assignment. Consider this very small instance: t1 t2 t3 t4 t5 p p p p p

Task Assignment. Consider this very small instance: t1 t2 t3 t4 t5 p p p p p Task Assignment Task Assignment The Task Assignment problem starts with n persons and n tasks, and a known cost for each person/task combination. The goal is to assign each person to an unique task so

More information

Meta-heuristic Solution for Dynamic Association Control in Virtualized Multi-rate WLANs

Meta-heuristic Solution for Dynamic Association Control in Virtualized Multi-rate WLANs Meta-heuristic Solution for Dynamic Association Control in Virtualized Multi-rate WLANs Dawood Sajjadi, Maryam Tanha, Jianping Pan Department of Computer Science, University of Victoria, BC, Canada November

More information

A tabu search algorithm for the minmax regret minimum spanning tree problem with interval data

A tabu search algorithm for the minmax regret minimum spanning tree problem with interval data Noname manuscript No. (will be inserted by the editor) A tabu search algorithm for the minmax regret minimum spanning tree problem with interval data Adam Kasperski Mariusz Makuchowski Pawe l Zieliński

More information

Software for Integer and Nonlinear Optimization

Software for Integer and Nonlinear Optimization Software for Integer and Nonlinear Optimization Sven Leyffer, leyffer@mcs.anl.gov Mathematics & Computer Science Division Argonne National Laboratory Roger Fletcher & Jeff Linderoth Advanced Methods and

More information

EXACT ALGORITHMS FOR THE ATSP

EXACT ALGORITHMS FOR THE ATSP EXACT ALGORITHMS FOR THE ATSP Branch-and-Bound Algorithms: Little-Murty-Sweeney-Karel (Operations Research, ); Bellmore-Malone (Operations Research, ); Garfinkel (Operations Research, ); Smith-Srinivasan-Thompson

More information

Updating PageRank. Amy Langville Carl Meyer

Updating PageRank. Amy Langville Carl Meyer Updating PageRank Amy Langville Carl Meyer Department of Mathematics North Carolina State University Raleigh, NC SCCM 11/17/2003 Indexing Google Must index key terms on each page Robots crawl the web software

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 0, Winter 08 Design and Analysis of Algorithms Lecture 8: Consolidation # (DP, Greed, NP-C, Flow) Class URL: http://vlsicad.ucsd.edu/courses/cse0-w8/ Followup on IGO, Annealing Iterative Global Optimization

More information

Fast SSP Solvers Using Short-Sighted Labeling

Fast SSP Solvers Using Short-Sighted Labeling Luis Pineda, Kyle H. Wray and Shlomo Zilberstein College of Information and Computer Sciences, University of Massachusetts, Amherst, USA July 9th Introduction Motivation SSPs are a highly-expressive model

More information

Decision Trees: Overfitting

Decision Trees: Overfitting Decision Trees: Overfitting Emily Fox University of Washington January 30, 2017 Decision tree recap Loan status: Root 22 18 poor 4 14 Credit? Income? excellent 9 0 3 years 0 4 Fair 9 4 Term? 5 years 9

More information

Distributed Box-Constrained Quadratic Optimization for Dual Linear SVM

Distributed Box-Constrained Quadratic Optimization for Dual Linear SVM Distributed Box-Constrained Quadratic Optimization for Dual Linear SVM Lee, Ching-pei University of Illinois at Urbana-Champaign Joint work with Dan Roth ICML 2015 Outline Introduction Algorithm Experiments

More information

The sample complexity of agnostic learning with deterministic labels

The sample complexity of agnostic learning with deterministic labels The sample complexity of agnostic learning with deterministic labels Shai Ben-David Cheriton School of Computer Science University of Waterloo Waterloo, ON, N2L 3G CANADA shai@uwaterloo.ca Ruth Urner College

More information