Robust optimization for resource-constrained project scheduling with uncertain activity durations

Size: px
Start display at page:

Download "Robust optimization for resource-constrained project scheduling with uncertain activity durations"

Transcription

1 Robust optimization for resource-constrained project scheduling with uncertain activity durations Christian Artigues 1, Roel Leus 2 and Fabrice Talla Nobibon 2 1 LAAS-CNRS, Université de Toulouse, France 2 Research group ORSTAT, Faculty of Business and Economics, K.U.Leuven, Leuven, Belgium partly funded by ANR Blanc program ROBOCOOP project - ANR-08-BLAN

2 1 Robust optimization Resource-constrained project scheduling Robust project scheduling Problem complexity and issues 2 Restriction to extreme scenarios Lower and upper bounds for maximal Integer linear programming for maximal regret evaluation 3

3 Robust combinatorial optimization Robust optimization Resource-constrained project scheduling Robust project scheduling Problem complexity and issues Combinatorial optimization and uncertainty scenarios Combinatorial Optimization Problem : min x X {0,1} n cx. Suppose c is uncertain with c C, set of uncertainty scenarios. Minimax cost or minimax regret Robust combinatorial optimization consists in Minimize the worst cost over all scenarios min x X max c C cx Minimize the worst absolute regret over all scenarios min x X max c C (cx min y X cy) Minimize the worst relative regret over all scenarios min x X max c C (cx min y X cy) min y X cy

4 Resource-constrained project scheduling Robust optimization Resource-constrained project scheduling Robust project scheduling Problem complexity and issues Denition V = {0, 1,..., n, n + 1}, set of activities (project) with 0 dummmy start activity and n + 1 dummy end activity, p i duration of activity i V, R set of resources, b k, availability of resource k R, b ik demand of activity i for resource k R, E precedence constraints, S i start time of i (to be determined) RCPSP (Resource-Constrained Project Scheduling Problem) : Minimize total project duration subject to precedence and resource constraints.

5 conceptual RCPSP formulation Robust optimization Resource-constrained project scheduling Robust project scheduling Problem complexity and issues Decision : set activity start times (S R n+2 ) S : (innite) set of feasible schedules = set of vectors S R n+2 verifying S j S i + p i (i, j) E (1) s j t<s j +p i b ik B k t 0, k R (2) S j 0 i V (3) Formulation 1 (direct) (RCPSP) min S S S n+1

6 Robust optimization Resource-constrained project scheduling Robust project scheduling Problem complexity and issues RCPSP as a combinatorial optimization problem Decision variables : select a feasible selection X V 2 (set of activity pairs representing additional precedence constraints) A selection X V 2 is feasible if S(X ) S with S(X ) = {S 0 S j S i + p i, (i, j) E X }, the set of start times verifying the precedence constraints. X : set of feasible selection. C max (X ) : length of the longest path in G(V, E X ) (each arc having a length equal to origin activity duration). Formulation 2 (Combinatorial optimization) (RCPSP) min X X C max (X )

7 Uncertain duration and selections Robust optimization Resource-constrained project scheduling Robust project scheduling Problem complexity and issues For each activity i, uncertain duration p i P i with P i nite continuous (interval) or discrete set. C max (X, p) : length of the longest path in G(V, X E) (each arc having a length equal to origin activity duration in scenario p). A selection is feasible for any duration scenario. A selection denes a policy for scheduling under uncertain durations (Earliest-Start policy).

8 Robust optimization Resource-constrained project scheduling Robust project scheduling Problem complexity and issues Robust resource-constrained project scheduling problem Absolute regret of a selection X for a duration scenario p : RA(X, p) = (C max (X, p) min Y X C max (Y, p)) Minimax absolute regret resource-constrained project scheduling problem (AR RCPSP) min X X max p P RA(X, p) Relative regret of a selection X for a duration scenario p : RR(X, p) = (Cmax(X,p) min Y X C max(y,p)) min Y X C max(y,p) Minimax relative regret resource-constrained project scheduling problem (RR RCPSP) min X X max p P RR(X, p)

9 Problem complexity and issues Robust optimization Resource-constrained project scheduling Robust project scheduling Problem complexity and issues Complexity Given a selection X and a durations scenario p, computing the absolute regret RA(X, p) or the relative regret RR(X, p) is NP-hard (RCPSP). Issues : Compute lower bounds and upper bound of the minimax regret? Propose a solution method that can be used in practice?

10 Restriction to extreme scenarios Lower and upper bounds for maximal Integer linear programming for maximal regret evaluation absolute maximal regret : restriction to extreme scenarios Let pi min P i. (pi max ) denote the minimum (maximum) element of A scenario p is extreme if p i = pi min activity i V. Theorem or p i = p max i for any Given a selection X, absolute maximal regret is reached on an extreme scenario.

11 Restriction to extreme scenarios Lower and upper bounds for maximal Integer linear programming for maximal regret evaluation Relative maximal regret and extreme scenarios Counterexample Let n = 2, P 1 = {2, 3, 6} and P 2 = {1, 3, 5}, no precedence constraints, no resource constraints. For any scenario, optimal makespan is C max(p) = max(p 1, p 2 ). Let X = {(1, 2)}. C max (X, p) = p 1 + p 2. Absolute regret of X for a scenario p is RA(X, p) = p 1 + p 2 max(p 1, p 2 ) of maximum set by p 1 = 6 and p 2 = 5. Relative regret if X for a scenario p is RR(X, p) = p 1+p 2 max(p 1,p 2 ) 1 of maximum set by unique scenario p 1 = p 2 = 3, which is not extreme.

12 Restriction to extreme scenarios Lower and upper bounds for maximal Integer linear programming for maximal regret evaluation Maximal regret lower bound Let Y denote a feasible selection. ra(x, Y ) = max p P (C max (X, p) C max (Y, p)) rr(x, Y ) = max p P C max(x,p) C max(y,p) C max(y,p) ra(x, Y ) (rr(x, Y )) is the largest absolute (relative) dierence between the longest path lengths in G(V, E X ) and G(V, E Y ). Lower bounds for absolute and relative maximal regrets If Y is a feasible selection, max p P RA(X, p) ra(x, Y ) and max p P RR(X, p) rr(x, Y )

13 Maximal regret upper bounds Restriction to extreme scenarios Lower and upper bounds for maximal Integer linear programming for maximal regret evaluation A necessary selection Y is a (non-necessarily feasible) selection such that p P, C max (Y, p) is a lower bound of C max(p). A trivial necessary selection is obtained by setting Y =. Absolute and relative maximal regret upper bounds If Y is a necessary selection, max p P RA(X, p) ra(x, Y ) et max p P RR(X, p) rr(x, Y ) Open problems : complexity of ra(x, Y ) and rr(x, Y ) computations.

14 Restriction to extreme scenarios Lower and upper bounds for maximal Integer linear programming for maximal regret evaluation Integer linear programming for absolute maximal regret evaluation Simultaneous computation of the maximal regret and of the optimal RCPSP solution Variable a i {0, 1} for selection of minimun or maximum duration. Continuous ow variables φ min ij [0, a i ] and φ max ij [0, 1 a i ] for longest path length computation in G(V, E X ). Continuous start time variables S i for the optimal RCPSP solution under scenario p set by a i variables. Variables y ij {0, 1} for the optimal selection corresponding to the optimal solution given by S i Continuous resource ow variables f ijk for feasibility conditions of the selection Y. Multi-mode RCPSP with a composite linear objective function

15 Restriction to extreme scenarios Lower and upper bounds for maximal Integer linear programming for maximal regret evaluation ILP for maximal regret computation (extract) RA (X ) = max (i,j) E X p min i φ min ij + p max i φ max ij S n+1 s.c. : φ min ij + φ max ij = φ min ji + φ max ji i V \ {0, n + 1} (i,j) E X (j,i) E X φ min 0j + φ max 0j = φ min j,n+1 + φmax j,n+1 = 1 (0,j) E X (j,n+1) E X φ max ij a i, φ min ij 1 a i i V \ {0, n + 1} (i,j) E X (i,j) E X φ min ij, φ max ij 0 (i, j) E X S j S i + (1 a i )p min i + a i p max i M(1 y ij ) (i, j) E S 0 = 0 a i {0, 1} a 0 = a n+1 = 0 Y X i V

16 AR-RCPSP formulation by explicit consideration of all scenarios Let p 1,..., p h,..., p P be the list of all scenarios : ρ = min ρ ρ S h n+1 C max (ph ) p h P S h j S h i + p h i M(1 x ij ) (i, j) V V, i j, p h P S h i 0 i V, p h P X X considering a subset of scenarios P P lead to a lower bound of the minimax absolute regret. We propose an iterative scenario relaxation-based method to solve the AR-RCPSP, progressively increasing the lower bound.

17 First scenario relaxation-based algorithm 1: set UB = and LB = 0. 2: select a scenario p 1 (e.g. p min ) and solve the RCPSP. P {p 1 }. h 1. 3: Solve the AR-RCPSP with P and obtain a lower bound LB and a selection X. 4: If LB = UB, Stop. 5: Else compute the maximal regret of X solving the multi-mode RCPSP, update upper bound UB, get scenario p h+1 and optimal makespan C max(p h+1 ). h h : If LB = UB, Stop. 7: Else insert p h+1 in P and return to step 2. Converges in at most 2 n iterations. (see also Assavapokee et al. (COR 35(6), , 2008)) for a general robust optimization method)

18 Variant of the scenario relaxation-based algorithm 1: select a scenario p 1 (e.g. p min ) and solve the RCPSP. P {p 1 }. h 1. 2: Solve the AR-RCPSP with P and obtain a lower bound LB and a selection X. 3: If LB = UB, Stop. 4: Else nd a solution of the multimode RCPSP with an objective larger than LB, and get corresponding scenario p h+1. h h : If a solution was found, solve the RCPSP to obtain C max(p h+1 ), insert p h+1 in P and return to step 2. 6: Else Stop. Advantages : The multi-mode RCPSP has not to be solved optimally Drawback : A RCPSP has to be solved at each iteration.

19 Preliminary numerical experiments Two examples i p min i p max i b i1 b i2 Γ i , b k 7 4 i p min p max b i i i1 b i2 b i3 b i4 Γ i , 8, , 6, , 5, b k

20 Results Algorithm 1 solves example 1 in 9 iterations and 9.3 seconds and example 2 in 7 iterations and 2801 seconds. Algorithm 2 solves example 1 in 9 iterations and 4.8 seconds and example 2 in 13 iterations and 1843 seconds. The proposed variant seems faster than the algorithm inpired by Assavapokee et al.

21 Conclusion Denition of the robust RCPSP based on selection representation. Results for the minimax regret RCPSP with uncertain duration : structural properties and improvement of general-purpose scenario relaxation-based robust optimization methods. Towards a practical robust optimization algorithm. Improve lower bound computations and design of a scenario relaxation-based heuristic. Necessity of considering less conservative approaches (Bertsimas et Sim, Math Prog, 2004,...).

Event-based MIP models for the resource constrained project scheduling problem

Event-based MIP models for the resource constrained project scheduling problem Event-based MIP models for the resource constrained project scheduling problem Oumar Koné, Christian Artigues, Pierre Lopez LAAS-CNRS, Université de Toulouse, France Marcel Mongeau IMT, Université de Toulouse,

More information

A note on time-indexed formulations for the resource-constrained project scheduling problem

A note on time-indexed formulations for the resource-constrained project scheduling problem A note on time-indexed formulations for the resource-constrained project scheduling problem Christian Artigues To cite this version: Christian Artigues. A note on time-indexed formulations for the resource-constrained

More information

Event-based formulations for the RCPSP with production and consumption of resources

Event-based formulations for the RCPSP with production and consumption of resources Event-based formulations for the RCPSP with production and consumption of resources Oumar KONE 1, Christian ARTIGUES 1, Pierre LOPEZ 1, and Marcel MONGEAU 2 May 2010 1: CNRS ; LAAS ; 7 avenue du colonel

More information

Complexity analysis of the discrete sequential search problem with group activities

Complexity analysis of the discrete sequential search problem with group activities Complexity analysis of the discrete sequential search problem with group activities Coolen K, Talla Nobibon F, Leus R. KBI_1313 Complexity analysis of the discrete sequential search problem with group

More information

Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem

Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem Nicolas Jozefowiez 1, Gilbert Laporte 2, Frédéric Semet 3 1. LAAS-CNRS, INSA, Université de Toulouse, Toulouse, France,

More information

The proactive and reactive resource-constrained project scheduling problem: the crucial role of buffer-based reactions

The proactive and reactive resource-constrained project scheduling problem: the crucial role of buffer-based reactions The proactive and reactive resource-constrained project scheduling problem: the crucial role of buffer-based reactions Davari M, Demeulemeester E. KBI_1707 The proactive and reactive resource-constrained

More information

Multi-Skill Resource-Constrained Project Scheduling: Formulation and Inequalities

Multi-Skill Resource-Constrained Project Scheduling: Formulation and Inequalities Multi-Skill Resource-Constrained Project Scheduling: Formulation and Inequalities Isabel Correia, Lídia Lampreia Lourenço and Francisco Saldanha-da-Gama CIO Working Paper 17/2008 Multi-Skill Resource-Constrained

More information

A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint

A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint Joachim Breit Department of Information and Technology Management, Saarland University,

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Sito web: http://home.deib.polimi.it/amaldi/ott-13-14.shtml A.A. 2013-14 Edoardo

More information

Flow Shop and Job Shop Models

Flow Shop and Job Shop Models Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 11 Flow Shop and Job Shop Models 1. Flow Shop 2. Job Shop Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Outline Resume Permutation

More information

Scheduling with AND/OR Precedence Constraints

Scheduling with AND/OR Precedence Constraints Scheduling with AND/OR Precedence Constraints Seminar Mathematische Optimierung - SS 2007 23th April 2007 Synthesis synthesis: transfer from the behavioral domain (e. g. system specifications, algorithms)

More information

The Tactical Berth Allocation Problem with Quay-Crane Assignment and Transshipment Quadratic Costs

The Tactical Berth Allocation Problem with Quay-Crane Assignment and Transshipment Quadratic Costs The Tactical Berth Allocation Problem with Quay-Crane Assignment and Transshipment Quadratic Costs Models and Heuristics Ilaria Vacca Transport and Mobility Laboratory, EPFL joint work with Matteo Salani,

More information

Recognizing single-peaked preferences on aggregated choice data

Recognizing single-peaked preferences on aggregated choice data Recognizing single-peaked preferences on aggregated choice data Smeulders B. KBI_1427 Recognizing Single-Peaked Preferences on Aggregated Choice Data Smeulders, B. Abstract Single-Peaked preferences play

More information

Decision Diagrams for Discrete Optimization

Decision Diagrams for Discrete Optimization Decision Diagrams for Discrete Optimization Willem Jan van Hoeve Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/ Acknowledgments: David Bergman, Andre Cire, Samid

More information

PMS 2012 April Leuven

PMS 2012 April Leuven The multiagent project scheduling problem: complexity of finding a minimum-makespan Nash equilibrium C. Briand A. Agnetis and J.-C Billaut (briand@laas.fr, agnetis@dii.unisi.it, billaut@univ-tours.fr)

More information

Scheduling Markovian PERT networks to maximize the net present value: new results

Scheduling Markovian PERT networks to maximize the net present value: new results Scheduling Markovian PERT networks to maximize the net present value: new results Hermans B, Leus R. KBI_1709 Scheduling Markovian PERT networks to maximize the net present value: New results Ben Hermans,a

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

Robust Partial Order Schedules for RCPSP/max with Durational Uncertainty

Robust Partial Order Schedules for RCPSP/max with Durational Uncertainty Robust Partial Order Schedules for RCPSP/max with Durational Uncertainty Na Fu and Pradeep Varakantham and Hoong Chuin Lau School of Information Systems, Singapore Management University 80 Stamford Road,

More information

A new ILS algorithm for parallel machine scheduling problems

A new ILS algorithm for parallel machine scheduling problems J Intell Manuf (2006) 17:609 619 DOI 10.1007/s10845-006-0032-2 A new ILS algorithm for parallel machine scheduling problems Lixin Tang Jiaxiang Luo Received: April 2005 / Accepted: January 2006 Springer

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml Academic year 2016-17

More information

Column Generation. i = 1,, 255;

Column Generation. i = 1,, 255; Column Generation The idea of the column generation can be motivated by the trim-loss problem: We receive an order to cut 50 pieces of.5-meter (pipe) segments, 250 pieces of 2-meter segments, and 200 pieces

More information

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Definition: An Integer Linear Programming problem is an optimization problem of the form (ILP) min

More information

Robust Local Search for Solving RCPSP/max with Durational Uncertainty

Robust Local Search for Solving RCPSP/max with Durational Uncertainty Journal of Artificial Intelligence Research 43 (2012) 43-86 Submitted 07/11; published 01/12 Robust Local Search for Solving RCPSP/max with Durational Uncertainty Na Fu Hoong Chuin Lau Pradeep Varakantham

More information

Contents college 5 and 6 Branch and Bound; Beam Search (Chapter , book)! general introduction

Contents college 5 and 6 Branch and Bound; Beam Search (Chapter , book)! general introduction Contents college 5 and 6 Branch and Bound; Beam Search (Chapter 3.4-3.5, book)! general introduction Job Shop Scheduling (Chapter 5.1-5.3, book) ffl branch and bound (5.2) ffl shifting bottleneck heuristic

More information

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on 6117CIT - Adv Topics in Computing Sci at Nathan 1 Algorithms The intelligence behind the hardware Outline! Approximation Algorithms The class APX! Some complexity classes, like PTAS and FPTAS! Illustration

More information

ILP Formulations for the Lazy Bureaucrat Problem

ILP Formulations for the Lazy Bureaucrat Problem the the PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France, CNRS, LAMSADE UMR 7243 Department of Statistics and Operations Research, University of Vienna, Vienna, Austria EURO 2015, 12-15 July,

More information

Complexity analysis of job-shop scheduling with deteriorating jobs

Complexity analysis of job-shop scheduling with deteriorating jobs Discrete Applied Mathematics 117 (2002) 195 209 Complexity analysis of job-shop scheduling with deteriorating jobs Gur Mosheiov School of Business Administration and Department of Statistics, The Hebrew

More information

Ant Colony Optimization for Resource-Constrained Project Scheduling

Ant Colony Optimization for Resource-Constrained Project Scheduling Ant Colony Optimization for Resource-Constrained Project Scheduling Daniel Merkle, Martin Middendorf 2, Hartmut Schmeck 3 Institute for Applied Computer Science and Formal Description Methods University

More information

Robust Local Search and Its Application to Generating Robust Schedules

Robust Local Search and Its Application to Generating Robust Schedules Robust Local Search and Its Application to Generating Robust Schedules Hoong Chuin LAU School of Information Systems Singapore Management University Thomas OU The Logistics Institute Asia Pacific National

More information

A new robust approach for a production scheduling and delivery routing problem

A new robust approach for a production scheduling and delivery routing problem A new robust approach for a production scheduling and delivery routing problem Azeddine Cheref, Christian Artigues, Jean-Charles Billaut To cite this version: Azeddine Cheref, Christian Artigues, Jean-Charles

More information

Combinatorial optimization problems

Combinatorial optimization problems Combinatorial optimization problems Heuristic Algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Optimization In general an optimization problem can be formulated as:

More information

Pseudo-polynomial algorithms for min-max and min-max regret problems

Pseudo-polynomial algorithms for min-max and min-max regret problems Pseudo-polynomial algorithms for min-max and min-max regret problems Hassene Aissi Cristina Bazgan Daniel Vanderpooten LAMSADE, Université Paris-Dauphine, France {aissi,bazgan,vdp}@lamsade.dauphine.fr

More information

2. Project management

2. Project management 2. Project management In what follows, we consider production processes where only a single item of a specific product is produced in the planning horizon In this case specific instruments for planning

More information

Linear and Integer Programming - ideas

Linear and Integer Programming - ideas Linear and Integer Programming - ideas Paweł Zieliński Institute of Mathematics and Computer Science, Wrocław University of Technology, Poland http://www.im.pwr.wroc.pl/ pziel/ Toulouse, France 2012 Literature

More information

Job Sequencing with One Common and Multiple Secondary Resources: A Problem Motivated from Particle Therapy for Cancer Treatment

Job Sequencing with One Common and Multiple Secondary Resources: A Problem Motivated from Particle Therapy for Cancer Treatment Job Sequencing with One Common and Multiple Secondary Resources: A Problem Motivated from Particle Therapy for Cancer Treatment Matthias Horn 1, Günther Raidl 1, and Christian Blum 2 1 Institute of Computer

More information

Marjan van den Akker. Han Hoogeveen Jules van Kempen

Marjan van den Akker. Han Hoogeveen Jules van Kempen Parallel machine scheduling through column generation: minimax objective functions, release dates, deadlines, and/or generalized precedence constraints Marjan van den Akker Han Hoogeveen Jules van Kempen

More information

4 Sequencing problem with heads and tails

4 Sequencing problem with heads and tails 4 Sequencing problem with heads and tails In what follows, we take a step towards multiple stage problems Therefore, we consider a single stage where a scheduling sequence has to be determined but each

More information

A Column Generation Based Destructive Lower Bound for Resource Constrained Project Scheduling Problems.

A Column Generation Based Destructive Lower Bound for Resource Constrained Project Scheduling Problems. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221353491 A Column Generation Based Destructive Lower Bound for Resource Constrained Project

More information

A Branch and Bound Algorithm for the Project Duration Problem Subject to Temporal and Cumulative Resource Constraints

A Branch and Bound Algorithm for the Project Duration Problem Subject to Temporal and Cumulative Resource Constraints A Branch and Bound Algorithm for the Project Duration Problem Subject to Temporal and Cumulative Resource Constraints Christoph Schwindt Institut für Wirtschaftstheorie und Operations Research University

More information

On the Approximate Linear Programming Approach for Network Revenue Management Problems

On the Approximate Linear Programming Approach for Network Revenue Management Problems On the Approximate Linear Programming Approach for Network Revenue Management Problems Chaoxu Tong School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853,

More information

Single machine scheduling with forbidden start times

Single machine scheduling with forbidden start times 4OR manuscript No. (will be inserted by the editor) Single machine scheduling with forbidden start times Jean-Charles Billaut 1 and Francis Sourd 2 1 Laboratoire d Informatique Université François-Rabelais

More information

Math Models of OR: Branch-and-Bound

Math Models of OR: Branch-and-Bound Math Models of OR: Branch-and-Bound John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Branch-and-Bound 1 / 15 Branch-and-Bound Outline 1 Branch-and-Bound

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock, crew scheduling, vehicle

More information

A branch and bound method for the job-shop problem with sequence-dependent setup times

A branch and bound method for the job-shop problem with sequence-dependent setup times A branch and bound method for the job-shop problem with sequence-dependent setup times Christian Artigues, Dominique Feillet To cite this version: Christian Artigues, Dominique Feillet. A branch and bound

More information

Metode şi Algoritmi de Planificare (MAP) Curs 2 Introducere în problematica planificării

Metode şi Algoritmi de Planificare (MAP) Curs 2 Introducere în problematica planificării Metode şi Algoritmi de Planificare (MAP) 2009-2010 Curs 2 Introducere în problematica planificării 20.10.2009 Metode si Algoritmi de Planificare Curs 2 1 Introduction to scheduling Scheduling problem definition

More information

A robust approach to the chance-constrained knapsack problem

A robust approach to the chance-constrained knapsack problem A robust approach to the chance-constrained knapsack problem Olivier Klopfenstein 1,2, Dritan Nace 2 1 France Télécom R&D, 38-40 rue du gl Leclerc, 92794 Issy-les-Moux cedex 9, France 2 Université de Technologie

More information

Complexity of the min-max and min-max regret assignment problems

Complexity of the min-max and min-max regret assignment problems Complexity of the min-max and min-max regret assignment problems Hassene Aissi Cristina Bazgan Daniel Vanderpooten LAMSADE, Université Paris-Dauphine Place du Maréchal de Lattre de Tassigny, 75775 Paris

More information

Table of Contents. Best-Case Lower Bounds in a Group Sequence for the Job Shop Problem. Group Sequencing. Introduction IFAC 2008 WC

Table of Contents. Best-Case Lower Bounds in a Group Sequence for the Job Shop Problem. Group Sequencing. Introduction IFAC 2008 WC Table of Contents Best-Case Lower Bounds in a Group Sequence for the Job Shop Problem 1 Introduction Group Sequencing Guillaume Pinot Nasser Mebarki 3 The Best-Case Completion Time of an Operation IRCCyN

More information

Modeling Uncertainty in Linear Programs: Stochastic and Robust Linear Programming

Modeling Uncertainty in Linear Programs: Stochastic and Robust Linear Programming Modeling Uncertainty in Linear Programs: Stochastic and Robust Programming DGA PhD Student - PhD Thesis EDF-INRIA 10 November 2011 and motivations In real life, Linear Programs are uncertain for several

More information

Methods and Models for Combinatorial Optimization

Methods and Models for Combinatorial Optimization Methods and Models for Combinatorial Optimization Modeling by Linear Programming Luigi De Giovanni, Marco Di Summa Dipartimento di Matematica, Università di Padova De Giovanni, Di Summa MeMoCO 1 / 35 Mathematical

More information

Average-Case Performance Analysis of Online Non-clairvoyant Scheduling of Parallel Tasks with Precedence Constraints

Average-Case Performance Analysis of Online Non-clairvoyant Scheduling of Parallel Tasks with Precedence Constraints Average-Case Performance Analysis of Online Non-clairvoyant Scheduling of Parallel Tasks with Precedence Constraints Keqin Li Department of Computer Science State University of New York New Paltz, New

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

On the Chvatál-Complexity of Binary Knapsack Problems. Gergely Kovács 1 Béla Vizvári College for Modern Business Studies, Hungary

On the Chvatál-Complexity of Binary Knapsack Problems. Gergely Kovács 1 Béla Vizvári College for Modern Business Studies, Hungary On the Chvatál-Complexity of Binary Knapsack Problems Gergely Kovács 1 Béla Vizvári 2 1 College for Modern Business Studies, Hungary 2 Eastern Mediterranean University, TRNC 2009. 1 Chvátal Cut and Complexity

More information

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling Department of Mathematics, Linköping University Jessika Boberg LiTH-MAT-EX 2017/18 SE Credits: Level:

More information

Operator assignment problem in aircraft assembly lines: a new planning approach taking into account economic and ergonomic constraints

Operator assignment problem in aircraft assembly lines: a new planning approach taking into account economic and ergonomic constraints Operator assignment problem in aircraft assembly lines: a new planning approach taking into account economic and ergonomic constraints Dmitry Arkhipov, Olga Battaïa, Julien Cegarra, Alexander Lazarev May

More information

Zebo Peng Embedded Systems Laboratory IDA, Linköping University

Zebo Peng Embedded Systems Laboratory IDA, Linköping University TDTS 01 Lecture 8 Optimization Heuristics for Synthesis Zebo Peng Embedded Systems Laboratory IDA, Linköping University Lecture 8 Optimization problems Heuristic techniques Simulated annealing Genetic

More information

Climbing discrepancy search for flowshop and jobshop scheduling with time-lags

Climbing discrepancy search for flowshop and jobshop scheduling with time-lags Climbing discrepancy search for flowshop and jobshop scheduling with time-lags Wafa Karoui, Marie-José Huguet, Pierre Lopez, Mohamed Haouari To cite this version: Wafa Karoui, Marie-José Huguet, Pierre

More information

Approximation complexity of min-max (regret) versions of shortest path, spanning tree, and knapsack

Approximation complexity of min-max (regret) versions of shortest path, spanning tree, and knapsack Approximation complexity of min-max (regret) versions of shortest path, spanning tree, and knapsack Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten LAMSADE, Université Paris-Dauphine, France {aissi,bazgan,vdp}@lamsade.dauphine.fr

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making (discrete optimization) problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock,

More information

Nash equilibria for the multi-agent project scheduling problem with controllable processing times

Nash equilibria for the multi-agent project scheduling problem with controllable processing times Nash equilibria for the multi-agent project scheduling problem with controllable processing times Alessandro Agnetis 1, Cyril Briand 2,3, Jean-Charles Billaut 4, Přemysl Šůcha2,3,5 1 Università di Siena

More information

Introduction into Vehicle Routing Problems and other basic mixed-integer problems

Introduction into Vehicle Routing Problems and other basic mixed-integer problems Introduction into Vehicle Routing Problems and other basic mixed-integer problems Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical

More information

Introduction to Integer Programming

Introduction to Integer Programming Lecture 3/3/2006 p. /27 Introduction to Integer Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Lecture 3/3/2006 p. 2/27 Contents IP formulations and examples Total unimodularity

More information

Notes on Dantzig-Wolfe decomposition and column generation

Notes on Dantzig-Wolfe decomposition and column generation Notes on Dantzig-Wolfe decomposition and column generation Mette Gamst November 11, 2010 1 Introduction This note introduces an exact solution method for mathematical programming problems. The method is

More information

The treatment of uncertainty in uniform workload distribution problems

The treatment of uncertainty in uniform workload distribution problems The treatment of uncertainty in uniform workload distribution problems tefan PE KO, Roman HAJTMANEK University of šilina, Slovakia 34 th International Conference Mathematical Methods in Economics Liberec,

More information

Dynamic Scheduling with Genetic Programming

Dynamic Scheduling with Genetic Programming Dynamic Scheduling with Genetic Programming Domago Jakobović, Leo Budin domago.akobovic@fer.hr Faculty of electrical engineering and computing University of Zagreb Introduction most scheduling problems

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling.

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling. Algorithm Design Scheduling Algorithms Part 2 Parallel machines. Open-shop Scheduling. Job-shop Scheduling. 1 Parallel Machines n jobs need to be scheduled on m machines, M 1,M 2,,M m. Each machine can

More information

Using column generation to solve parallel machine scheduling problems with minmax objective functions

Using column generation to solve parallel machine scheduling problems with minmax objective functions Using column generation to solve parallel machine scheduling problems with minmax objective functions J.M. van den Akker J.A. Hoogeveen Department of Information and Computing Sciences Utrecht University

More information

LIGHT ROBUSTNESS. Matteo Fischetti, Michele Monaci. DEI, University of Padova. 1st ARRIVAL Annual Workshop and Review Meeting, Utrecht, April 19, 2007

LIGHT ROBUSTNESS. Matteo Fischetti, Michele Monaci. DEI, University of Padova. 1st ARRIVAL Annual Workshop and Review Meeting, Utrecht, April 19, 2007 LIGHT ROBUSTNESS Matteo Fischetti, Michele Monaci DEI, University of Padova 1st ARRIVAL Annual Workshop and Review Meeting, Utrecht, April 19, 2007 Work supported by the Future and Emerging Technologies

More information

Downloaded 03/01/17 to Redistribution subject to SIAM license or copyright; see

Downloaded 03/01/17 to Redistribution subject to SIAM license or copyright; see SIAM J. DISCRETE MATH. Vol. 31, No. 1, pp. 335 382 c 2017 Society for Industrial and Applied Mathematics PARTITION CONSTRAINED COVERING OF A SYMMETRIC CROSSING SUPERMODULAR FUNCTION BY A GRAPH ATTILA BERNÁTH,

More information

SEQUENCING A SINGLE MACHINE WITH DUE DATES AND DEADLINES: AN ILP-BASED APPROACH TO SOLVE VERY LARGE INSTANCES

SEQUENCING A SINGLE MACHINE WITH DUE DATES AND DEADLINES: AN ILP-BASED APPROACH TO SOLVE VERY LARGE INSTANCES SEQUENCING A SINGLE MACHINE WITH DUE DATES AND DEADLINES: AN ILP-BASED APPROACH TO SOLVE VERY LARGE INSTANCES PH. BAPTISTE, F. DELLA CROCE, A. GROSSO, AND V. T KINDT Abstract. We consider the problem of

More information

Static priority scheduling

Static priority scheduling Static priority scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017 Some slides are derived from lectures

More information

15-780: LinearProgramming

15-780: LinearProgramming 15-780: LinearProgramming J. Zico Kolter February 1-3, 2016 1 Outline Introduction Some linear algebra review Linear programming Simplex algorithm Duality and dual simplex 2 Outline Introduction Some linear

More information

Introduction to integer programming III:

Introduction to integer programming III: Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability

More information

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems MATHEMATICS OF OPERATIONS RESEARCH Vol. xx, No. x, Xxxxxxx 00x, pp. xxx xxx ISSN 0364-765X EISSN 156-5471 0x xx0x 0xxx informs DOI 10.187/moor.xxxx.xxxx c 00x INFORMS On the Power of Robust Solutions in

More information

Estimating Project Makespan for Multi-critical Paths Networks

Estimating Project Makespan for Multi-critical Paths Networks Estimating Project Makespan for Multi-critical Paths Networks Amnon Gonen Management of Technology Faculty, Holon Institute of Technology H.I.T, Israel agonen@hit.ac.il Abstract- In this study,we concentrate

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

On max-algebraic models for transportation networks

On max-algebraic models for transportation networks K.U.Leuven Department of Electrical Engineering (ESAT) SISTA Technical report 98-00 On max-algebraic models for transportation networks R. de Vries, B. De Schutter, and B. De Moor If you want to cite this

More information

CITS4211 Mid-semester test 2011

CITS4211 Mid-semester test 2011 CITS4211 Mid-semester test 2011 Fifty minutes, answer all four questions, total marks 60 Question 1. (12 marks) Briefly describe the principles, operation, and performance issues of iterative deepening.

More information

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems MATHEMATICS OF OPERATIONS RESEARCH Vol. 35, No., May 010, pp. 84 305 issn 0364-765X eissn 156-5471 10 350 084 informs doi 10.187/moor.1090.0440 010 INFORMS On the Power of Robust Solutions in Two-Stage

More information

Totally unimodular matrices. Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems

Totally unimodular matrices. Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Totally unimodular matrices Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and

More information

An exact approach to early/tardy scheduling with release dates

An exact approach to early/tardy scheduling with release dates Computers & Operations Research 32 (2005) 2905 2917 www.elsevier.com/locate/dsw An exact approach to early/tardy scheduling with release dates Jorge M.S. Valente, Rui A.F.S. Alves Faculdade de Economia,

More information

No-Idle, No-Wait: When Shop Scheduling Meets Dominoes, Eulerian and Hamiltonian Paths

No-Idle, No-Wait: When Shop Scheduling Meets Dominoes, Eulerian and Hamiltonian Paths No-Idle, No-Wait: When Shop Scheduling Meets Dominoes, Eulerian and Hamiltonian Paths J.C. Billaut 1, F.Della Croce 2, Fabio Salassa 2, V. T kindt 1 1. Université Francois-Rabelais, CNRS, Tours, France

More information

Multiperiod Blend Scheduling Problem

Multiperiod Blend Scheduling Problem ExxonMobil Multiperiod Blend Scheduling Problem Juan Pablo Ruiz Ignacio E. Grossmann Department of Chemical Engineering Center for Advanced Process Decision-making University Pittsburgh, PA 15213 1 Motivation

More information

Single-Facility Scheduling by Logic-Based Benders Decomposition

Single-Facility Scheduling by Logic-Based Benders Decomposition Single-Facility Scheduling by Logic-Based Benders Decomposition Elvin Coban J. N. Hooker Tepper School of Business Carnegie Mellon University ecoban@andrew.cmu.edu john@hooker.tepper.cmu.edu September

More information

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1 Branch-and-Bound Leo Liberti LIX, École Polytechnique, France INF431 2011, Lecture p. 1 Reminders INF431 2011, Lecture p. 2 Problems Decision problem: a question admitting a YES/NO answer Example HAMILTONIAN

More information

2 IM Preprint series A, No. 1/2003 If vector x(k) = (x 1 (k) x 2 (k) ::: x n (k)) denotes the time instants in which all jobs started for the k th tim

2 IM Preprint series A, No. 1/2003 If vector x(k) = (x 1 (k) x 2 (k) ::: x n (k)) denotes the time instants in which all jobs started for the k th tim Eigenvectors of interval matrices over max-plus algebra Katarna Cechlarova Institute of mathematics, Faculty ofscience, P.J. Safarik University, Jesenna 5, 041 54 Kosice, Slovakia, e-mail: cechlarova@science.upjs.sk

More information

An Exact Algorithm for the Steiner Tree Problem with Delays

An Exact Algorithm for the Steiner Tree Problem with Delays Electronic Notes in Discrete Mathematics 36 (2010) 223 230 www.elsevier.com/locate/endm An Exact Algorithm for the Steiner Tree Problem with Delays Valeria Leggieri 1 Dipartimento di Matematica, Università

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

P C max. NP-complete from partition. Example j p j What is the makespan on 2 machines? 3 machines? 4 machines?

P C max. NP-complete from partition. Example j p j What is the makespan on 2 machines? 3 machines? 4 machines? Multiple Machines Model Multiple Available resources people time slots queues networks of computers Now concerned with both allocation to a machine and ordering on that machine. P C max NP-complete from

More information

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decomposition: Theory by Troels Martin Range Discussion Papers on Business and Economics No. 10/2006 FURTHER INFORMATION Department of Business

More information

Resource Constrained Project Scheduling Linear and Integer Programming (1)

Resource Constrained Project Scheduling Linear and Integer Programming (1) DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 Resource Constrained Project Linear and Integer Programming (1) Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

Approximating min-max (regret) versions of some polynomial problems

Approximating min-max (regret) versions of some polynomial problems Approximating min-max (regret) versions of some polynomial problems Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten LAMSADE, Université Paris-Dauphine, France {aissi,bazgan,vdp}@lamsade.dauphine.fr

More information

A maritime version of the Travelling Salesman Problem

A maritime version of the Travelling Salesman Problem A maritime version of the Travelling Salesman Problem Enrico Malaguti, Silvano Martello, Alberto Santini May 31, 2015 Plan 1 The Capacitated TSP with Pickup and Delivery 2 The TSPPD with Draught Limits

More information

Robust Scheduling with Logic-Based Benders Decomposition

Robust Scheduling with Logic-Based Benders Decomposition Robust Scheduling with Logic-Based Benders Decomposition Elvin Çoban and Aliza Heching and J N Hooker and Alan Scheller-Wolf Abstract We study project scheduling at a large IT services delivery center

More information

arxiv: v1 [cs.os] 6 Jun 2013

arxiv: v1 [cs.os] 6 Jun 2013 Partitioned scheduling of multimode multiprocessor real-time systems with temporal isolation Joël Goossens Pascal Richard arxiv:1306.1316v1 [cs.os] 6 Jun 2013 Abstract We consider the partitioned scheduling

More information

Robust linear optimization under general norms

Robust linear optimization under general norms Operations Research Letters 3 (004) 50 56 Operations Research Letters www.elsevier.com/locate/dsw Robust linear optimization under general norms Dimitris Bertsimas a; ;, Dessislava Pachamanova b, Melvyn

More information

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem ORIE 633 Network Flows August 30, 2007 Lecturer: David P. Williamson Lecture 3 Scribe: Gema Plaza-Martínez 1 Polynomial-time algorithms for the maximum flow problem 1.1 Introduction Let s turn now to considering

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information