Distributed power allocation for D2D communications underlaying/overlaying OFDMA cellular networks

Size: px
Start display at page:

Download "Distributed power allocation for D2D communications underlaying/overlaying OFDMA cellular networks"

Transcription

1 Distributed power allocation for D2D communications underlaying/overlaying OFDMA cellular networks Marco Moretti, Andrea Abrardo Dipartimento di Ingegneria dell Informazione, University of Pisa, Italy

2 Outline o Introduction o System model o Power allocation in D2D networks n D2D reuse mode (underlay) mode n D2D dedicated (overlay) mode o Numerical results o Conclusions

3 D2D modes o Device-to-device (D2D) communications, coexisting with infrastructured cellular networks, have the potential of enhancing the total cell throughput, reducing power consumption and increasing the instantaneous data rate. o In order to provide the system with maximum flexibility, D2D communications are able to operate in multiple modes: n Dedicated or overlay mode, when the cellular network allocates a fraction of the available resources for the exclusive use of D2D devices; n Reuse or underlay mode, when D2D devices use some of the radio resources together with the UEs of the cellular network.

4 Resource allocation distributed algorithms o In both modes power and resource allocation play a vital role for the performance of the D2D system. o For its nature D2D communications are amenable to a distributed implementation n Smaller control overhead n Computational load distributed among users

5 D2D and cellular network o We consider a scenario where K D2D connections coexist with a cellular network sharing the same bandwidth. o In dedicated mode a fraction of the total available bandwidth is assigned exclusively to D2D transmissions, so that interference between cellular and D2D terminals is completely avoided. o In reuse mode the whole uplink bandwidth is available to each D2D terminal so that D2D nodes and UEs are free to interfere with each other. In this mode the interference from D2D communications to the cellular network must be controlled. This requires a form of centralized control, which actively involves the cellular network.

6 D2D modes D2D interference D2D interference UE interference Cellular UE D2D node (a) Dedicated (overlay) mode (b) Reuse (underlay) mode

7 D2D and interference o The interference between D2D connections is managed through distributed power allocation among D2D terminals, with the goal of minimising control from the base station. o To avoid interference with cellular terminals located in adjacent cells a power mask, i.e., a maximum transmitting power, is imposed to each D2D terminal on each subcarrier. o Interference from cellular terminals to the D2D receivers is treated as uncontrollable additional noise and is assimilated to thermal noise.

8 Power allocation in dedicated mode o Classical rate maximization problem n P R(p )=max p P k K n N log 2 is the set of feasible powers n N is the set of subcarriers dedicated to D2D n Not convex (due to interference at the denominator) n We aim at finding a good local optimum subject to p k,n P k n N P = P 1 P 2 P K 1+ j K\k k K G n k,k p k,n G n j,k p j,n + σ 2 k,n

9 Potential games o A game G(K, {S k } k K, {U k } k K ) is a potential game if it exists a potential S function f such that for any two arbitrary strategies xk,y k S k the following equality holds S U k (x k, s k ) U k (y k, s k )=f(x k, s k ) f(y k, s k ) k K. o In potential games best/better response dynamics ALWAYS converge from any arbitrary initial strategy to a Nash Equilibrium, which is also a (local) maximizer of the potential function.

10 Potential games G ( K {P } o The game G ( K, { P ) k },R(p k, p k ) ) ), where the players are the K D2D rx-tx couples, the { P set of strategies for each player k is P k = { p k P k n N p } k,n P k, the set of all possible power profiles that meet the power constraint P k, and the payoff function is R(p k, p k ), the overall rate maximized with respect to p k is a potential game and the potential function is the payoff itself. o The game G is an identical interest game, a game in which the players utility functions are chosen to be the same

11 Potential games o Best response dynamics: each user tries sequentially to maximize its utility function, the power of other users is fixed. p k =arg max p k P k n N log 2 ( 1+ p k,n i k,n ) }{{} a) + p l,n log 2 1+ l K\k n N i l,k,n + Gn k,l p G n k,n l,l }{{} b) subject to p k,n P k n N k K

12 Potential games o Better response dynamic: each user maximizes!r(p k,p k ;p k (0)) R(p k,p k ) obtained by linearizing the part b) of the rate with its first order Taylor expansion. o Since the part b) of the rate is convex its linear approximation is an under estimator R(p k, p k )

13 Potential games o The linearization yields a new convex problem max p k P k n N log 2 ( 1+ p k,n i k,n subject to p k,n P k n N whose solution is a better response for our problem. o Let y k, and (x k be the old power allocation and the solution of the linearized problem, it holds ) + n N α k,n p k,n R( y k,p k ) = R! ( y k,p k ;y k ) R! ( x k,p k ;y k ) R( x k,p k )

14 The iterative algorithm o The algorithm may converge to different local optima depending on the scheduling order. o Given a generic scheduling order the proposed algorithm is implemented as follows: 1. User k computes the parameters α k,n 2. Solves the linearized problem 3. Stops if convergence is achieved o By trying exhaustively all possible scheduling orders we can find the global optimum or a very close approximation of it.

15 Power allocation for the reuse mode o In this case a new constraint is added to the optimization problem max p P k K n N subject to p k,n P k n N log 2 ( 1+ p k,n i k,n A n k,0p k,n Q n k K k K Since we are considering the uplink, a maximum interference level Q n is tolerated at the BS. ) n N

16 Upper bound for the reuse mode o Lagrangian of the allocation problem is L(p, ν) = k K n N ( log 2 1+ p ) k,n + ( ν n Q n ) A n q,0 i p q,n k,n n N q K { P o A bound for the allocation problem P can be found in the dual domain by computing min ν g(ν) subject to ν 0 where the Lagrangian dual function is g(ν) =max p P L(p, ν).

17 Upper bound for the reuse mode o Computing the Lagrange dual function can be done resorting to the iterative framework developed in the first part. o Given a value of ν, at each iteration user k has to solve the following problem to find g(ν) max p k P k n N log 2 ( 1+ p k,n i k,n ) + n N α k,n p k,n n N ν n A n k,0p k,n o The correct value of ν can be found with the ellipsoid method.

18 Heuristic for the reuse mode o From the upper bound we derive an heuristic: n We use the local maximizer found with game theory to compute an approximated version of the subgradient of the Lagrangian. n The Lagrangian multiplier is updated with the approximated subgradient until convergence o Converges to a feasible point not necessarily optimum.

19 Numerical results o Simulation parameters n Number of cells in the system B = 1,3,7 n Cell radius 500 m n Number of subcarriers reserved in overlay mode N = 8 n Number of D2D couples K = 8 users n Same P max = 0.25 W for all D2D users n D2D couples deployed randomly in each cell, with a tx-rx distance uniformly distributed in the interval [0, D max ], with D max = 100 m.

20 Overlay mode, number of cells B = IADRMP-MS IADRMP SCALE IWF 5 η (bit/s/hz) Channel realization index

21 Overlay mode, number of cells B = IADRMP-MS IADRMP SCALE IWF 5 η (bit/s/hz) Channel realization index

22 Overlay mode, number of cells B = IADRMP-MS IADRMP SCALE IWF 5 η (bit/s/hz) Channel realization index

23 Algorithm s convergence 4.3 IARDMP SCALE IWF 4.1 η (bit/s/hz) Number of iterations

24 Underlay, number of cells B = IADRMPIC-UB IADRMPIC η (bit/s/hz) Channel realization index

25 Underlay, effect of interference constraints η (bit/s/hz) Q max = Q max = Q max = Q max = Q max = Q max = P (W)

26 Comparison of overlay and underlay modes 8 Reuse, Q max = -132 (db) 8 Reuse, Q max = -128 (db) 8 Reuse, Q max = -125 (db) 7 Dedicated, N d = 4 7 Dedicated, N d = 8 7 Dedicated, N d = η (bit/s/hz) η (bit/s/hz) η (bit/s/hz) D max (m) D max (m) D max (m)

27 Conclusions o We have shown that the rate maximization power allocation problem can be formulated as a potential game. o We have proved the convergence of a distributed algorithm for the D2D dedicated mode to a local maximum of the sum rate. o For D2D reuse mode, the allocation problem is formulated with an additional requirement for each subcarrier so that the total interference at the base station generated by the D2D nodes does not exceed a given threshold. o After finding the optimal solution, which is too complex for a practical implementation, we have proposed a heuristic algorithm, which builds on the power allocation algorithm devised for the dedicated D2D mode to find a feasible solution.

Autonomous Uplink Intercell Interference Coordination in OFDMA-based Wireless Systems

Autonomous Uplink Intercell Interference Coordination in OFDMA-based Wireless Systems Autonomous Uplink Intercell Interference Coordination in OFDMA-based Wireless Systems Department of Electronics and Communications Engineering, Egypt WiOpt 11th Intl. Symposium on Modeling and Optimization

More information

Optimal Power Control in Decentralized Gaussian Multiple Access Channels

Optimal Power Control in Decentralized Gaussian Multiple Access Channels 1 Optimal Power Control in Decentralized Gaussian Multiple Access Channels Kamal Singh Department of Electrical Engineering Indian Institute of Technology Bombay. arxiv:1711.08272v1 [eess.sp] 21 Nov 2017

More information

Game Theoretic Approach to Power Control in Cellular CDMA

Game Theoretic Approach to Power Control in Cellular CDMA Game Theoretic Approach to Power Control in Cellular CDMA Sarma Gunturi Texas Instruments(India) Bangalore - 56 7, INDIA Email : gssarma@ticom Fernando Paganini Electrical Engineering Department University

More information

Centralized versus Decentralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks

Centralized versus Decentralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks Centralized versus Decentralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks Mohamad Yassin, Samer Lahoud, Kinda Khawam, Marc Ibrahim, Dany Mezher, Bernard Cousin To cite this

More information

Resource Management and Interference Control in Distributed Multi-Tier and D2D Systems. Ali Ramezani-Kebrya

Resource Management and Interference Control in Distributed Multi-Tier and D2D Systems. Ali Ramezani-Kebrya Resource Management and Interference Control in Distributed Multi-Tier and D2D Systems by Ali Ramezani-Kebrya A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy

More information

AN EXTERNALITY BASED DECENTRALIZED OPTIMAL POWER ALLOCATION SCHEME FOR WIRELESS MESH NETWORKS

AN EXTERNALITY BASED DECENTRALIZED OPTIMAL POWER ALLOCATION SCHEME FOR WIRELESS MESH NETWORKS AN EXTERNALITY BASED DECENTRALIZED OPTIMAL POWER ALLOCATION SCHEME FOR WIRELESS MESH NETWORKS Shruti Sharma and Demos Teneketzis Department of Electrical Engineering and Computer Science University of

More information

On Power Minimization for Non-orthogonal Multiple Access (NOMA)

On Power Minimization for Non-orthogonal Multiple Access (NOMA) On Power Minimization for Non-orthogonal Multiple Access (NOMA) Lei Lei, Di Yuan and Peter Värbrand Journal Article N.B.: When citing this work, cite the original article. 2016 IEEE. Personal use of this

More information

Resource Allocation for D2D Communications with Partial Channel State Information

Resource Allocation for D2D Communications with Partial Channel State Information Resource Allocation for D2D Communications with Partial Channel State Information Anushree Neogi, Prasanna Chaporkar and Abhay Karandikar arxiv:1711.820v2 [cs.it] 8 Nov 27 Abstract Enhancement of system

More information

When does vectored Multiple Access Channels (MAC) optimal power allocation converge to an FDMA solution?

When does vectored Multiple Access Channels (MAC) optimal power allocation converge to an FDMA solution? When does vectored Multiple Access Channels MAC optimal power allocation converge to an FDMA solution? Vincent Le Nir, Marc Moonen, Jan Verlinden, Mamoun Guenach Abstract Vectored Multiple Access Channels

More information

Optimal Power Allocation With Statistical QoS Provisioning for D2D and Cellular Communications Over Underlaying Wireless Networks

Optimal Power Allocation With Statistical QoS Provisioning for D2D and Cellular Communications Over Underlaying Wireless Networks IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, ACCEPTED AND TO APPEAR IN 05 Optimal Power Allocation With Statistical QoS Provisioning for DD and Cellular Communications Over Underlaying Wireless Networks

More information

Optimal Association of Stations and APs in an IEEE WLAN

Optimal Association of Stations and APs in an IEEE WLAN Optimal Association of Stations and APs in an IEEE 802. WLAN Anurag Kumar and Vinod Kumar Abstract We propose a maximum utility based formulation for the problem of optimal association of wireless stations

More information

Improper Gaussian signaling for

Improper Gaussian signaling for Improper Gaussian signaling for multiple-access channels in underlay cognitive radio Christian Lameiro, Member, IEEE, Ignacio Santamaría, Senior Member, IEEE, arxiv:7.09768v [cs.it] 27 Nov 207 and Peter

More information

Distributed Joint Offloading Decision and Resource Allocation for Multi-User Mobile Edge Computing: A Game Theory Approach

Distributed Joint Offloading Decision and Resource Allocation for Multi-User Mobile Edge Computing: A Game Theory Approach Distributed Joint Offloading Decision and Resource Allocation for Multi-User Mobile Edge Computing: A Game Theory Approach Ning Li, Student Member, IEEE, Jose-Fernan Martinez-Ortega, Gregorio Rubio Abstract-

More information

Results on Energy- and Spectral- Efficiency Tradeoff in Cellular Networks with Full-Duplex Enabled Base Stations

Results on Energy- and Spectral- Efficiency Tradeoff in Cellular Networks with Full-Duplex Enabled Base Stations IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. X, MONTH 2017 1 Results on Energy- and Spectral- Efficiency Tradeoff in Cellular Networks with Full-Duplex Enabled Base Stations Dingzhu Wen,

More information

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS The 20 Military Communications Conference - Track - Waveforms and Signal Processing TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS Gam D. Nguyen, Jeffrey E. Wieselthier 2, Sastry Kompella,

More information

Power Control in Multi-Carrier CDMA Systems

Power Control in Multi-Carrier CDMA Systems A Game-Theoretic Approach to Energy-Efficient ower Control in Multi-Carrier CDMA Systems Farhad Meshkati, Student Member, IEEE, Mung Chiang, Member, IEEE, H. Vincent oor, Fellow, IEEE, and Stuart C. Schwartz,

More information

Energy Efficiency and Load Balancing in Next-Generation Wireless Cellular Networks

Energy Efficiency and Load Balancing in Next-Generation Wireless Cellular Networks Energy Efficiency and Load Balancing in Next-Generation Wireless Cellular Networks Kemal Davaslioglu Advisor: Professor Ender Ayanoglu Center for Pervasive Communications and Computing Department of Electrical

More information

Optimal Power Allocation With Statistical QoS Provisioning for D2D and Cellular Communications Over Underlaying Wireless Networks

Optimal Power Allocation With Statistical QoS Provisioning for D2D and Cellular Communications Over Underlaying Wireless Networks Optimal Power Allocation With Statistical QoS Provisioning for D2D and Cellular Communications Over Underlaying Wireless Networks Wenchi Cheng, Xi Zhang, Senior Member, IEEE, and Hailin Zhang, Member,

More information

Alternative Decompositions for Distributed Maximization of Network Utility: Framework and Applications

Alternative Decompositions for Distributed Maximization of Network Utility: Framework and Applications Alternative Decompositions for Distributed Maximization of Network Utility: Framework and Applications Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization

More information

Deep Reinforcement Learning-based Data Transmission for D2D Communications

Deep Reinforcement Learning-based Data Transmission for D2D Communications Deep Reinforcement Learning-based Data Transmission for D2D Communications Achraf Moussaid, Wael Jaafar, Wessam Ajib and Halima Elbiaze Department of Computer Science, Université du Québec à Montréal {jaafarwael,

More information

Random Access Game. Medium Access Control Design for Wireless Networks 1. Sandip Chakraborty. Department of Computer Science and Engineering,

Random Access Game. Medium Access Control Design for Wireless Networks 1. Sandip Chakraborty. Department of Computer Science and Engineering, Random Access Game Medium Access Control Design for Wireless Networks 1 Sandip Chakraborty Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR October 22, 2016 1 Chen

More information

Distributed Geometric-Programming-Based Power Control in Cellular Cognitive Radio Networks

Distributed Geometric-Programming-Based Power Control in Cellular Cognitive Radio Networks Distributed Geometric-Programming-Based Power Control in Cellular Cognitive Radio Networks Qingqing Jin, Dongfeng Yuan, Zhangyu Guan Wireless Mobile Communication and Transmission WMCT Lab School of Information

More information

Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra. Problem Set 6

Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra. Problem Set 6 Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra Problem Set 6 Due: Wednesday, April 6, 2016 7 pm Dropbox Outside Stata G5 Collaboration policy:

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

Thermal Unit Commitment Problem

Thermal Unit Commitment Problem Thermal Unit Commitment Problem Moshe Potsane, Luyanda Ndlovu, Simphiwe Simelane Christiana Obagbuwa, Jesal Kika, Nadine Padayachi, Luke O. Joel Lady Kokela, Michael Olusanya, Martins Arasomwa, Sunday

More information

Channel Allocation Using Pricing in Satellite Networks

Channel Allocation Using Pricing in Satellite Networks Channel Allocation Using Pricing in Satellite Networks Jun Sun and Eytan Modiano Laboratory for Information and Decision Systems Massachusetts Institute of Technology {junsun, modiano}@mitedu Abstract

More information

On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation

On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation Mikael Fallgren Royal Institute of Technology December, 2009 Abstract

More information

Cell throughput analysis of the Proportional Fair scheduler in the single cell environment

Cell throughput analysis of the Proportional Fair scheduler in the single cell environment Cell throughput analysis of the Proportional Fair scheduler in the single cell environment Jin-Ghoo Choi and Seawoong Bahk IEEE Trans on Vehicular Tech, Mar 2007 *** Presented by: Anh H. Nguyen February

More information

Power Control for Sum Rate Maximization on Interference Channels Under Sum Power Constraint

Power Control for Sum Rate Maximization on Interference Channels Under Sum Power Constraint 1 Power Control for Sum Rate Maximization on Interference Channels Under Sum Power Constraint Naveed Ul Hassan, Chau Yuen, Shayan Saeed and Zhaoyang Zhang arxiv:1407.4177v1 [cs.it] 16 Jul 2014 Abstract

More information

A Two-Phase Power Allocation Scheme for CRNs Employing NOMA

A Two-Phase Power Allocation Scheme for CRNs Employing NOMA A Two-Phase Power Allocation Scheme for CRNs Employing NOMA Ming Zeng, Georgios I. Tsiropoulos, Animesh Yadav, Octavia A. Dobre, and Mohamed H. Ahmed Faculty of Engineering and Applied Science, Memorial

More information

Optimization in Wireless Communication

Optimization in Wireless Communication Zhi-Quan (Tom) Luo Department of Electrical and Computer Engineering University of Minnesota 200 Union Street SE Minneapolis, MN 55455 2007 NSF Workshop Challenges Optimization problems from wireless applications

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks

Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks Syracuse University SURFACE Dissertations - ALL SURFACE June 2017 Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks Yi Li Syracuse University Follow this and additional works

More information

Sum-Power Iterative Watefilling Algorithm

Sum-Power Iterative Watefilling Algorithm Sum-Power Iterative Watefilling Algorithm Daniel P. Palomar Hong Kong University of Science and Technolgy (HKUST) ELEC547 - Convex Optimization Fall 2009-10, HKUST, Hong Kong November 11, 2009 Outline

More information

Minimax Problems. Daniel P. Palomar. Hong Kong University of Science and Technolgy (HKUST)

Minimax Problems. Daniel P. Palomar. Hong Kong University of Science and Technolgy (HKUST) Mini Problems Daniel P. Palomar Hong Kong University of Science and Technolgy (HKUST) ELEC547 - Convex Optimization Fall 2009-10, HKUST, Hong Kong Outline of Lecture Introduction Matrix games Bilinear

More information

Centralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks

Centralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks Centralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks Mohamad Yassin, Samer Lahoud, Marc Ibrahim, Kinda Khawam, Dany Mezher, Bernard Cousin University of Rennes, IRISA, Campus

More information

Optimal Hierarchical Radio Resource Management for HetNets with Flexible Backhaul

Optimal Hierarchical Radio Resource Management for HetNets with Flexible Backhaul 1 Optimal Hierarchical Radio Resource Management for HetNets with Flexible Backhaul Naeimeh Omidvar, An Liu, Vincent Lau, Fan Zhang and Mohammad Reza Pakravan Department of Electronic and Computer Engineering,

More information

QoS-Based Power-Efficient Resource Management for LTE-A Networks with Relay Nodes

QoS-Based Power-Efficient Resource Management for LTE-A Networks with Relay Nodes QoS-Based Power-Efficient Resource Management for LTE-A Networks with Relay Nodes Kai-Ten Feng, Tzu-Hao Su, and Tain-Sao Chang Department of Electrical and Computer Engineering National Chiao Tung University,

More information

Fair and Efficient User-Network Association Algorithm for Multi-Technology Wireless Networks

Fair and Efficient User-Network Association Algorithm for Multi-Technology Wireless Networks Fair and Efficient User-Network Association Algorithm for Multi-Technology Wireless Networks Pierre Coucheney, Corinne Touati, Bruno Gaujal INRIA Alcatel-Lucent, LIG Infocom 2009 Pierre Coucheney (INRIA)

More information

Adaptive Distributed Algorithms for Optimal Random Access Channels

Adaptive Distributed Algorithms for Optimal Random Access Channels Forty-Eighth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 29 - October, 2 Adaptive Distributed Algorithms for Optimal Random Access Channels Yichuan Hu and Alejandro Ribeiro

More information

A Learning Approach for Low-Complexity Optimization of Energy Efficiency in Multi-Carrier Wireless Networks

A Learning Approach for Low-Complexity Optimization of Energy Efficiency in Multi-Carrier Wireless Networks 1 A Learning Approach for Low-Complexity Optimization of Energy Efficiency in Multi-Carrier Wireless Networks Salvatore D Oro, Member, IEEE, Alessio Zappone, Senior Member, IEEE, Sergio Palazzo, Senior

More information

Optimal Geographical Caching in Heterogeneous Cellular Networks

Optimal Geographical Caching in Heterogeneous Cellular Networks 1 Optimal Geographical Caching in Heterogeneous Cellular Networks Berksan Serbetci, and Jasper Goseling arxiv:1710.09626v2 [cs.ni] 22 Nov 2018 Abstract We investigate optimal geographical caching in heterogeneous

More information

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Duality in Linear Programs Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: proximal gradient descent Consider the problem x g(x) + h(x) with g, h convex, g differentiable, and

More information

Data-aided and blind synchronization

Data-aided and blind synchronization PHYDYAS Review Meeting 2009-03-02 Data-aided and blind synchronization Mario Tanda Università di Napoli Federico II Dipartimento di Ingegneria Biomedica, Elettronicae delle Telecomunicazioni Via Claudio

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Nash Bargaining in Beamforming Games with Quantized CSI in Two-user Interference Channels

Nash Bargaining in Beamforming Games with Quantized CSI in Two-user Interference Channels Nash Bargaining in Beamforming Games with Quantized CSI in Two-user Interference Channels Jung Hoon Lee and Huaiyu Dai Department of Electrical and Computer Engineering, North Carolina State University,

More information

UAV-assisted Cooperative Communications with Wireless Information and Power Transfer

UAV-assisted Cooperative Communications with Wireless Information and Power Transfer UAV-assisted Cooperative Communications with Wireless Information and Power Transfer Sixing Yin, Jing Tan and Lihua Li Beijing University of Posts and Telecommunications {yinsixing, tanjing, lilihua}@bupt.edu.cn

More information

Congestion Management in a Smart Grid via Shadow Prices

Congestion Management in a Smart Grid via Shadow Prices Congestion Management in a Smart Grid via Shadow Prices Benjamin Biegel, Palle Andersen, Jakob Stoustrup, Jan Bendtsen Systems of Systems October 23, 2012 1 This presentation use of distributed Receding

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44 1 / 44 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 44 1 The L-Shaped Method [ 5.1 of BL] 2 Optimality Cuts [ 5.1a of BL] 3 Feasibility Cuts [ 5.1b of BL] 4 Proof of Convergence

More information

Game Theory and its Applications to Networks - Part I: Strict Competition

Game Theory and its Applications to Networks - Part I: Strict Competition Game Theory and its Applications to Networks - Part I: Strict Competition Corinne Touati Master ENS Lyon, Fall 200 What is Game Theory and what is it for? Definition (Roger Myerson, Game Theory, Analysis

More information

Improved channel estimation for massive MIMO systems using hybrid pilots with pilot anchoring

Improved channel estimation for massive MIMO systems using hybrid pilots with pilot anchoring Improved channel estimation for massive MIMO systems using hybrid pilots with pilot anchoring Karthik Upadhya, Sergiy A. Vorobyov, Mikko Vehkapera Department of Signal Processing and Acoustics Aalto University,

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

Maxime GUILLAUD. Huawei Technologies Mathematical and Algorithmic Sciences Laboratory, Paris

Maxime GUILLAUD. Huawei Technologies Mathematical and Algorithmic Sciences Laboratory, Paris 1/21 Maxime GUILLAUD Alignment Huawei Technologies Mathematical and Algorithmic Sciences Laboratory, Paris maxime.guillaud@huawei.com http://research.mguillaud.net/ Optimisation Géométrique sur les Variétés

More information

Optimal Power Allocation for Parallel Gaussian Broadcast Channels with Independent and Common Information

Optimal Power Allocation for Parallel Gaussian Broadcast Channels with Independent and Common Information SUBMIED O IEEE INERNAIONAL SYMPOSIUM ON INFORMAION HEORY, DE. 23 1 Optimal Power Allocation for Parallel Gaussian Broadcast hannels with Independent and ommon Information Nihar Jindal and Andrea Goldsmith

More information

OFDMA Cross Layer Resource Control

OFDMA Cross Layer Resource Control OFDA Cross Layer Resource Control Gwanmo Ku Adaptive Signal Processing and Information Theory Research Group Jan. 25, 2013 Outline 2/20 OFDA Cross Layer Resource Control Objective Functions - System Throughput

More information

ECE Optimization for wireless networks Final. minimize f o (x) s.t. Ax = b,

ECE Optimization for wireless networks Final. minimize f o (x) s.t. Ax = b, ECE 788 - Optimization for wireless networks Final Please provide clear and complete answers. PART I: Questions - Q.. Discuss an iterative algorithm that converges to the solution of the problem minimize

More information

Optimal Power Allocation for Cognitive Radio under Primary User s Outage Loss Constraint

Optimal Power Allocation for Cognitive Radio under Primary User s Outage Loss Constraint This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 29 proceedings Optimal Power Allocation for Cognitive Radio

More information

Dynamic discrete power control in cellular networks

Dynamic discrete power control in cellular networks Dynamic discrete power control in cellular networks Eitan Altman Konstantin Avrachenkov Ishai Menache Gregory Miller Balakrishna Prabhu Adam Shwartz December 2007 Abstract We consider an uplink power control

More information

Multiple-Level Power Allocation Strategy for

Multiple-Level Power Allocation Strategy for Multiple-Level Power Allocation Strategy for 1 Secondary Users in Cognitive Radio Networks Zhong Chen, Feifei Gao, Zhenwei Zhang, James C. F. Li, and Ming Lei arxiv:137.158v2 [cs.i] 12 Dec 213 Abstract

More information

IN this paper, we show that the scalar Gaussian multiple-access

IN this paper, we show that the scalar Gaussian multiple-access 768 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004 On the Duality of Gaussian Multiple-Access and Broadcast Channels Nihar Jindal, Student Member, IEEE, Sriram Vishwanath, and Andrea

More information

Applications of Robust Optimization in Signal Processing: Beamforming and Power Control Fall 2012

Applications of Robust Optimization in Signal Processing: Beamforming and Power Control Fall 2012 Applications of Robust Optimization in Signal Processing: Beamforg and Power Control Fall 2012 Instructor: Farid Alizadeh Scribe: Shunqiao Sun 12/09/2012 1 Overview In this presentation, we study the applications

More information

K User Interference Channel with Backhaul

K User Interference Channel with Backhaul 1 K User Interference Channel with Backhaul Cooperation: DoF vs. Backhaul Load Trade Off Borna Kananian,, Mohammad A. Maddah-Ali,, Babak H. Khalaj, Department of Electrical Engineering, Sharif University

More information

Network Calculus. A General Framework for Interference Management and Resource Allocation. Martin Schubert

Network Calculus. A General Framework for Interference Management and Resource Allocation. Martin Schubert Network Calculus A General Framework for Interference Management and Resource Allocation Martin Schubert Fraunhofer Institute for Telecommunications HHI, Berlin, Germany Fraunhofer German-Sino Lab for

More information

Distributed MAP probability estimation of dynamic systems with wireless sensor networks

Distributed MAP probability estimation of dynamic systems with wireless sensor networks Distributed MAP probability estimation of dynamic systems with wireless sensor networks Felicia Jakubiec, Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania https://fling.seas.upenn.edu/~life/wiki/

More information

Cell Switch Off Technique Combined with Coordinated Multi-Point (CoMP) Transmission for Energy Efficiency in Beyond-LTE Cellular Networks

Cell Switch Off Technique Combined with Coordinated Multi-Point (CoMP) Transmission for Energy Efficiency in Beyond-LTE Cellular Networks Cell Switch Off Technique Combined with Coordinated Multi-Point (CoMP) Transmission for Energy Efficiency in Beyond-LTE Cellular Networks Gencer Cili, Halim Yanikomeroglu, and F. Richard Yu Department

More information

You should be able to...

You should be able to... Lecture Outline Gradient Projection Algorithm Constant Step Length, Varying Step Length, Diminishing Step Length Complexity Issues Gradient Projection With Exploration Projection Solving QPs: active set

More information

Basics of Game Theory

Basics of Game Theory Basics of Game Theory Giacomo Bacci and Luca Sanguinetti Department of Information Engineering University of Pisa, Pisa, Italy {giacomo.bacci,luca.sanguinetti}@iet.unipi.it April - May, 2010 G. Bacci and

More information

Minimum Mean Squared Error Interference Alignment

Minimum Mean Squared Error Interference Alignment Minimum Mean Squared Error Interference Alignment David A. Schmidt, Changxin Shi, Randall A. Berry, Michael L. Honig and Wolfgang Utschick Associate Institute for Signal Processing Technische Universität

More information

Front Inform Technol Electron Eng

Front Inform Technol Electron Eng Interference coordination in full-duplex HetNet with large-scale antenna arrays Zhao-yang ZHANG, Wei LYU Zhejiang University Key words: Massive MIMO; Full-duplex; Small cell; Wireless backhaul; Distributed

More information

Game theory is a field of applied mathematics that

Game theory is a field of applied mathematics that [ Gesualdo Scutari, Daniel P. Palomar, Jong-Shi Pang, and Francisco Facchinei ] Flexible Design of Cognitive Radio Wireless Systems [From game theory to variational inequality theory] Game theory is a

More information

Mobile Network Energy Efficiency Optimization in MIMO Multi-Cell Systems

Mobile Network Energy Efficiency Optimization in MIMO Multi-Cell Systems 1 Mobile Network Energy Efficiency Optimization in MIMO Multi-Cell Systems Yang Yang and Dario Sabella Intel Deutschland GmbH, Neubiberg 85579, Germany. Emails: yang1.yang@intel.com, dario.sabella@intel.com

More information

ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications

ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications Professor M. Chiang Electrical Engineering Department, Princeton University February

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Bayesian Congestion Control over a Markovian Network Bandwidth Process

Bayesian Congestion Control over a Markovian Network Bandwidth Process Bayesian Congestion Control over a Markovian Network Bandwidth Process Parisa Mansourifard 1/30 Bayesian Congestion Control over a Markovian Network Bandwidth Process Parisa Mansourifard (USC) Joint work

More information

Massive MIMO As Enabler for Communications with Drone Swarms

Massive MIMO As Enabler for Communications with Drone Swarms Massive MIMO As Enabler for Communications with Drone Swarms Prabhu Chandhar, Danyo Danev, and Erik G. Larsson Division of Communication Systems Dept. of Electrical Engineering Linköping University, Sweden

More information

Heterogeneous Cellular Networks Using

Heterogeneous Cellular Networks Using Heterogeneous Cellular Networks Using 1 Wireless Backhaul: Fast Admission Control and Large System Analysis arxiv:1501.06988v2 [cs.it] 13 Apr 2015 Jian Zhao, Member, IEEE, Tony Q. S. Quek, Senior Member,

More information

DISTRIBUTION SYSTEM OPTIMISATION

DISTRIBUTION SYSTEM OPTIMISATION Politecnico di Torino Dipartimento di Ingegneria Elettrica DISTRIBUTION SYSTEM OPTIMISATION Prof. Gianfranco Chicco Lecture at the Technical University Gh. Asachi, Iaşi, Romania 26 October 2010 Outline

More information

Power and Rate Control Outage Based in CDMA Wireless Networks under MAI and Heterogeneous Traffic Sources

Power and Rate Control Outage Based in CDMA Wireless Networks under MAI and Heterogeneous Traffic Sources 1 Power and Rate Control Outage Based in CDMA Wireless Networks under MAI and Heterogeneous Traffic Sources Carlo Fischione and Matteo Butussi Abstract We characterize the maximum throughput achievable

More information

Cognitive Wireless Powered Network: Spectrum Sharing Models and Throughput Maximization. User terminals

Cognitive Wireless Powered Network: Spectrum Sharing Models and Throughput Maximization. User terminals Cognitive Wireless Powered Network: Spectrum Sharing Models and Throughput Maximization Seunghyun Lee Student Member IEEE and Rui Zhang Senior Member IEEE arxiv:56.595v [cs.it] Dec 5 Abstract The recent

More information

Ergodic Stochastic Optimization Algorithms for Wireless Communication and Networking

Ergodic Stochastic Optimization Algorithms for Wireless Communication and Networking University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering 11-17-2010 Ergodic Stochastic Optimization Algorithms for Wireless Communication and

More information

POWER CONTROL AND CAPACITY ANALYSIS IN COGNITIVE RADIO NETWORKS

POWER CONTROL AND CAPACITY ANALYSIS IN COGNITIVE RADIO NETWORKS POWER CONTROL AND CAPACITY ANALYSIS IN COGNITIVE RADIO NETWORKS A Dissertation Presented to The Academic Faculty By Pan Zhou In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Dynamic Discrete Power Control in Cellular Networks

Dynamic Discrete Power Control in Cellular Networks 1 Dynamic Discrete Power Control in Cellular Networks Eitan Altman, Konstantin Avrachenkov, Ishai Menache, Gregory Miller, Balakrishna J. Prabhu, and Adam Shwartz Abstract We consider an uplink power control

More information

Distributed Stochastic Optimization in Networks with Low Informational Exchange

Distributed Stochastic Optimization in Networks with Low Informational Exchange Distributed Stochastic Optimization in Networs with Low Informational Exchange Wenjie Li and Mohamad Assaad, Senior Member, IEEE arxiv:80790v [csit] 30 Jul 08 Abstract We consider a distributed stochastic

More information

Network Optimization and Control

Network Optimization and Control Foundations and Trends R in Networking Vol. 2, No. 3 (2007) 271 379 c 2008 S. Shakkottai and R. Srikant DOI: 10.1561/1300000007 Network Optimization and Control Srinivas Shakkottai 1 and R. Srikant 2 1

More information

Efficiency Loss in a Network Resource Allocation Game

Efficiency Loss in a Network Resource Allocation Game Efficiency Loss in a Network Resource Allocation Game Ashish Khisti October 27, 2004 Efficiency Loss in a Network Resource Allocation Game p. 1/2 Resource Allocation in Networks Basic Question: How should

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Robust Rate-Maximization Game Under Bounded Channel Uncertainty

Robust Rate-Maximization Game Under Bounded Channel Uncertainty Robust Rate-Maximization Game Under Bounded Channel Uncertainty Amod JG Anandkumar, Student Member, IEEE, Animashree Anandkumar, Member, IEEE, Sangarapillai Lambotharan, Senior Member, IEEE, and Jonathon

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

On Selfish Behavior in CSMA/CA Networks

On Selfish Behavior in CSMA/CA Networks On Selfish Behavior in CSMA/CA Networks Mario Čagalj1 Saurabh Ganeriwal 2 Imad Aad 1 Jean-Pierre Hubaux 1 1 LCA-IC-EPFL 2 NESL-EE-UCLA March 17, 2005 - IEEE Infocom 2005 - Introduction CSMA/CA is the most

More information

Competitive Scheduling in Wireless Collision Channels with Correlated Channel State

Competitive Scheduling in Wireless Collision Channels with Correlated Channel State Competitive Scheduling in Wireless Collision Channels with Correlated Channel State Utku Ozan Candogan, Ishai Menache, Asuman Ozdaglar and Pablo A. Parrilo Abstract We consider a wireless collision channel,

More information

Energy-Efficient Resource Allocation for

Energy-Efficient Resource Allocation for Energy-Efficient Resource Allocation for 1 Wireless Powered Communication Networks Qingqing Wu, Student Member, IEEE, Meixia Tao, Senior Member, IEEE, arxiv:1511.05539v1 [cs.it] 17 Nov 2015 Derrick Wing

More information

Convex Optimization. Lecture 12 - Equality Constrained Optimization. Instructor: Yuanzhang Xiao. Fall University of Hawaii at Manoa

Convex Optimization. Lecture 12 - Equality Constrained Optimization. Instructor: Yuanzhang Xiao. Fall University of Hawaii at Manoa Convex Optimization Lecture 12 - Equality Constrained Optimization Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 19 Today s Lecture 1 Basic Concepts 2 for Equality Constrained

More information

Ü B U N G S A U F G A B E N. S p i e l t h e o r i e

Ü B U N G S A U F G A B E N. S p i e l t h e o r i e T E C H N I S C H E U N I V E R S I T Ä T D R E S D E N F A K U L T Ä T E L E K T R O T E C H N I K U N D I N F O R M A T I O N S T E C H N I K Ü B U N G S A U F G A B E N S p i e l t h e o r i e by Alessio

More information

Optimal Harvest-or-Transmit Strategy for Energy Harvesting Underlay Cognitive Radio Network

Optimal Harvest-or-Transmit Strategy for Energy Harvesting Underlay Cognitive Radio Network Optimal Harvest-or-Transmit Strategy for Energy Harvesting Underlay Cognitive Radio Network Kalpant Pathak and Adrish Banerjee Department of Electrical Engineering, Indian Institute of Technology Kanpur,

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009 UC Berkeley Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 5 Fall 2009 Reading: Boyd and Vandenberghe, Chapter 5 Solution 5.1 Note that

More information

Group Sparse Precoding for Cloud-RAN with Multiple User Antennas

Group Sparse Precoding for Cloud-RAN with Multiple User Antennas 1 Group Sparse Precoding for Cloud-RAN with Multiple User Antennas Zhiyang Liu, Yingxin Zhao, Hong Wu and Shuxue Ding arxiv:1706.01642v2 [cs.it] 24 Feb 2018 Abstract Cloud radio access network C-RAN) has

More information

Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems

Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems 1 Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems Tadilo Endeshaw Bogale and Long Bao Le Institute National de la Recherche Scientifique (INRS) Université de Québec, Montréal,

More information

Theory and Internet Protocols

Theory and Internet Protocols Game Lecture 2: Linear Programming and Zero Sum Nash Equilibrium Xiaotie Deng AIMS Lab Department of Computer Science Shanghai Jiaotong University September 26, 2016 1 2 3 4 Standard Form (P) Outline

More information