Features of Sequential Weak Measurements

Size: px
Start display at page:

Download "Features of Sequential Weak Measurements"

Transcription

1 Features of Sequential Weak Measurements Lajos Diósi Wigner Centre, Budapest 22 June 2016, Waterloo Acknowledgements go to: EU COST Action MP1209 Thermodynamics in the quantum regime Perimeter Institute Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 1 / 11

2 1 WM vs post-selection 2 SWMs without post-selection 3 SWM of canonical variables 4 SWM of spin- 1 observables 2 5 Testing SWM in Time-Continuous Measurement 6 SWM with post-selection 7 Re-selection paradox 8 Example: spin References Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 2 / 11

3 WM vs post-selection WM vs post-selection In unsharp (imprecise) measurement on ˆρ, post-measurement state preserves some well-defined features of ˆρ. Imprecision a of measurement can be compensated by larger ensemble statistics. Weak measurement (WM): asymptotic limit of zero precision a (and infinite statistics): pre-measurement state ˆρ invariably survives the measurement (non-invasiveness). WM was used by AAV as non-invasive quantum measurement between pre- and post-selected states, resp. Non-invasiveness of WM is remarkable both with and without post-selection, can be maintained for a succession of WMs on a single quantum system. General features of such sequential WMs (SWMs): our topics. Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 3 / 11

4 SWMs without post-selection SWMs without post-selection Â: measured; A: outcome; M: statistical mean; Â : q-expectation. MA = Â single WM MAB = 1 {Â, ˆB} double WM: order doesn t matter 2 MABC = 1 8 { Â, {ˆB, Ĉ}} triple WM: ˆB, Ĉ are interchangeable (Bednorz & Belzig 2010) Generally: MA 1 A 2... A n = 1 2 n { Â 1, {Â2, {..., {Ân 1, Ân}... }}} Correlation of SWM outcomes = = Step-wise symmetrized quantum correlation of operators Ordering in SWM matters but the last two ones are interchangeable. Sufficient condition of full interchangeability: [Â k, Â l ] = c-number (k, l = 1, 2,..., n). Then step-wise symmetrization symmetrization S: MA 1 A 2... A n = SÂ1Â2... Ân 1Ân Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 4 / 11

5 SWM of canonical variables SWM of canonical variables  k = u k ˆq + v kˆp (k = 1, 2,..., n) where [ˆq, ˆp] = i Step-wise symmetrization symmetrization S = Weyl ordering! Weyl-ordered correlation functions of ˆq, ˆp = = correlation functions (moments) of Wigner function W (q, p). MA 1 A 2... A n = W (q, p)a 1 A 2... A n dqdp A 1 A 2... A n W (for n = 2: Bednorz & Belzig 2010) Direct tomography through Wigner function moments: Example: SWM of ˆq, ˆq, ˆp, ˆp (in any order) yields q W = Mq 1 = Mq 2 ; p W = Mp 1 = Mp 2 q 2 W = Mq 1 q 2 ; p 2 W = Mp 1 p 2, qp W = Mq 1 p 1 = Mq 1 p 2 = Mq 2 p 1 = Mq 2 p 2 q 2 p W = Mq 1 q 2 p 1 = Mq 1 q 2 p 2 ; p 2 q W = Mp 1 p 2 q 1 = Mp 1 p 2 q 2 q 2 p 2 W = Mq 1 q 2 p 1 p 2 Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 5 / 11

6 SWM of spin- 1 2 observables SWM of spin- 1 2 observable SQM of  1 = ˆσ 1,  2 = ˆσ 2,...,  n = ˆσ n ; (ˆσ k = ˆ σ e k, e k =1) Outcomes A 1 =σ 1, A 2 =σ 2,..., A n =σ n Surprize: Mσ 1 σ 2... σ n = 1 2 n {ˆσ1, {ˆσ 2, {..., {ˆσ n 1, ˆσ n }... }}} ( ) is valid no matter the measurements are weak or strong (ideal). R.h.s. for SSM (with ˆP ± = 1 (1 ± ˆσ): 2 tr ( σ σ (n) n=±1 n ˆP σ n... σ2=±1 σ 2 ˆP (2) σ 2 ( σ 1 =±1 σ 1 (1) ˆP σ 1 ˆρˆP σ (1) )ˆP(2) ) 1 σ 2...ˆP σ (n) n Key identity σ=± σ ˆP σ ÔˆP σ = 1 {ˆσ,Ô}, using it n-times yields ( )! 2 Evaluating r.h.s. yields { ( e1 e Mσ 1 σ 2... σ n = 2 )( e 3 e 4 )... ( e n 1 e n ) n even ˆσ 1 ( e 2 e 3 )... ( e n 1 e n ) n odd Correlations are kinematically constrained: n even correlations are independent of ˆρ n odd correlations depend on ˆρ but via ˆσ 1 Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 6 / 11

7 Testing SWM in Time-Continuous Measurement Testing SWM in Time-Continuous Measurement TCM is standard theory. TCMs are standard in lab. TCMs have WM regime! TCM of Heisenberg  t in state ˆρ, outcomes (signal) A t : A t = Ât + α : precision/unsharpness of TCM αw t ; w t : standard white-noise TCM is invasive on the long run but it remains non-invasive as long as t ( Âs) 2 ds α. 0 That s where SQM applies to signal s auto-correlation: MA t1 A t2 = 1 { 2 t1,  t2 } MA t1 A t2 A t3 = 1 { 2 t1, { t2,  t3 }} etc. Recall r.h.s. s must be Wigner function moments if  is harmonic, kinematically constrained if  is spin Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 7 / 11

8 SWM with post-selection SWM with post-selection Outcome correlations: MA 1, A 2,..., A n psel = {  1, {Â2,..., {Ân, ˆΠ}... }} 2 n ˆΠ. Generic post-selection (D. 2006, Silva & al. 2014): 0 ˆΠ 1. For pure state pre/post-selection ˆρ = i i, ˆΠ = f f, introduce sequential weak values: f  n  n 1... (A 1, A 2,..., A n ) w = Â1 i f i MA 1, A 2,..., A n psel = 1 2 n (Ai1, A i2,..., A ir ) w (A j1, A j2,..., A jn r ) w Σ for all partitions (i 1, i 2,..., i r ) (j 1, j 2,..., j n r ) = (1, 2,..., n) where i s and j s remain ordered. Degenerate partitions r = 0, n, too, must be counted. (Mitchison, Jozsa, Popescu 2007) n = 1 reduces to AAV n = 2 contains a new paradox. Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 8 / 11

9 Re-selection paradox Re-selection paradox Special post-selection: i = f, call it re-selection. For single WM, re-selection is equivalent with no-post-selection: MA = MA rsel =  WMs are non-invasive, we expect re-selection and no-post-selection are equivalent. But they aren t, already for n =2 and Â1 =Â2 =Â: MA 1 A 2 = i  2 i, MA 1 A 2 rsel = 1 2 i Â2 i ( i  i )2 Re-selection decreases MA 1 A 2 by half of ( A) 2 in state i : MA 1 A 2 MA 1 A 2 rsel = 1 2 ( A)2. (1) Unexpected anomaly! Reason is finite contribution of outcomes discarded by re-selection. Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 9 / 11

10 Example: spin- 1 2 Example: spin- 1 2 R disc rate of discards; a precision/unsharpness of measurements M... rsel = M lim a (R disc M... disc ) In WM limit a of re-selection: R disc 0. Single WM of ˆσ ˆσ x, outcome σ 1 with re-selection i = f = : R disc (1/4a 2 ) 0. Mσ 1 disc =0 hence R disc Mσ 1 disc =0 anyway. SWM of ˆσ 1 =ˆσ 2 ˆσ x, outcomes σ 1, σ 2 with re-selection i = f = : R disc (1/2a 2 ) 0. Mσ 1 σ 2 disc =a 2 hence R disc Mσ 1 σ 2 disc 1/2, QED. Correlation of double ˆσ x WM in state diverges on the discarded events in re-selection. Explains why re-selection differs from no-post-selection. Novel SWM anomalies add to AAV88. Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 10 / 11

11 References References Y. Aharonov, D.Z. Albert and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988). L. Diósi: Quantum mechanics: weak measurements, v4, p276 in: Encyclopedia of Mathematical Physics, eds.: J.-P. Françoise, G.L. Naber, and S.T. Tsou (Elsevier, Oxford, 2006). G. Mitchison, R. Jozsa, and S. Popescu, Phys. Rev. A 76, (2007). A. Bednorz and W. Belzig, Phys. Rev. Lett. 105, (2010); Phys. Rev. A 83, (2011). R. Silva, Y. Guryanova, N. Brunner, N. Linden, A. J. Short, and S. Popescu, Phys. Rev. A 89, (2014). L. Diósi, Phys. Rev. A (accepted); arxiv: Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 11 / 11

Test of weak measurement on a two- or three-qubit computer

Test of weak measurement on a two- or three-qubit computer PHYSICAL REVIEW A 77 032101 2008 Test of weak measurement on a two- or three-qubit computer Todd A. Brun Communication Sciences Institute University of Southern California Los Angeles California 90089-2565

More information

Pure state post-selection is universal

Pure state post-selection is universal Lajos Diósi (Wigner Centre, Pure state post-selection Budapest) is universal 23 Aug 2017, Kolymbari 1 / 10 Pure state post-selection is universal Lajos Diósi Wigner Centre, Budapest 23 Aug 2017, Kolymbari

More information

Dynamical Collapse in Quantum Theory

Dynamical Collapse in Quantum Theory Dynamical Collapse in Quantum Theory Lajos Diósi HAS Wigner Research Center for Physics Budapest August 2, 2012 Dynamical Collapse in Quantum Theory August 2, 2012 1 / 28 Outline 1 Statistical Interpretation:

More information

Two-State Vector Formalism

Two-State Vector Formalism 802 Two-State Vector Formalism Secondary Literature 9. E. Merzbacher: Quantum Mechanics, 2nd ed. (Wiley, New York 1970) 10. S. Gasiorowicz: Quantum Physics (Wiley, New York 1996) 11. A. Sommerfeld: Lectures

More information

Phase Space Formulation of Quantum Mechanics

Phase Space Formulation of Quantum Mechanics Phase Space Formulation of Quantum Mechanics Tony Bracken Centre for Mathematical Physics and Department of Mathematics University of Queensland SMFT07, Melbourne, January-February 2007 Lecture 1 Introduction:

More information

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics Nagoya Winter Workshop on Quantum Information, Measurement, and Quantum Foundations (Nagoya, February 18-23, 2010) Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

More information

ECD. Martin Bojowald. The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA

ECD. Martin Bojowald. The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA ECD Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA Talk mainly based on MB, A. Tsobanjan: arxiv:0911.4950 ECD p.1 Evaluating the dynamics

More information

Characterization of Bipartite Entanglement

Characterization of Bipartite Entanglement Characterization of Bipartite Entanglement Werner Vogel and Jan Sperling University of Rostock Germany Paraty, September 2009 Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 1 Table of Contents

More information

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution Mixing Quantum and Classical Mechanics: A Partially Miscible Solution R. Kapral S. Nielsen A. Sergi D. Mac Kernan G. Ciccotti quantum dynamics in a classical condensed phase environment how to simulate

More information

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Problem 3: The EPR state (30 points) The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of measurements

More information

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

(Dynamical) quantum typicality: What is it and what are its physical and computational implications? (Dynamical) : What is it and what are its physical and computational implications? Jochen Gemmer University of Osnabrück, Kassel, May 13th, 214 Outline Thermal relaxation in closed quantum systems? Typicality

More information

Lecture 2: Open quantum systems

Lecture 2: Open quantum systems Phys 769 Selected Topics in Condensed Matter Physics Summer 21 Lecture 2: Open quantum systems Lecturer: Anthony J. Leggett TA: Bill Coish 1. No (micro- or macro-) system is ever truly isolated U = S +

More information

Twirl: Equating Quantum and Thermodynamic Entropy Productions október 6. 1 / 10

Twirl: Equating Quantum and Thermodynamic Entropy Productions október 6. 1 / 10 Twirl: Equating Quantum and Thermodynamic Entropy Productions Lajos Diósi Wigner Center, Budapest 2012. október 6. Acknowledgements go to: Hungarian Scientific Research Fund under Grant No. 75129 EU COST

More information

SECOND QUANTIZATION. Lecture notes with course Quantum Theory

SECOND QUANTIZATION. Lecture notes with course Quantum Theory SECOND QUANTIZATION Lecture notes with course Quantum Theory Dr. P.J.H. Denteneer Fall 2008 2 SECOND QUANTIZATION 1. Introduction and history 3 2. The N-boson system 4 3. The many-boson system 5 4. Identical

More information

Weak measurements: subensembles from tunneling to Let s Make a Quantum Deal to Hardy s Paradox

Weak measurements: subensembles from tunneling to Let s Make a Quantum Deal to Hardy s Paradox Weak measurements: subensembles from tunneling to Let s Make a Quantum Deal to Hardy s Paradox First: some more on tunneling times, by way of motivation... How does one discuss subensembles in quantum

More information

What Is Semiquantum Mechanics?

What Is Semiquantum Mechanics? Bulg. J. Phys. 33 (2006) 182 192 What Is Semiquantum Mechanics? A.J. Bracken Department of Mathematics, University of Queensland, Brisbane 4072, Queensland, Australia Received 11 October 2006 Abstract.

More information

The Two-State Vector Formalism

The Two-State Vector Formalism arxiv:0706.1347v1 [quant-ph] 10 Jun 007 The Two-State Vector Formalism February 1, 013 The two-state vector formalism (TSVF) [1] is a time-symmetric description of the standard quantum mechanics originated

More information

arxiv: v2 [quant-ph] 15 Oct 2012

arxiv: v2 [quant-ph] 15 Oct 2012 Nonperturbative theory of weak pre- and post-selected measurements Abraham G. Kofman, Sahel Ashhab, Franco Nori Advance Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan Physics Department, The

More information

Quantum Physics II (8.05) Fall 2004 Assignment 3

Quantum Physics II (8.05) Fall 2004 Assignment 3 Quantum Physics II (8.5) Fall 24 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 3, 24 September 23, 24 7:pm This week we continue to study the basic principles of quantum

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Statistical Thermodynamics Solution Exercise 8 HS Solution Exercise 8

Statistical Thermodynamics Solution Exercise 8 HS Solution Exercise 8 Statistical Thermodynamics Solution Exercise 8 HS 05 Solution Exercise 8 Problem : Paramagnetism - Brillouin function a According to the equation for the energy of a magnetic dipole in an external magnetic

More information

Canonical Quantization

Canonical Quantization Canonical Quantization March 6, 06 Canonical quantization of a particle. The Heisenberg picture One of the most direct ways to quantize a classical system is the method of canonical quantization introduced

More information

2 The Density Operator

2 The Density Operator In this chapter we introduce the density operator, which provides an alternative way to describe the state of a quantum mechanical system. So far we have only dealt with situations where the state of a

More information

Topological Work and the Laws of Thermodynamics

Topological Work and the Laws of Thermodynamics Topological Work and the Laws of Thermodynamics Yiheng Xu, 1 Ferdinand Evers, 2 and Charles A. Stafford 1 1 Department of Physics, University of Ariona, 1118 East Fourth Street, Tucson, AZ 85721 2 Institut

More information

Quantum Mechanics: Weak Measurements. Further Reading. Introduction

Quantum Mechanics: Weak Measurements. Further Reading. Introduction 276 Quantum Mechanics: Weak Measurements it is argued that statistical fluctuations around the canonical ensemble can give rise to the behavior of wave-function collapse, of the kind discussed here, both

More information

arxiv: v3 [quant-ph] 24 Oct 2013

arxiv: v3 [quant-ph] 24 Oct 2013 Information amplification via postselection: A parameter estimation perspective Saki Tanaka and Naoki Yamamoto Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 3-85, Japan

More information

The shell model Monte Carlo approach to level densities: recent developments and perspectives

The shell model Monte Carlo approach to level densities: recent developments and perspectives The shell model Monte Carlo approach to level densities: recent developments and perspectives Yoram Alhassid (Yale University) Introduction: the shell model Monte Carlo (SMMC) approach Level density in

More information

A Note Concerning von Neumann Projector Measurement Pointer States, Weak Values, and Interference. Abstract

A Note Concerning von Neumann Projector Measurement Pointer States, Weak Values, and Interference. Abstract A Note Concerning von Neumann Projector Measurement Pointer States, Weak Values, and Interference A. D. Parks and J. E. Gray Electromagnetic and Sensor Systems Department Naval Surface Warfare Center Dahlgren,

More information

arxiv:quant-ph/ v1 17 Oct 2003

arxiv:quant-ph/ v1 17 Oct 2003 Extracting joint weak values with local, single-particle measurements K.J. Resch 1 and A.M. Steinberg 1, arxiv:quant-ph/0310113v1 17 Oct 003 1 Institut für Experimentalphysik, Universität ien Boltzmanngasse

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

Workshop on Interferometry and Interactions in Non-equilibrium Meso- and Nano-systems April 2013

Workshop on Interferometry and Interactions in Non-equilibrium Meso- and Nano-systems April 2013 2451-3 Workshop on Interferometry and Interactions in Non-equilibrium Meso- and Nano-systems 8-12 April 2013 Weak quantum measurement schemes of mesoscopic currents BELZIG Wolfgang University of Konstanz

More information

Effective Constraints

Effective Constraints Introduction work with M. Bojowald, B. Sandhöfer and A. Skirzewski IGC, Penn State 1 arxiv:0804.3365, submitted to Rev. Math. Phys. Introduction Constrained systems Classically constraints restrict physically

More information

Renormalisation Group Flows in Four Dimensions and the a-theorem

Renormalisation Group Flows in Four Dimensions and the a-theorem Renormalisation Group Flows in Four Dimensions and the a-theorem John Cardy University of Oxford Oxford, January 2012 Renormalisation Group The RG, as applied to fluctuating systems extended in space or

More information

Thermodynamical cost of accuracy and stability of information processing

Thermodynamical cost of accuracy and stability of information processing Thermodynamical cost of accuracy and stability of information processing Robert Alicki Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański, Poland e-mail: fizra@univ.gda.pl Fields Institute,

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/24//2017 Physics 5701 Lecture Commutation of Observables and First Consequences of the Postulates Outline 1 Commutation Relations 2 Uncertainty Relations

More information

arxiv: v1 [hep-th] 26 Sep 2007

arxiv: v1 [hep-th] 26 Sep 2007 On statistical mechanics in noncommutative spaces. arxiv:0709.4163v1 [hep-th] 26 Sep 2007 S. A. Alavi Department of Physics, Sabzevar university of Tarbiat Moallem, Sabzevar, P. O. Box 397, Iran and Sabzevar

More information

Weak measurement and quantum interference

Weak measurement and quantum interference Weak measurement and quantum interference from a geometrical point of view Masao Kitano Department of Electronic Science and Engineering, Kyoto University February 13-15, 2012 GCOE Symposium, Links among

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena Path Integrals Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz 1 07743 Jena 5. Auflage WS 2008/09 1. Auflage, SS 1991 (ETH-Zürich) I ask readers to report

More information

Under evolution for a small time δt the area A(t) = q p evolves into an area

Under evolution for a small time δt the area A(t) = q p evolves into an area Physics 106a, Caltech 6 November, 2018 Lecture 11: Hamiltonian Mechanics II Towards statistical mechanics Phase space volumes are conserved by Hamiltonian dynamics We can use many nearby initial conditions

More information

arxiv: v3 [cond-mat.stat-mech] 18 Jun 2015

arxiv: v3 [cond-mat.stat-mech] 18 Jun 2015 Absence of Quantum Time Crystals Haruki Watanabe 1, and Masaki Oshikawa, 1 Department of Physics, University of California, Berkeley, California 9470, USA Institute for Solid State Physics, University

More information

MP463 QUANTUM MECHANICS

MP463 QUANTUM MECHANICS MP463 QUANTUM MECHANICS Introduction Quantum theory of angular momentum Quantum theory of a particle in a central potential - Hydrogen atom - Three-dimensional isotropic harmonic oscillator (a model of

More information

Statistical ensembles without typicality

Statistical ensembles without typicality Statistical ensembles without typicality Paul Boes, Henrik Wilming, Jens Eisert, Rodrigo Gallego QIP 18 A frequent question in thermodynamics Given a (quantum) system of which you only know its average

More information

arxiv: v3 [quant-ph] 19 Apr 2016

arxiv: v3 [quant-ph] 19 Apr 2016 Entangled Histories arxiv:50.0480v3 [quant-ph] 9 Apr 06 Jordan Cotler, and Frank Wilczek,3. Center for Theoretical Physics, MIT, Cambridge MA 039 USA. Stanford Institute for Theoretical Physics, Stanford

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

Holography with Shape Dynamics

Holography with Shape Dynamics . 1/ 11 Holography with Henrique Gomes Physics, University of California, Davis July 6, 2012 In collaboration with Tim Koslowski Outline 1 Holographic dulaities 2 . 2/ 11 Holographic dulaities Ideas behind

More information

On Quantum Mechanics

On Quantum Mechanics On Quantum Mechanics F.GHABOUSSI Department of Physics, University of Konstanz P.O. Box 5560, D 78434 Konstanz, Germany arxiv:quant-ph/9805079v3 2 Jun 1998 E-mail: ghabousi@kaluza.physik.uni-konstanz.de

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

Weak Measurements. Submitted in partial fullment of the requirements for the. degree of Master of Science of Imperial College London.

Weak Measurements. Submitted in partial fullment of the requirements for the. degree of Master of Science of Imperial College London. Submitted in partial fullment of the requirements for the degree of Master of Science of Imperial College London Weak Measurements Author: Angela Karanjai Supervisor: Prof. Terry Rudolph September 24,

More information

Second Quantization: Quantum Fields

Second Quantization: Quantum Fields Second Quantization: Quantum Fields Bosons and Fermions Let X j stand for the coordinate and spin subscript (if any) of the j-th particle, so that the vector of state Ψ of N particles has the form Ψ Ψ(X

More information

Quantum Dynamics. March 10, 2017

Quantum Dynamics. March 10, 2017 Quantum Dynamics March 0, 07 As in classical mechanics, time is a parameter in quantum mechanics. It is distinct from space in the sense that, while we have Hermitian operators, X, for position and therefore

More information

Many-Body Coherence in Quantum Thermodynamics

Many-Body Coherence in Quantum Thermodynamics Many-Body Coherence in Quantum Thermodynamics [] H. Kwon, H. Jeong, D. Jennings, B. Yadin, and M. S. Kim Contents I. Introduction II. Resource theory of quantum thermodynamics 1. Thermal operation and

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Compensating strong coupling with large charge

Compensating strong coupling with large charge Compensating strong coupling with large charge Orestis Loukas Institute for Theoretical Physics and Albert Einstein Center for Fundamental Physics, Bern based on arxiv: 1610.04495, 1612.08985 together

More information

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization 8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization This problem set is partly intended to introduce the transfer matrix method, which is used

More information

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2 31st Jerusalem Winter School in Theoretical Physics: Problem Set Contents Frank Verstraete: Quantum Information and Quantum Matter : 3 : Solution to Problem 9 7 Daniel Harlow: Black Holes and Quantum Information

More information

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5) LECTURE 12 Maxwell Velocity Distribution Suppose we have a dilute gas of molecules, each with mass m. If the gas is dilute enough, we can ignore the interactions between the molecules and the energy will

More information

Counterfactuals in Quantum Mechanics

Counterfactuals in Quantum Mechanics 132 Counterfactuals in Quantum Mechanics Counterfactuals in Quantum Mechanics Lev Vaidman Counterfactuals in quantum mechanics appear in discussions of (a) nonlocality, (b) pre- and post-selected systems,

More information

Lecture 13B: Supplementary Notes on Advanced Topics. 1 Inner Products and Outer Products for Single Particle States

Lecture 13B: Supplementary Notes on Advanced Topics. 1 Inner Products and Outer Products for Single Particle States Lecture 13B: Supplementary Notes on Advanced Topics Outer Products, Operators, Density Matrices In order to explore the complexity of many particle systems a different way to represent multiparticle states

More information

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids Dynamical phase transition and prethermalization Pietro Smacchia, Alessandro Silva (SISSA, Trieste) Dima Abanin (Perimeter Institute, Waterloo) Michael Knap, Eugene Demler (Harvard) Mobile magnetic impurity

More information

arxiv:quant-ph/ v1 11 Apr 2001

arxiv:quant-ph/ v1 11 Apr 2001 Revisiting Hardy s Paradox: Counterfactual Statements, Real Measurements, Entanglement and Weak Values Yakir Aharonov (a,b,c), Alonso Botero (c,d), Sandu Popescu (e,f), Benni Reznik a, Jeff Tollaksen g

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L PHY 396 K. Solutions for problem set #. Problem a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S. In particularly,

More information

Einstein s Boxes: Quantum Mechanical Solution

Einstein s Boxes: Quantum Mechanical Solution Einstein s Boxes: Quantum Mechanical Solution arxiv:quant-ph/040926v 20 Sep 2004 E.Yu.Bunkova, O.A.Khrustalev and O.D. Timofeevskaya Moscow State University (MSU) Moscow, 9992, Russia. e-mail: olga@goa.bog.msu.ru

More information

What is thermal equilibrium and how do we get there?

What is thermal equilibrium and how do we get there? arxiv:1507.06479 and more What is thermal equilibrium and how do we get there? Hal Tasaki QMath 13, Oct. 9, 2016, Atlanta 40 C 20 C 30 C 30 C about the talk Foundation of equilibrium statistical mechanics

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 11: CFT continued;

More information

Observables in the GBF

Observables in the GBF Observables in the GBF Max Dohse Centro de Ciencias Matematicas (CCM) UNAM Campus Morelia M. Dohse (CCM-UNAM Morelia) GBF: Observables GBF Seminar (14.Mar.2013) 1 / 36 References:. [RO2011] R. Oeckl: Observables

More information

Model Reduction for Unstable Systems

Model Reduction for Unstable Systems Model Reduction for Unstable Systems Klajdi Sinani Virginia Tech klajdi@vt.edu Advisor: Serkan Gugercin October 22, 2015 (VT) SIAM October 22, 2015 1 / 26 Overview 1 Introduction 2 Interpolatory Model

More information

Nucleon spin and tomography. Yoshitaka Hatta (Yukawa institute, Kyoto U.)

Nucleon spin and tomography. Yoshitaka Hatta (Yukawa institute, Kyoto U.) Nucleon spin and tomography Yoshitaka Hatta (Yukawa institute, Kyoto U.) Outline Nucleon spin decomposition Jaffe-Manohar vs. Ji Complete gauge invariant decomposition Orbital angular momentum Relation

More information

Solutions to chapter 4 problems

Solutions to chapter 4 problems Chapter 9 Solutions to chapter 4 problems Solution to Exercise 47 For example, the x component of the angular momentum is defined as ˆL x ŷˆp z ẑ ˆp y The position and momentum observables are Hermitian;

More information

Practical measurement of joint weak values and their connection to the annihilation operator

Practical measurement of joint weak values and their connection to the annihilation operator Physics Letters A 334 (2005 337 344 wwwelseviercom/locate/pla Practical measurement of joint weak values and their connection to the annihilation operator JS Lundeen a,,kjresch b a Department of Physics,

More information

1.1.1 Bell Inequality - Spin correlation

1.1.1 Bell Inequality - Spin correlation January 8, 015 Lecture IV 1.1.1 Bell Inequality - Spin correlation Consider the final spin singlet state of the decay η 0 µ + µ We suppose that the η 0 decays and the muon and µ + travel in opposite directions,

More information

From unitary dynamics to statistical mechanics in isolated quantum systems

From unitary dynamics to statistical mechanics in isolated quantum systems From unitary dynamics to statistical mechanics in isolated quantum systems Marcos Rigol Department of Physics The Pennsylvania State University The Tony and Pat Houghton Conference on Non-Equilibrium Statistical

More information

Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond

Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond Yutaka Shikano Massachusetts Institute of Technology Tokyo Institute of Technology In collaboration with Shu Tanaka (Kinki University,

More information

Robust Optimization: Applications in Portfolio Selection Problems

Robust Optimization: Applications in Portfolio Selection Problems Robust Optimization: Applications in Portfolio Selection Problems Vris Cheung and Henry Wolkowicz WatRISQ University of Waterloo Vris Cheung (University of Waterloo) Robust optimization 2009 1 / 19 Outline

More information

First Problem Set for Physics 847 (Statistical Physics II)

First Problem Set for Physics 847 (Statistical Physics II) First Problem Set for Physics 847 (Statistical Physics II) Important dates: Feb 0 0:30am-:8pm midterm exam, Mar 6 9:30am-:8am final exam Due date: Tuesday, Jan 3. Review 0 points Let us start by reviewing

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

Loop optimization for tensor network renormalization

Loop optimization for tensor network renormalization Yukawa Institute for Theoretical Physics, Kyoto University, Japan June, 6 Loop optimization for tensor network renormalization Shuo Yang! Perimeter Institute for Theoretical Physics, Waterloo, Canada Zheng-Cheng

More information

Entanglement detection close to multi-qubit Dicke states in photonic experiments (review)

Entanglement detection close to multi-qubit Dicke states in photonic experiments (review) Entanglement detection close to multi-qubit Dicke states in photonic experiments (review) G. Tóth 1,2,3 1 Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain 2, Bilbao, Spain 3

More information

Nonlinear Schrödinger equation in foundations: summary of 4 catches

Nonlinear Schrödinger equation in foundations: summary of 4 catches Journal of Physics: Conference Series PAPER OPEN ACCESS Nonlinear Schrödinger equation in foundations: summary of 4 catches Recent citations - Nonlinear unitary quantum collapse model with self-generated

More information

Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure

Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure Optimal Prediction for Radiative Transfer: A New Perspective on Moment Closure Benjamin Seibold MIT Applied Mathematics Mar 02 nd, 2009 Collaborator Martin Frank (TU Kaiserslautern) Partial Support NSF

More information

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 1 1 Power Series Suppose x is a variable and c k & a are constants. A power series about x = 0 is c k x k A power series about x = a is c k x a k a = center of the power series c k =

More information

PROBABILITY VITTORIA SILVESTRI

PROBABILITY VITTORIA SILVESTRI PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8 4. Properties of Probability measures Preface These lecture notes are for the course

More information

THE ANALYTICAL EXPRESSION OF THE CHERNOFF POLARIZATION OF THE WERNER STATE

THE ANALYTICAL EXPRESSION OF THE CHERNOFF POLARIZATION OF THE WERNER STATE THE ANALYTICAL EXPRESSION OF THE CHERNOFF POLARIZATION OF THE WERNER STATE IULIA GHIU 1,*, AURELIAN ISAR 2,3 1 University of Bucharest, Faculty of Physics, Centre for Advanced Quantum Physics, PO Box MG-11,

More information

Theory of Quantum Sensing: Fundamental Limits, Estimation, and Control

Theory of Quantum Sensing: Fundamental Limits, Estimation, and Control Theory of Quantum Sensing: Fundamental Limits, Estimation, and Control Mankei Tsang mankei@unm.edu Center for Quantum Information and Control, UNM Keck Foundation Center for Extreme Quantum Information

More information

Classical and Quantum Mechanics of a Charged Particle Moving in Electric and Magnetic Fields

Classical and Quantum Mechanics of a Charged Particle Moving in Electric and Magnetic Fields Classical Mechanics Classical and Quantum Mechanics of a Charged Particle Moving in Electric and Magnetic Fields In this section I describe the Lagrangian and the Hamiltonian formulations of classical

More information

Selection rules - electric dipole

Selection rules - electric dipole Selection rules - electric dipole As an example, lets take electric dipole transitions; when is j, m z j 2, m 2 nonzero so that j 1 = 1 and m 1 = 0. The answer is equivalent to the question when can j

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

WEAK-VALUES AMPLIFICATION: WHEN PRECISION MEASUREMENTS BECOME EASY

WEAK-VALUES AMPLIFICATION: WHEN PRECISION MEASUREMENTS BECOME EASY WEAK-VALUES AMPLIFICATION: WHEN PRECISION MEASUREMENTS BECOME EASY Julián Martínez-Rincón Department of Physics & Astronomy University of Rochester 03/05/14 OUTLINE A quick review on QM: Strong/projective

More information

Topic 2: The mathematical formalism and the standard way of thin

Topic 2: The mathematical formalism and the standard way of thin The mathematical formalism and the standard way of thinking about it http://www.wuthrich.net/ MA Seminar: Philosophy of Physics Vectors and vector spaces Vectors and vector spaces Operators Albert, Quantum

More information

Emergent Fluctuation Theorem for Pure Quantum States

Emergent Fluctuation Theorem for Pure Quantum States Emergent Fluctuation Theorem for Pure Quantum States Takahiro Sagawa Department of Applied Physics, The University of Tokyo 16 June 2016, YITP, Kyoto YKIS2016: Quantum Matter, Spacetime and Information

More information

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club Simulating Quantum Systems through Matrix Product States Laura Foini SISSA Journal Club 15-04-2010 Motivations Theoretical interest in Matrix Product States Wide spectrum of their numerical applications

More information

Deformation Quantization and the Moyal Star Product

Deformation Quantization and the Moyal Star Product Deformation Quantization and the Moyal Star Product Juan Montoya August 23, 2018 1 Deformation Quantization Quantization in general is a process in which one transfers from a system obeying classical mechanics

More information

Phys Midterm. March 17

Phys Midterm. March 17 Phys 7230 Midterm March 17 Consider a spin 1/2 particle fixed in space in the presence of magnetic field H he energy E of such a system can take one of the two values given by E s = µhs, where µ is the

More information

Direct observation of Hardy's paradox by joint weak measurement with an entangled photon pair

Direct observation of Hardy's paradox by joint weak measurement with an entangled photon pair Direct observation of Hardy's paradox by joint weak measurement with an entangled photon pair To cite this article: Kazuhiro Yokota et al 2009 New J. Phys. 11 033011 View the article online for updates

More information

The semiclassical. model for adiabatic slow-fast systems and the Hofstadter butterfly

The semiclassical. model for adiabatic slow-fast systems and the Hofstadter butterfly The semiclassical. model for adiabatic slow-fast systems and the Hofstadter butterfly Stefan Teufel Mathematisches Institut, Universität Tübingen Archimedes Center Crete, 29.05.2012 1. Reminder: Semiclassics

More information

4.3 Lecture 18: Quantum Mechanics

4.3 Lecture 18: Quantum Mechanics CHAPTER 4. QUANTUM SYSTEMS 73 4.3 Lecture 18: Quantum Mechanics 4.3.1 Basics Now that we have mathematical tools of linear algebra we are ready to develop a framework of quantum mechanics. The framework

More information

How the Result of a Measurement of a Component of the Spin of a Spin- 1 2 Particle Can Turn Out to be 100

How the Result of a Measurement of a Component of the Spin of a Spin- 1 2 Particle Can Turn Out to be 100 How the Result of a Measurement of a Component of the Spin of a Spin- 1 2 Particle Can Turn Out to be 100 Aharonov, Albert and Vaidman April 4, 1988 PRL Abstract We have found that the usual measuring

More information

Asymptotic Pure State Transformations

Asymptotic Pure State Transformations Asymptotic Pure State Transformations PHYS 500 - Southern Illinois University April 18, 2017 PHYS 500 - Southern Illinois University Asymptotic Pure State Transformations April 18, 2017 1 / 15 Entanglement

More information

Quantum mechanics with the permitted hidden parameters

Quantum mechanics with the permitted hidden parameters Quantum mechanics with the permitted hidden parameters D.A.Slavnov Department of Physics, Moscow State University, Moscow 119899, Russia. arxiv:quant-ph/0010069v1 19 Oct 2000 Abstract Within the framework

More information