Many-Body Coherence in Quantum Thermodynamics

Size: px
Start display at page:

Download "Many-Body Coherence in Quantum Thermodynamics"

Transcription

1 Many-Body Coherence in Quantum Thermodynamics [] H. Kwon, H. Jeong, D. Jennings, B. Yadin, and M. S. Kim

2 Contents I. Introduction II. Resource theory of quantum thermodynamics 1. Thermal operation and the quantum free energy 2. Free energy correlation in a many-body system III. Work extraction from many-body coherence 1. Many-body coherence in quantum thermodynamics 2. Work extraction without changing classical energy distribution IV. Many-body coherence as a clock resource 1. Quantum coherence as time reference 2. Coherence constraint for quantum state transformation under TO V. Conclusion

3 Introduction Thermodynamics in quantum system Operational description of transformation between quantum states interacting with the thermal bath Equilibrium state (Gibbs state) with the partition function and inverse temperature Q1. Q2. Quantum coherence (correlation) can do extra work? Thermodynamic resource beyond work-yielding resource? in Many-body system

4 Contents I. Introduction II. Resource theory of quantum thermodynamics 1. Thermal operation and the quantum free energy 2. Free energy correlation in a many-body system III. Work extraction from many-body coherence 1. Many-body coherence in quantum thermodynamics 2. Work extraction without changing classical energy distribution IV. Many-body coherence as a clock resource 1. Quantum coherence as time reference 2. Coherence constraint for quantum state transformation under TO V. Conclusion

5 Thermal operation in quantum system Thermal operation : Bath System Energy preserving condition : (Quantum) Free energy : Gibbs(equilibrium) state : where Minimum free energy : completely passive state

6 Generalized free energies A family of free energies : Renyi Divergence : for Renyi divergence becomes Resource theory of thermodynamics (the 2 nd law) : Single-shot (deterministic) work extraction : Work yield : where Brandao et.al., PNAS (2015) (for energy-diagonal states) Brandao et.al., PNAS (2015)

7 Contents I. Introduction II. Resource theory of quantum thermodynamics 1. Thermal operation and the quantum free energy 2. Free energy correlation in a many-body system III. Work extraction from many-body coherence 1. Many-body coherence in quantum thermodynamics 2. Work extraction without changing classical energy distribution IV. Many-body coherence as a clock resource 1. Quantum coherence as time reference 2. Coherence constraint for quantum state transformation under TO V. Conclusion

8 Free energy correlation Free energy in many-body system : (Generalized) Free energy correlation : (total correlation) For product state :

9 Free energy transfer from correlation Two-level system : Local free energy : Free energy correlation : : Interconversion between local free energy and correlation

10 Free energy change under thermal operations System interacting with bath Regardless of the state of system-bath (not necessarily in Gibbs state & can be entangled) Free energy is additionally leaked through the system-bath correlation If the bath is initially in Gibbs state and uncorrelated with the system : (The 2 nd law of quantum thermodynamics)

11 Contents I. Introduction II. Resource theory of quantum thermodynamics 1. Thermal operation and the quantum free energy 2. Free energy correlation in a many-body system III. Work extraction from many-body coherence 1. Many-body coherence in quantum thermodynamics 2. Work extraction without changing classical energy distribution IV. Many-body coherence as a clock resource 1. Quantum coherence as time reference 2. Coherence constraint for quantum state transformation under TO V. Conclusion

12 Coherence in many-body system N-body quantum system : where (Classical) Energy distribution : where Classical thermodynamics Coherence between Energy eigenstates : When When : Equi-level coherence : Inter-level coherence Total Energy :

13 Free energy and correlation for many-body system N-partite non-interacting system with non-degenerate local Hamiltonians Quantum contribution of free energy correlation : Classical (diagonal) state with the same energy statistics : Energy block-diagonal state All the free energy differences are contained in correlations

14 Contents I. Introduction II. Resource theory of quantum thermodynamics 1. Thermal operation and the quantum free energy 2. Free energy correlation in a many-body system III. Work extraction from many-body coherence 1. Many-body coherence in quantum thermodynamics 2. Work extraction without changing classical energy distribution IV. Many-body coherence as a clock resource 1. Quantum coherence as time reference 2. Coherence constraint for quantum state transformation under TO V. Conclusion

15 Extractable work from quantum coherence Work extraction without changing energy statistics : where Extracting work from quantum coherence : (for energy-diagonal states) Q1. Quantum coherence (correlation) can do extra work? Possible if and only if for all

16 Extractable work from quantum coherence Work extraction without changing energy statistics : where Extracting work from quantum coherence : For equi-level coherence Classical energy distribution unchanged Purely quantum contribution on work extraction process

17 Extractable work from quantum coherence Interconversion between work and correlation(coherence) : Example : Dicke states (in N-partite two level systems) T.O. When and

18 Work-locking in coherence Inter-level coherence does not contribute to work extraction process Logtaglio et.al., Nature Commun. (2015) : energy block-diagonal state Q2. Thermodynamic resource beyond work-yielding resource? (contained in inter-level coherence)

19 Contents I. Introduction II. Resource theory of quantum thermodynamics 1. Thermal operation and the quantum free energy 2. Free energy correlation in a many-body system III. Work extraction from many-body coherence 1. Many-body coherence in quantum thermodynamics 2. Work extraction without changing classical energy distribution IV. Many-body coherence as a clock resource 1. Quantum coherence as time reference 2. Coherence constraint for quantum state transformation under TO V. Conclusion

20 Coherence as a clock resource Quantum metrology: High-precision parameter estimation beyond classical shot-noise limit (Quantum Cramer-Rao bound) Estimator of the parameter : Variance of estimator : (Quantum Fisher Information) Time evolution of a quantum state with inter-level coherence : Clock frequency : Time reference

21 Coherence as a clock resource Coherent thermal state : (No work can be extracted) High clock resolution : Heisenberg Limit Clock resource does not increase under TO :

22 Contents I. Introduction II. Resource theory of quantum thermodynamics 1. Thermal operation and the quantum free energy 2. Free energy correlation in a many-body system III. Work extraction from many-body coherence 1. Many-body coherence in quantum thermodynamics 2. Work extraction without changing classical energy distribution IV. Many-body coherence as a clock resource 1. Quantum coherence as time reference 2. Coherence constraint for quantum state transformation under TO V. Conclusion

23 Coherence second law of thermodynamics Coherence second law in terms of QFI : Previously studied coherence restrictions : (Asymmetry) Decreases under TO Logtaglio et.al., Nature Commun. (2015) Logtaglio et.al., Phys. Rev. X (2015)

24 QFI gives additional restriction for TO Four level Hamiltonian : T.O.? Free energy: Asymmetry: Possible? QFI conditions : For every energy difference Transition is impossible!

25 State transformation in many-copy Product state vs. GHZ-state : GHZ-state cannot be generated from product state under TO Many-body entanglement and QFI : for k-producible state Asymmetry vanishes on many-copy limit : QFI does not :

26 Catalytic transform State transformation rate in asymptotic limit For pure gapless states : Allowing catalytic transformation : Catalysis : (sub-linear dimension) Catalysis itself requires super-linear amount of coherence resource

27 Contents I. Introduction II. Resource theory of quantum thermodynamics 1. Thermal operation and the quantum free energy 2. Free energy correlation in a many-body system III. Work extraction from many-body coherence 1. Many-body coherence in quantum thermodynamics 2. Work extraction without changing classical energy distribution IV. Many-body coherence as a clock resource 1. Quantum coherence as time reference 2. Coherence constraint for quantum state transformation under TO V. Conclusion

28 Many-body coherence in quantum thermodynamics Energy Distribution Coherence Classical Thermodynamics T.O. Equi-level coherence Activation Inter-level coherence Work Clock Resource

Thermodynamics beyond free energy relations or Quantum Quantum Thermodynamics. Matteo Lostaglio Imperial College London

Thermodynamics beyond free energy relations or Quantum Quantum Thermodynamics. Matteo Lostaglio Imperial College London Thermodynamics beyond free energy relations or Quantum Quantum Thermodynamics Matteo Lostaglio Imperial College London David Jennings Kamil Korzekwa This is wind, he is actually slim Terry Rudolph What

More information

Ultimate bounds for quantum and Sub-Rayleigh imaging

Ultimate bounds for quantum and Sub-Rayleigh imaging Advances in Optical Metrology --- 14 June 2016 Ultimate boun for quantum and Sub-Rayleigh imaging Cosmo Lupo & Stefano Pirandola University of York arxiv:1604.07367 Introduction Quantum imaging for metrology

More information

Fundamental work cost of quantum processes

Fundamental work cost of quantum processes 1607.03104 1709.00506 Fundamental work cost of quantum processes Philippe Faist 1,2, Renato Renner 1 1 Institute for Theoretical Physics, ETH Zurich 2 Institute for Quantum Information and Matter, Caltech

More information

Quantum metrology from a quantum information science perspective

Quantum metrology from a quantum information science perspective 1 / 41 Quantum metrology from a quantum information science perspective Géza Tóth 1 Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science,

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Quantum estimation for quantum technology

Quantum estimation for quantum technology Quantum estimation for quantum technology Matteo G A Paris Applied Quantum Mechanics group Dipartimento di Fisica @ UniMI CNISM - Udr Milano IQIS 2008 -- CAMERINO Quantum estimation for quantum technology

More information

Entanglement, Fluctuations Quantum Quenches

Entanglement, Fluctuations Quantum Quenches Entanglement, Fluctuations Quantum Quenches Karyn Le Hur CNRS & CPHT Ecole Polytechnique Karyn Le Hur - Yale University May 2010 Non-Traditional Entanglement & (number particle/spin) Fluctuations Francis

More information

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013).

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013). 1 / 24 Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, 032324 (2013). G. Tóth 1,2,3 and D. Petz 4,5 1 Theoretical Physics, University of the Basque Country UPV/EHU,

More information

Universality of the Heisenberg limit for phase estimation

Universality of the Heisenberg limit for phase estimation Universality of the Heisenberg limit for phase estimation Marcin Zwierz, with Michael Hall, Dominic Berry and Howard Wiseman Centre for Quantum Dynamics Griffith University Australia CEQIP 2013 Workshop

More information

Quantum thermodynamics

Quantum thermodynamics Quantum thermodynamics a primer for the curious quantum mechanic Lídia del Rio, ETH Zurich QIP 2017 Seattle This talk is licensed under a Creative Commons Attribution 4.0 International License. Why quantum

More information

Quantum Fisher information and entanglement

Quantum Fisher information and entanglement 1 / 70 Quantum Fisher information and entanglement G. Tóth 1,2,3 1 Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

More information

Entanglement of indistinguishable particles

Entanglement of indistinguishable particles Entanglement of indistinguishable particles Fabio Benatti Dipartimento di Fisica, Università di Trieste QISM Innsbruck -5 September 01 Outline 1 Introduction Entanglement: distinguishable vs identical

More information

arxiv: v1 [quant-ph] 9 Nov 2017

arxiv: v1 [quant-ph] 9 Nov 2017 Clock/work trade-off relation for coherence in quantum thermodynamics arxiv:1711.03395v1 [quant-ph] 9 Nov 017 Hyukjoon Kwon, 1 Hyunseok Jeong, 1 David Jennings,,3 Benjamin Yadin, 3 and M. S. Kim 3 1 Center

More information

From fully quantum thermodynamical identities to a second law equality

From fully quantum thermodynamical identities to a second law equality From fully quantum thermodynamical identities to a second law equality Alvaro Alhambra, Lluis Masanes, Jonathan Oppenheim, Chris Perry Fluctuating States Phys. Rev. X 6, 041016 (2016) Fluctuating Work

More information

The first law of general quantum resource theories

The first law of general quantum resource theories The first law of general quantum resource theories Carlo Sparaciari 1, Lídia del Rio 2, Carlo Maria Scandolo 3, Philippe Faist 4, and Jonathan Oppenheim 1 1 Department of Physics and Astronomy, University

More information

Einselection without pointer states -

Einselection without pointer states - Einselection without pointer states Einselection without pointer states - Decoherence under weak interaction Christian Gogolin Universität Würzburg 2009-12-16 C. Gogolin Universität Würzburg 2009-12-16

More information

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

Quantum control of dissipative systems. 1 Density operators and mixed quantum states Quantum control of dissipative systems S. G. Schirmer and A. I. Solomon Quantum Processes Group, The Open University Milton Keynes, MK7 6AA, United Kingdom S.G.Schirmer@open.ac.uk, A.I.Solomon@open.ac.uk

More information

IMPROVED QUANTUM MAGNETOMETRY

IMPROVED QUANTUM MAGNETOMETRY (to appear in Physical Review X) IMPROVED QUANTUM MAGNETOMETRY BEYOND THE STANDARD QUANTUM LIMIT Janek Kołodyński ICFO - Institute of Photonic Sciences, Castelldefels (Barcelona), Spain Faculty of Physics,

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Under what conditions do quantum systems thermalize?

Under what conditions do quantum systems thermalize? Under what conditions do quantum systems thermalize? 1 / 9 Under what conditions do quantum systems thermalize? New insights from quantum information theory Christian Gogolin, Arnau Riera, Markus Müller,

More information

Increasing atomic clock precision with and without entanglement

Increasing atomic clock precision with and without entanglement Lehman College Increasing atomic clock precision with and without entanglement Christopher C. Gerry Department of Physics and Astronomy Lehman College, The City University of New York Bronx, New York 0468-589

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

2 The Density Operator

2 The Density Operator In this chapter we introduce the density operator, which provides an alternative way to describe the state of a quantum mechanical system. So far we have only dealt with situations where the state of a

More information

Quantum-limited measurements: One physicist's crooked path from quantum optics to quantum information

Quantum-limited measurements: One physicist's crooked path from quantum optics to quantum information Quantum-limited measurements: One physicist's crooked path from quantum optics to quantum information II. I. Introduction Squeezed states and optical interferometry III. Ramsey interferometry and cat states

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Resource Theory of Work and Heat

Resource Theory of Work and Heat C. Sparaciari and J. Oppenheim T. Fritz Resource Theory of Work and Heat ArXiv 1607.01302 University College London - Dep. Physics and Astrophysics Motivations Work and heat as resources INFINITE THERMAL

More information

arxiv: v4 [quant-ph] 21 Oct 2014

arxiv: v4 [quant-ph] 21 Oct 2014 REVIEW ARTICLE Quantum metrology from a quantum information science perspective arxiv:1405.4878v4 [quant-ph] 21 Oct 2014 Géza Tóth 1,2,3, Iagoba Apellaniz 1 1 Department of Theoretical Physics, University

More information

arxiv: v2 [quant-ph] 8 Jul 2014

arxiv: v2 [quant-ph] 8 Jul 2014 TOPICAL REVIEW Quantum metrology from a quantum information science perspective arxiv:1405.4878v2 [quant-ph] 8 Jul 2014 Géza Tóth 1,2,3, Iagoba Apellaniz 1 1 Department of Theoretical Physics, University

More information

Thermal pure quantum state

Thermal pure quantum state Thermal pure quantum state Sho Sugiura ( 杉浦祥 ) Institute for Solid State Physics, Univ. Tokyo Collaborator: Akira Shimizu (Univ. Tokyo) SS and A.Shimizu, PRL 108, 240401 (2012) SS and A.Shimizu, PRL 111,

More information

Many-Body Localization. Geoffrey Ji

Many-Body Localization. Geoffrey Ji Many-Body Localization Geoffrey Ji Outline Aside: Quantum thermalization; ETH Single-particle (Anderson) localization Many-body localization Some phenomenology (l-bit model) Numerics & Experiments Thermalization

More information

Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control

Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control Adriano A. Berni 1, Tobias Gehring 1, Bo M. Nielsen 1, Vitus Händchen 2, Matteo G.A. Paris 3, and Ulrik L. Andersen

More information

Estimation Theory Fredrik Rusek. Chapters

Estimation Theory Fredrik Rusek. Chapters Estimation Theory Fredrik Rusek Chapters 3.5-3.10 Recap We deal with unbiased estimators of deterministic parameters Performance of an estimator is measured by the variance of the estimate (due to the

More information

Metrology with entangled coherent states - a quantum scaling paradox

Metrology with entangled coherent states - a quantum scaling paradox Proceedings of the First International Workshop on ECS and Its Application to QIS;T.M.Q.C., 19-26 (2013) 19 Metrology with entangled coherent states - a quantum scaling paradox Michael J. W. Hall Centre

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Deriving Thermodynamics from Linear Dissipativity Theory

Deriving Thermodynamics from Linear Dissipativity Theory Deriving Thermodynamics from Linear Dissipativity Theory Jean-Charles Delvenne Université catholique de Louvain Belgium Henrik Sandberg KTH Sweden IEEE CDC 2015, Osaka, Japan «Every mathematician knows

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood

Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood Talk presented at the 2012 Anacapa Society Meeting Hamline University, Saint Paul, Minnesota

More information

Coherent superposition states as quantum rulers

Coherent superposition states as quantum rulers PHYSICAL REVIEW A, VOLUME 65, 042313 Coherent superposition states as quantum rulers T. C. Ralph* Centre for Quantum Computer Technology, Department of Physics, The University of Queensland, St. Lucia,

More information

Carlton M. Caves University of New Mexico

Carlton M. Caves University of New Mexico Quantum metrology: dynamics vs. entanglement I. Introduction II. Ramsey interferometry and cat states III. Quantum and classical resources IV. Quantum information perspective V. Beyond the Heisenberg limit

More information

Spin chain model for correlated quantum channels

Spin chain model for correlated quantum channels Spin chain model for correlated quantum channels Davide Rossini Scuola Internazionale Superiore di Studi Avanzati SISSA Trieste, Italy in collaboration with: Vittorio Giovannetti (Pisa) Simone Montangero

More information

MACROSCOPIC SUPERPOSITIONS AND QUANTUM INFORMATION PROCESSING

MACROSCOPIC SUPERPOSITIONS AND QUANTUM INFORMATION PROCESSING The 3rd KIAS Workshop on Quantum Information and Thermodynamics MACROSCOPIC SUPERPOSITIONS AND QUANTUM INFORMATION PROCESSING Hyunseok Jeong Department of Physics and Astronomy Seoul National University

More information

Measures of irreversibility in quantum phase space

Measures of irreversibility in quantum phase space SISSA, Trieste Measures of irreversibility in quantum phase space Gabriel Teixeira Landi University of São Paulo In collaboration with Jader P. Santos (USP), Raphael Drummond (UFMG) and Mauro Paternostro

More information

Quantum Fisher Information: Theory and Applications

Quantum Fisher Information: Theory and Applications Quantum Fisher Information: Theory and Applications Volkan Erol Okan University Computer Engineering Department, 34959 Istanbul, Turkey volkan.erol@gmail.com Abstract Entanglement is at the heart of quantum

More information

arxiv: v1 [quant-ph] 2 Aug 2011

arxiv: v1 [quant-ph] 2 Aug 2011 Numerical solutions of the Dicke Hamiltonian Miguel A. Bastarrachea-Magnani, Jorge G. Hirsch Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Apdo. Postal 70-543, Mexico D. F.,

More information

Quantum entanglement and its detection with few measurements

Quantum entanglement and its detection with few measurements Quantum entanglement and its detection with few measurements Géza Tóth ICFO, Barcelona Universidad Complutense, 21 November 2007 1 / 32 Outline 1 Introduction 2 Bipartite quantum entanglement 3 Many-body

More information

Quantum Information and Quantum Many-body Systems

Quantum Information and Quantum Many-body Systems Quantum Information and Quantum Many-body Systems Lecture 1 Norbert Schuch California Institute of Technology Institute for Quantum Information Quantum Information and Quantum Many-Body Systems Aim: Understand

More information

Decoherence and Thermalization of Quantum Spin Systems

Decoherence and Thermalization of Quantum Spin Systems Copyright 2011 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Computational and Theoretical Nanoscience Vol. 8, 1 23, 2011 Decoherence and Thermalization

More information

Optimal quantum driving of a thermal machine

Optimal quantum driving of a thermal machine Optimal quantum driving of a thermal machine Andrea Mari Vasco Cavina Vittorio Giovannetti Alberto Carlini Workshop on Quantum Science and Quantum Technologies ICTP, Trieste, 12-09-2017 Outline 1. Slow

More information

arxiv: v2 [quant-ph] 16 Sep 2014

arxiv: v2 [quant-ph] 16 Sep 2014 Optimal Quantum-Enhanced Interferometry Matthias D. Lang 1 and Carlton M. Caves 1, 1 Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico, 87131-0001, USA Centre

More information

Temperature Dependence of Entanglement Negativity in Lattice Models: Area Laws and Sudden Death

Temperature Dependence of Entanglement Negativity in Lattice Models: Area Laws and Sudden Death Temperature Dependence of Entanglement egativity in attice Models: Area aws and Sudden Death icholas E. Sherman Department of Physics, University of California Davis, CA 9566, USA (Dated: ovember 4, 5)

More information

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding. CS 94- Bell States Bell Inequalities 9//04 Fall 004 Lecture Hilbert Space Entanglement Quantum Gates Bell States Superdense Coding 1 One qubit: Recall that the state of a single qubit can be written as

More information

General Optimality of the Heisenberg Limit for Quantum Metrology

General Optimality of the Heisenberg Limit for Quantum Metrology General Optimality of the Heisenberg Limit for Quantum Metrology Author Zwierz, Marcin, A. Pe rez-delgado, Carlos, Kok, Pieter Published 200 Journal Title Physical Review Letters DOI https://doi.org/0.03/physrevlett.05.80402

More information

Anatoli Polkovnikov Boston University

Anatoli Polkovnikov Boston University Anatoli Polkovnikov Boston University L. D Alessio BU M. Bukov BU C. De Grandi Yale V. Gritsev Amsterdam M. Kolodrubetz Berkeley C.-W. Liu BU P. Mehta BU M. Tomka BU D. Sels BU A. Sandvik BU T. Souza BU

More information

arxiv: v1 [quant-ph] 29 May 2017

arxiv: v1 [quant-ph] 29 May 2017 Quantum Control through a Self-Fulfilling Prophecy H. Uys, 1, 2, Humairah Bassa, 3 Pieter du Toit, 4 Sibasish Gosh, 5 3, 6, and T. Konrad 1 National Laser Centre, Council for Scientific and Industrial

More information

Introduction. Chapter The Purpose of Statistical Mechanics

Introduction. Chapter The Purpose of Statistical Mechanics Chapter 1 Introduction 1.1 The Purpose of Statistical Mechanics Statistical Mechanics is the mechanics developed to treat a collection of a large number of atoms or particles. Such a collection is, for

More information

arxiv: v1 [quant-ph] 24 May 2018

arxiv: v1 [quant-ph] 24 May 2018 Resource theory of quantum thermodynamics: Thermal operations and Second Laws Nelly Huei Ying Ng 1 and Mischa Prebin Woods 2 1 Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195

More information

MBL THROUGH MPS. Bryan Clark and David Pekker. arxiv: Perimeter - Urbana. Friday, October 31, 14

MBL THROUGH MPS. Bryan Clark and David Pekker. arxiv: Perimeter - Urbana. Friday, October 31, 14 MBL THROUGH MPS Bryan Clark and David Pekker arxiv:1410.2224 Perimeter - Urbana Many Body Localization... It has been suggested that interactions + (strong) disorder LX H = [h i Si z X + J Ŝ i Ŝi+1] i=1

More information

DOA Estimation using MUSIC and Root MUSIC Methods

DOA Estimation using MUSIC and Root MUSIC Methods DOA Estimation using MUSIC and Root MUSIC Methods EE602 Statistical signal Processing 4/13/2009 Presented By: Chhavipreet Singh(Y515) Siddharth Sahoo(Y5827447) 2 Table of Contents 1 Introduction... 3 2

More information

Holographic Second Laws of Black Hole Thermodynamics

Holographic Second Laws of Black Hole Thermodynamics Holographic Second Laws of Black Hole Thermodynamics Federico Galli Gauge/Gravity Duality 018, Würzburg, 31 July 018 Based on arxiv: 1803.03633 with A. Bernamonti, R. Myers and J. Oppenheim Second Law

More information

arxiv: v2 [quant-ph] 2 Aug 2013

arxiv: v2 [quant-ph] 2 Aug 2013 Quantum Fisher Information of Entangled Coherent States in a Lossy Mach-Zehnder Interferometer arxiv:1307.8009v [quant-ph] Aug 013 Xiaoxing Jing, Jing Liu, Wei Zhong, and Xiaoguang Wang Zhejiang Institute

More information

arxiv:quant-ph/ v1 5 Nov 2003

arxiv:quant-ph/ v1 5 Nov 2003 Decoherence at zero temperature G. W. Ford and R. F. O Connell School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland arxiv:quant-ph/0311019v1 5 Nov

More information

Quantum Fisher informa0on as efficient entanglement witness in quantum many-body systems

Quantum Fisher informa0on as efficient entanglement witness in quantum many-body systems Quantum Fisher informa0on as efficient entanglement witness in quantum many-body systems Philipp Hauke (IQOQI, University of Innsbruck) With M. Heyl, L. Tagliacozzo, P. Zoller J. Smith, A. Lee, P. Richerme,

More information

Towards Relativistic and Quantum Technologies

Towards Relativistic and Quantum Technologies York Centre for Quantum Technologies, United Kingdom - Towards Relativistic and Quantum Technologies. 1/12 Towards Relativistic and Quantum Technologies David Edward Bruschi York Centre for Quantum Technologies

More information

Contrasting measures of irreversibility in stochastic and deterministic dynamics

Contrasting measures of irreversibility in stochastic and deterministic dynamics Contrasting measures of irreversibility in stochastic and deterministic dynamics Ian Ford Department of Physics and Astronomy and London Centre for Nanotechnology UCL I J Ford, New J. Phys 17 (2015) 075017

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Quantum Control of States of Light (2) Optimization of information extraction from optical measurements

Quantum Control of States of Light (2) Optimization of information extraction from optical measurements Quantum Control of States of Light (2) Optimization of information extraction from optical measurements C. Fabre Laboratoire Kastler Brossel Université Pierre et Marie Curie-Paris6, ENS Two levels in field

More information

Quantum Chaos as a Practical Tool in Many-Body Physics

Quantum Chaos as a Practical Tool in Many-Body Physics Quantum Chaos as a Practical Tool in Many-Body Physics Vladimir Zelevinsky NSCL/ Michigan State University Supported by NSF Statistical Nuclear Physics SNP2008 Athens, Ohio July 8, 2008 THANKS B. Alex

More information

Giant Enhancement of Quantum Decoherence by Frustrated Environments

Giant Enhancement of Quantum Decoherence by Frustrated Environments ISSN 0021-3640, JETP Letters, 2006, Vol. 84, No. 2, pp. 99 103. Pleiades Publishing, Inc., 2006.. Giant Enhancement of Quantum Decoherence by Frustrated Environments S. Yuan a, M. I. Katsnelson b, and

More information

arxiv: v2 [quant-ph] 17 Jul 2017

arxiv: v2 [quant-ph] 17 Jul 2017 Additional energy-information relations in thermodynamics of small systems Raam Uzdin Technion - Israel Institute of Technology, Haifa 3200003, Israel, Faculty of Chemistry. and University of Maryland,

More information

Fast Adiabatic Control of a Harmonic Oscillator s Frequency

Fast Adiabatic Control of a Harmonic Oscillator s Frequency Fast Adiabatic Control of a Harmonic Oscillator s Frequency Peter Salamon Dept. of Math & Stats San Diego State University KITP; June, 2009 Ensemble of Independent Harmonic Oscillators Sharing a Controlled

More information

Primes go Quantum: there is entanglement in the primes

Primes go Quantum: there is entanglement in the primes Primes go Quantum: there is entanglement in the primes Germán Sierra In collaboration with José Ignacio Latorre Madrid-Barcelona-Singapore Workshop: Entanglement Entropy in Quantum Many-Body Systems King's

More information

arxiv: v3 [quant-ph] 11 Dec 2015

arxiv: v3 [quant-ph] 11 Dec 2015 Self-catalytic conversion of pure quantum states arxiv:1504.06364v3 [quant-ph] 11 Dec 2015 Cristhiano Duarte, 1, 2, Raphael C. Drumond, 2, 2, 3, and Marcelo Terra Cunha 1 Departamento de Matemática, Instituto

More information

Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest

Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest Vladimir Zelevinsky NSCL/ Michigan State University Stony Brook October 3, 2008 Budker Institute of Nuclear Physics, Novosibirsk

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova Outline 1) The framework: microcanonical statistics versus the

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Selection rules - electric dipole

Selection rules - electric dipole Selection rules - electric dipole As an example, lets take electric dipole transitions; when is j, m z j 2, m 2 nonzero so that j 1 = 1 and m 1 = 0. The answer is equivalent to the question when can j

More information

Kyle Reing University of Southern California April 18, 2018

Kyle Reing University of Southern California April 18, 2018 Renormalization Group and Information Theory Kyle Reing University of Southern California April 18, 2018 Overview Renormalization Group Overview Information Theoretic Preliminaries Real Space Mutual Information

More information

Quantum Entanglement in Exactly Solvable Models

Quantum Entanglement in Exactly Solvable Models Quantum Entanglement in Exactly Solvable Models Hosho Katsura Department of Applied Physics, University of Tokyo Collaborators: Takaaki Hirano (U. Tokyo Sony), Yasuyuki Hatsuda (U. Tokyo) Prof. Yasuhiro

More information

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x.

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x. Section 5.1 Simple One-Dimensional Problems: The Free Particle Page 9 The Free Particle Gaussian Wave Packets The Gaussian wave packet initial state is one of the few states for which both the { x } and

More information

The general reason for approach to thermal equilibrium of macroscopic quantu

The general reason for approach to thermal equilibrium of macroscopic quantu The general reason for approach to thermal equilibrium of macroscopic quantum systems 10 May 2011 Joint work with S. Goldstein, J. L. Lebowitz, C. Mastrodonato, and N. Zanghì. Claim macroscopic quantum

More information

arxiv: v1 [hep-th] 26 Sep 2017

arxiv: v1 [hep-th] 26 Sep 2017 Eigenstate entanglement in the Sachdev-Ye-Kitaev model arxiv:709.0960v [hep-th] 6 Sep 07 Yichen Huang ( 黄溢辰 ) Institute for Quantum Information and Matter, California Institute of Technology Pasadena,

More information

Összefonódás és felületi törvény 2. Szabad rácsmodellek

Összefonódás és felületi törvény 2. Szabad rácsmodellek Összefonódás és felületi törvény 2. Szabad rácsmodellek Eisler Viktor MTA-ELTE Elméleti Fizikai Kutatócsoport Entanglement Day 2014.09.05. I. Peschel & V. Eisler, J. Phys. A: Math. Theor. 42, 504003 (2009)

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

arxiv: v2 [hep-th] 23 Nov 2018

arxiv: v2 [hep-th] 23 Nov 2018 arxiv:1807.07357 HIP-018-5/TH Aspects of capacity of entanglement arxiv:1807.07357v [hep-th] 3 Nov 018 Jan de Boer a, Jarkko Järvelä b,c, Esko Keski-Vakkuri b,c a Institute for Theoretical Physics, University

More information

Quantum mechanics in one hour

Quantum mechanics in one hour Chapter 2 Quantum mechanics in one hour 2.1 Introduction The purpose of this chapter is to refresh your knowledge of quantum mechanics and to establish notation. Depending on your background you might

More information

Physics Reports 509 (2011) Contents lists available at SciVerse ScienceDirect. Physics Reports

Physics Reports 509 (2011) Contents lists available at SciVerse ScienceDirect. Physics Reports Physics Reports 509 (011) 89 165 Contents lists available at SciVerse ScienceDirect Physics Reports journal homepage: www.elsevier.com/locate/physrep Quantum spin squeezing Jian Ma a,b,, Xiaoguang Wang

More information

Quantum-limited measurements: One physicist s crooked path from relativity theory to quantum optics to quantum information

Quantum-limited measurements: One physicist s crooked path from relativity theory to quantum optics to quantum information Quantum-limited measurements: One physicist s crooked path from relativity theory to quantum optics to quantum information II. III. I. Introduction Squeezed states and optical interferometry Quantum limits

More information

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

(Dynamical) quantum typicality: What is it and what are its physical and computational implications? (Dynamical) : What is it and what are its physical and computational implications? Jochen Gemmer University of Osnabrück, Kassel, May 13th, 214 Outline Thermal relaxation in closed quantum systems? Typicality

More information

Quantum metrology vs. quantum information science

Quantum metrology vs. quantum information science Quantum metrology vs. quantum information science I. Practical phase estimation II. Phase-preserving linear amplifiers III. Force detection IV. Probabilistic quantum metrology Carlton M. Caves Center for

More information

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS QUANTUM MEASUREMENT THEORY AND ITS APPLICATIONS KURT JACOBS University of Massachusetts at Boston fg Cambridge WW UNIVERSITY PRESS Contents Preface page xi 1 Quantum measurement theory 1 1.1 Introduction

More information

CHAPTER V. Brownian motion. V.1 Langevin dynamics

CHAPTER V. Brownian motion. V.1 Langevin dynamics CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid

More information

An Introduction To Resource Theories (Example: Nonuniformity Theory)

An Introduction To Resource Theories (Example: Nonuniformity Theory) An Introduction To Resource Theories (Example: Nonuniformity Theory) Marius Krumm University of Heidelberg Seminar: Selected topics in Mathematical Physics: Quantum Information Theory Abstract This document

More information

Technique for Numerical Computation of Cramér-Rao Bound using MATLAB

Technique for Numerical Computation of Cramér-Rao Bound using MATLAB Technique for Numerical Computation of Cramér-Rao Bound using MATLAB Hing Cheung So http://www.ee.cityu.edu.hk/~hcso Department of Electronic Engineering City University of Hong Kong H. C. So Page 1 The

More information

0.5 atoms improve the clock signal of 10,000 atoms

0.5 atoms improve the clock signal of 10,000 atoms 0.5 atoms improve the clock signal of 10,000 atoms I. Kruse 1, J. Peise 1, K. Lange 1, B. Lücke 1, L. Pezzè 2, W. Ertmer 1, L. Santos 3, A. Smerzi 2, C. Klempt 1 1 Institut für Quantenoptik, Leibniz Universität

More information

Quantum Mechanical Foundations of Causal Entropic Forces

Quantum Mechanical Foundations of Causal Entropic Forces Quantum Mechanical Foundations of Causal Entropic Forces Swapnil Shah North Carolina State University, USA snshah4@ncsu.edu Abstract. The theory of Causal Entropic Forces was introduced to explain the

More information

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017 Lecture 4: Entropy Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, PHYS 743 September 7, 2017 Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, Lecture PHYS4: 743 Entropy September

More information

Statistical Mechanics in a Nutshell

Statistical Mechanics in a Nutshell Chapter 2 Statistical Mechanics in a Nutshell Adapted from: Understanding Molecular Simulation Daan Frenkel and Berend Smit Academic Press (2001) pp. 9-22 11 2.1 Introduction In this course, we will treat

More information

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Path Entanglement. Liat Dovrat. Quantum Optics Seminar Path Entanglement Liat Dovrat Quantum Optics Seminar March 2008 Lecture Outline Path entangled states. Generation of path entangled states. Characteristics of the entangled state: Super Resolution Beating

More information

Correlation between classical Fisher information and quantum squeezing properties of Gaussian pure states

Correlation between classical Fisher information and quantum squeezing properties of Gaussian pure states J. At. Mol. Sci. doi: 0.4208/jams.02090.0360a Vol., No. 3, pp. 262-267 August 200 Correlation between classical Fisher information and quantum squeezing properties of Gaussian pure states Jia-Qiang Zhao

More information