Initial tension forces in guys of steel industrial chimneys at adjustment phase

Size: px
Start display at page:

Download "Initial tension forces in guys of steel industrial chimneys at adjustment phase"

Transcription

1 American Journal of Environmental Engineering and Science 04; (5): Published online November 30, 04 ( Initial tension forces in guys of steel industrial chimneys at adjustment phase Bernard Wichtowski, Janusz Hołowaty Faculty of Civil Engineering and Architecture, West Pomeranian University of Technology Szczecin, Szczecin, Poland address (J. Hołowaty) To cite this article Bernard Wichtowski, Janusz Hołowaty. Initial Tension Forces in Guys of Steel Industrial Chimneys at Adjustment Phase. American Journal of Environmental Engineering and Science. Vol., No. 5, 04, pp Abstract The free standing and guyed industrial chimneys are the most typical steel chimney structures. Structural system of guyed chimneys is very similar to masts, in particular, to tube masts. Sometimes steel chimneys with too loose guys are in risk to collapse. In the paper, the presented results relate to initial tension force adjustments in 0 steel chimneys. The chimneys range is from 5,0 to 60,5 m of height. Two ways of determining the initial tension forces are described. The measured values of initial tension forces are presented. Analyses of performance in service conditions are also carried out. All the presented chimneys required adjustments because they had deviations from verticality and their guys were hanging loosely. The initial forces in guys at adjustment stages were calibrated to receive adequate horizontal rigidity of the chimney shaft in order to avoid high normal force in the shaft and to prevent guy vibration. The method of initial tension force regulation in chimney guys can be adopted for the assessments and adjustments of technical condition in similar structures. Keywords Chimneys, Guys, Tension Forces, Adjustment Phase. Introduction The most popular types of steel chimneys are free-standing chimneys and those with guys. As to the structural scheme and forms of structure, a guyed chimney corresponds, to a significant extent, to calculation requirements defined for masts, in particular, with reference to masts with a tabular shaft [-3]. Sometimes guys insufficiently tensioned are the reason of steel chimney collapses. Usually initial tension forces in guyed chimneys are selected so as to: obtain a proper initial horizontal rigidity of the shaft elastic support, avoid of too large axial forces in the shaft, resulted from vertical components of the tension forces, avoid vibration of guys. In the paper, based on the example of the structure of ten guyed steel chimneys in which adjustments were made, the results of measurement of initial tension values in guy ropes are presented. The analyses of the initial guys tension forces may be useful when evaluating the technical condition of similar structures and at their adjustment [4, 5].. Characteristics of Chimneys and Guy Ropes Examined General construction data of the discussed ten steel chimneys with guys are presented in Fig. and in Table. The chimneys have single flue pipes without thermal insulation of differentiated construction and height, ranging from 5,0 to 60,5 m. In seven cases, they are rigidly attached constructions on a foundation with one level of guys, however, three chimneys with two levels of guys and the height of 46, and 4,0 m ( b, d and d chimneys) based in an articulated way on brick pedestals ( b ), 7, m and 6,0 m high reinforced concrete pedestals ( d and d ). All chimneys have single-flue pipe welded of structural carbon steels St3SY and St3S of diameters ranging from 70 to 50 mm. Former Polish steel grades (St3SY and St3S) are similar to European steel grade S35.

2 05 Bernard Wichtowski and Janusz Hołowaty: Initial Tension Forces in Guys of Steel Industrial Chimneys at Adjustment Phase Chimneys were used in a continued way or in season. Each of them served an independent boiler, using fine coal and the boilers were not operating simultaneously but in turns. This had it that each chimney was turned off and cooled in turns. Chimneys marked with letter and number were of identical structure. Differentiated types of ropes were used for guys in the discussed chimneys. They are steel ropes from tinned wire of identical diameter of six strands with double or three layer construction of strands T6 9 ( b, g, g ) and T6 37 ( a, c ) with organic chord A and ropes 36+A ( d, d, e, f, h ). The parameters of these ropes, according to the Polish standards are given in Table. In all chimneys, three guys were applied on every level, placed every 0. The angles of inclination from the horizontal level of the guy chords υ were differentiated and fluctuated from 3,95 to 77,0 (Fig. ). At the bottom, the guys were attached in reinforced concrete anchorage blocks through bolts (Fig. ) put into the Table. Technical data of the chimney structures ropes. Only in the ropes of a chimney near the anchorage block were the tensioning devices assembled which were adjusted to the connection of a dynamometer. In b, d and d chimneys, the guys of two levels were anchored in one block (Fig. ). In the analyzed ten chimneys, the overhanging sag of guys ropes was clearly visible and in some chimneys, deflection of the shaft axis from the vertical (Fig. 3). For example, the deflection of d and d chimneys tops amounted to 50 and 58 mm, or else was 4,4 and 4,5 times larger than admitted standard assembling deflection δ = H/300, H constitutes the height of the chimney over the foundation. The occurring rope sag was the proof of a too small value of initial tension forces in the guys. This was confirmed by executed field measurements. For example, in the ropes of c chimney, the values of initial tension forces amounted to 5,83 and 4, kn. This means that the stresses in ropes had only the values of 5,5; 5,5 and 6,6 MPa. Chimney Height Level of guys Shaft parameters Length of rope chord [m] (Fig. ) [m] [m] Diameter[mm] Plate thickness [mm] a 60,50 47, ,9 6,3 56,35 b 46,0 38,50;, , 9,8 45,67; 5,97 c 45,00 35, ,8 9,6 43,0 d, d 4,00 36,00; 6, , 9,4; 9,0 9,4 39,3 55,07; 30,4 49,3 e 40,00 5,0 90 9, 0,0 35,8; 35,60; 8,55 ) f 3,00, ,7 7,4,86; 5,59; 30,54 g, g 30,00 9, ,,8 4,3; 7,0; 5,60 ) 5,0, 3,85; 4,00; 4,4 h 5,00 6,30 80; 50 8,7 9,; 7,4 7,8,50 ) guys attached on the roof of a boiler house Fig.. General construction data for ten steel chimneys

3 American Journal of Environmental Engineering and Science 04; (5): Table. Technical parameters of guy ropes Chimney (Fig. ) Height [m] Guy ropes Type φ [mm] Am [mm] Weight [kg] Rm [MPa] Inclination angle υ [o] ,50 T6 37+A 37+A 8 94, υ = 57,45 46,0 T6 9+A 9+A 0 5, υg =6,05 c 45,00 T6 37+A 37+A 5 9,8 600 υ = 54,46 d 4, ,6 600 υg =56,9 4,4 υd =47,85 3,6 d 4, ,6 600 υg =66,3 40,8 υd =58,7 3,95 e 40,00 96, υ = 45,74 4,74 45,74 f 3,00 96, υ = 77,0 46,90 77,0 g 30,00 T6 9+A 9+A 4 7 0, υ = 54,09 35,38 54,09 g 30,00 T6 9+A 9+A 4 7 0, υ = 55,69 54,68 55,69 h 5, ,6 600 υ = 46,4 Number of levels a b υd =45,78 Table 3. Values of introduced forces in guys Level (Fig. ) Height [m] Tension force of rope [kn] Chimney guy I guy II guy III average value Stress [MPa] a 47,5 38,5,9 35,0 36,7 3,6 4,4,0 56,7 3,6 4,4 30, 59,6 3,6 4,4 43,0 5,0 (50,34) 3,6 4,4 3,4 73,5 56,3 6,3 37, 36,0 6,0 36,0 6,0 4,3 8,0 5,5 5, 0,0 7,0 6,8 7,6 3, 7,4 0,9,9 9, 0,8 7,7 8,,4,4 04, 07,0 e 5, 6,4 0,6,8 9,9 0,7 f,3 4,7 0, 3,3,,7 g 9,7 7,8 9,3 0,9 9,3 8,3 g 9,7 8,9,, 0,7 47,6 h 6,3 8,9 9,4 0,5 9,6 (9,47) 5,3 b c d d a) b) Fig.. Guy anchorage systems: a) chimney a, b) chimney b, c) chimney c c)

4 07 Bernard Wichtowski and Janusz Hołowaty: Initial Tension Forces in Guys of Steel Industrial Chimneys at Adjustment Phase a) b) Fig. 3. Guy ropes of chimney b : a) before adjustment, b) after tension adjustmentt 3. Initial Tension Forces of Ropes Guys in the place of connection with chimney shaft make up elastic supports in the horizontal direction. The flexibility of such a support depends upon the diameter, length, inclination angle of the guy, its modulus of elasticity, on the number of guys at a given level and, first of all, the initial rope tension. The forces of the initial tension of guys are selected correspondingly to the required horizontal rigidity (kn/m) of the elastic support whose calculation has been given in [-3, 6]. The range of initial stress in guy ropes of steel chimneys may be assumed in values recommended for ropes of masts with a pipe shaft, i.e. ranging from 00 to 350 MPa. The values in Table 3 relate to forces and initial stresses which were introduced in the ropes during shaft adjustment of the analysed chimneys. In all 39 guys of ten chimneys, the introduced average tension of ropes of a given level, when they are attached, causes in them a stress of values larger than the minimum value recommended in the literature σ o = 00 MPa. Corresponding values of forces in guys were introduced by rope tension caused by the shortening of tensioning bolts with the anchorage blocks. For example, in c chimney, the bolt was shortened by a value of 50, 80 and a 000 mm. Following a very small range of bolts regulation in seven chimneys, at the same time, there was a necessity to shorten the rope by shifting the foundation thimbles. 4. Analysis of Initial Tension Forces In seven chimneys, the value of initial tension forces was determined by the dynamic method by counting the number of vibration amplitudes in a defined time. By a sharp jerking of the rope near its connection with anchoring, a vertical wave was caused and the amplitude of vibrations counted (full deflection) N in time t = 0 or 5 s. The rope initial tension at a half of its spread is calculated according to the Eq. () obtained from the transformation of the formula, defining the circular frequency of vibrations [5, 7-9]: Gl N F G = t F G rope tension in kn, G total rope weight in kn, l rope length in m, N number of amplitudes in time t, t time of measuring N vibration amplitudes in s. The initial tension force determined according to the Eq. () is a force in the centre of guy spread and its value at FA anchor is determined according to the Eq. (): F A = FG G sin υ + υ is the declination angle from the horizontal plane of guy chord. The difference in the value of forces according to the Eq. () and () is insignificant and depends mainly on the weight of the rope. For example, for guys of a and h chimney, this difference amounts to,3 and 0,7% (F G and F A forces in Table 3, col. 7). The initial tension forces determined in Table 3 relate to guys of a cold chimney and are referred to the standard assembling temperature T 0 = +0 C. For the adjustment of the force in another temperature, its correction F G is introduced, which takes into account the current temperature T a, from the following dependence: G T cosυ α T coefficient of linear thermal expansion, is equal 0-6 / C, T difference between the current and assembling temperature, is equal T a T 0, E 0 = 5 (45) elastic modulus for ropes with non-metal core (metal core) in GPa, A m metallic area of guy wires in cm. G 0 m () () F = α T cos υ E A (3)

5 American Journal of Environmental Engineering and Science 04; (5): In three chimneys d, d and e, the guy initial tension was adjusted by a direct method of measurement, related to the value of forces with the use of the dynamometer connected parallel into the rope. The measurement of forces was carried out with dynamometers of bow type of 30 kn range. The dynamometers were assembled in special lock-tension member devices, specially prepared for this purpose. In chimneys d and d these devices were assembled into the ropes of a given fixing level only for the time of measurement (Fig. 4a), and in e chimney they were installed permanently in guy ropes (Fig. 4b). The guy tension of a given level took place at the same time in a continued manner with a permanent land survey control of chimney shaft tilt. The permanent fixing of measuring devices into e chimney rope allowed to conduct the measurement of real forces occurring in various operating conditions. Such an analyses was conducted for a chimney out of operation (cold) and in operation (warm) at external temperatures T ext = +9 and 4 C [8, 9]. The measured values of operating forces ranged from to 9% of the value of initial tension (on average,5% at T ext = +9 C and 3,5% at T ext = 4 C). Theoretically, the operating forces in guys are determined from the following dependence: Ta hp sin υ Fe = + Tinit l αt E0 A l (4) m F e difference in the value of forces in guys at cold and warm chimney, T a change in the temperature of chimney shell (measured or calculated) in relation to the temperature at initial tension, is equal T a T init t, T init change in the temperature of guys in relation to the initial tension temperature, is equal T a T ext, h p length of a working section of chimney shaft (distance between the top of inlet and the level guys are fixed). The equation (4) was used for the determination of initial tension forces in b chimney guys. The adjustment of forces in ropes was carried at T ext = +3 C and measured average temperatures of the shell for the individual sections under the guys: h = 4,8 m T init = 60 C i h = 3,4 m T init = 45 C (compare Fig. ). a) b) Fig. 4. Guy sections close to the foundation with measuring device: a) chimney d and d, b) chimney e 5. Conclusions All chimneys required an adjustment of shafts with the simultaneous adjustment of rope initial tension to the standard value because of significant deflection from the vertical and a significant sag of ropes. As results from the analyses of the guys initial tension in section 4, it is not always necessary to determine the tension, according to the Eq. (). This note relates in particular to guys of a small weight. A significant reduction in stresses found out in chimney guys causes an increase in the natural period and in the coefficient of wind operating and in consequence an increase in the value of bending moments [0]. The assumption of the guys initial tension causing stresses of a value σ >00 MPa has it that in the distribution of horizontal load, the guys from the leeward side also take part. References [] The CICIND Chimney Book. Industrial Chimneys of Concrete or Steel, CICIND, Zurich, 005. [] Smith, BW, Communication Structures, Thomas Telford, London, 007.

6 09 Bernard Wichtowski and Janusz Hołowaty: Initial Tension Forces in Guys of Steel Industrial Chimneys at Adjustment Phase [3] Rykaluk, K, Steel Structures. Chimneys, Towers and Masts, OWPW, Wrocław (in Polish), 005. [4] Włodarczyk, W, On failures and desinging of steel chimneys, Inżynieria i Budownictwo, No. 0, pp (in Polish), 998. [5] Wichtowski, B, Adjustment of steel chimneys with be-level guyed, Inżynieria i Budownictwo, No. 5, pp (in Polish), 03. [6] Pałkowski, Sz, Steel Structures, Selected Problems and Design, PWN, Warszawa (in Polish), 00. [7] Instruction ER-0, Operation of towers and masts, TP SA, Warszawa (in Polish), 995. [8] Wichtowski, B, Forces in guys according thermal analysis of structural shell of a 40 m high steel chimney, Przegląd Budowlany, No. 8-9, pp (in Polish), 994. [9] Wichtowski, B, Hołowaty, J, Steel chimneys at adjustment phase. Initial tension forces in guys, EUROSTEEL 0, 6 th European Conference on Steel and Composite Structures: Research Design Construction, Budapest 0, pp [0] Kozłowski, A, Baran R, Variablility of loads on a guyed chimney in service, Inżynieria i Budownictwo, No. 0, pp (in Polish), 99.

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows:

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows: External Pressure... The critical (buckling) pressure is calculated as follows: P C = E. t s ³ / 4 (1 - ν ha.ν ah ) R E ³ P C = Critical buckling pressure, kn/m² E = Hoop modulus in flexure, kn/m² t s

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

NATURAL PERIOD OF STEEL CHIMNEYS

NATURAL PERIOD OF STEEL CHIMNEYS SDSS Rio 010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 010 NATURAL PERIOD OF STEEL CHIMNEYS Aleksander Kozlowski, Andrzej

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

National Exams May 2015

National Exams May 2015 National Exams May 2015 04-BS-6: Mechanics of Materials 3 hours duration Notes: If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear

More information

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY Spring 2006 Final Examination STUDENT S NAME (please print) STUDENT S SIGNATURE STUDENT NUMBER IDE 110 CLASS SECTION INSTRUCTOR S NAME Do not turn this page until instructed to start. Write your name on

More information

Visit Abqconsultants.com. This program Designs and Optimises RCC Chimney and Foundation. Written and programmed

Visit Abqconsultants.com. This program Designs and Optimises RCC Chimney and Foundation. Written and programmed Prepared by : Date : Verified by : Date : Project : Ref Calculation Output Design of RCC Chimney :- 1) Dimensions of Chimney and Forces 200 Unit weight of Fire Brick Lining 19000 N/m3 100 Height of Fire

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 04 CIVIL ENGINEERING QUESTION BANK Course Name : STRENGTH OF MATERIALS II Course Code : A404 Class : II B. Tech II Semester Section

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH Journal of Engineering Science and Technology Vol. 12, No. 11 (2017) 2839-2854 School of Engineering, Taylor s University FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING

More information

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

More information

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

More information

FIS Specifications for Flex Poles (Edition May 2008) Original Text: German

FIS Specifications for Flex Poles (Edition May 2008) Original Text: German FIS Specifications for Flex Poles (Edition May 2008) Original Text: German 1 Field of Application and Basic Information The following FIS specifications for flex poles are intended to ensure that flex

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

Special edition paper

Special edition paper Development of New Aseismatic Structure Using Escalators Kazunori Sasaki* Atsushi Hayashi* Hajime Yoshida** Toru Masuda* Aseismatic reinforcement work is often carried out in parallel with improvement

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

CIV 207 Winter For practice

CIV 207 Winter For practice CIV 07 Winter 009 Assignment #10 Friday, March 0 th Complete the first three questions. Submit your work to Box #5 on the th floor of the MacDonald building by 1 noon on Tuesday March 31 st. No late submissions

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER:

JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER: JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER: COURSE: Tutor's name: Tutorial class day & time: SPRING

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

NTNU Faculty of Engineering Science and Technology Department of Marine Technology TMR 4195 DESIGN OF OFFSHORE STRUCTURES

NTNU Faculty of Engineering Science and Technology Department of Marine Technology TMR 4195 DESIGN OF OFFSHORE STRUCTURES NTNU Faculty of Engineering Science and Technology Department of Marine Technology EXERCISE 4 TMR 495 DESIGN OF OFFSHORE STRUCTURES Distr. Date: 9 th Feb 4 Sign: Q. Chen Mandatory Exercise This exercise

More information

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS Time Allowed:2 Hours Maximum Marks: 300 Attention: 1. Paper consists of Part A (Civil & Structural) Part B (Electrical) and Part C (Mechanical)

More information

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail. Our ref: JULB2NB Date of issue: March 2017

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail. Our ref: JULB2NB Date of issue: March 2017 Juliet balconies using BALCONY 2 System (Aerofoil) handrail PAGE 1 (ref: JULB2NB280317) Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail Our ref: JULB2NB280317 Date

More information

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure. CE6306 STREGNTH OF MATERIALS Question Bank Unit-I STRESS, STRAIN, DEFORMATION OF SOLIDS PART-A 1. Define Poison s Ratio May/June 2009 2. What is thermal stress? May/June 2009 3. Estimate the load carried

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material. Shear Strain. Dr. Attaullah Shah Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

More information

my!wind Ltd 5 kw wind turbine Static Stability Specification

my!wind Ltd 5 kw wind turbine Static Stability Specification my!wind Ltd 5 kw wind turbine Static Stability Specification 1 P a g e 0 3 / 0 4 / 2 0 1 4 Contents Contents... 2 List of Changes... 2 Appendixes... 2 General remarks... 3 1. Introduction... 4 2. Geometry...

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

Strength of Materials (15CV 32)

Strength of Materials (15CV 32) Strength of Materials (15CV 32) Module 1 : Simple Stresses and Strains Dr. H. Ananthan, Professor, VVIET,MYSURU 8/21/2017 Introduction, Definition and concept and of stress and strain. Hooke s law, Stress-Strain

More information

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR: MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3. ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th in-class Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on

More information

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method 9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

More information

Buckling Resistance Assessment of a Slender Cylindrical Shell Axially Compressed

Buckling Resistance Assessment of a Slender Cylindrical Shell Axially Compressed Mechanics and Mechanical Engineering Vol. 14, No. 2 (2010) 309 316 c Technical University of Lodz Buckling Resistance Assessment of a Slender Cylindrical Shell Axially Compressed Jakub Marcinowski Institute

More information

Constitutive Equations (Linear Elasticity)

Constitutive Equations (Linear Elasticity) Constitutive quations (Linear lasticity) quations that characterize the physical properties of the material of a system are called constitutive equations. It is possible to find the applied stresses knowing

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Cross-section shape Material Shaft design Non-circular

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

Balcony balustrades using the SG12 laminated glass system: PAGE 1 (SG12FF010717) Structural Calculations for SG12 System balustrades using 21.5mm laminated toughened glass without the need for a handrail

More information

2D - STRIP ANCHOR LIFTING SYSTEM

2D - STRIP ANCHOR LIFTING SYSTEM 2D - STRIP ANCHOR LIFTING SYSTEM WWW.TERWA.COM Terwa reserves the right to make changes to the documentation at any time Page 1 OVERVIEW LIFTING CLUTCHES AND TRANSPORT ANCHOR SA-B SA-ST SA-TTU UNIVERSAL

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Fang Ming Scholl of Civil Engineering, Harbin Institute of Technology, China Wang Tao Institute of

More information

Two Tier projects for students in ME 160 class

Two Tier projects for students in ME 160 class ME 160 Introduction to Finite Element Method Spring 2016 Topics for Term Projects by Teams of 2 Students Instructor: Tai Ran Hsu, Professor, Dept. of Mechanical engineering, San Jose State University,

More information

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam.

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam. ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICS OF SOLIDS (21000) ASSIGNMENT 1 SIMPLE STRESSES AND STRAINS SN QUESTION YEAR MARK 1 State and prove the relationship

More information

Design against fluctuating load

Design against fluctuating load Design against fluctuating load In many applications, the force acting on the spring is not constants but varies in magnitude with time. The valve springs of automotive engine subjected to millions of

More information

7 STATICALLY DETERMINATE PLANE TRUSSES

7 STATICALLY DETERMINATE PLANE TRUSSES 7 STATICALLY DETERMINATE PLANE TRUSSES OBJECTIVES: This chapter starts with the definition of a truss and briefly explains various types of plane truss. The determinancy and stability of a truss also will

More information

Only for Reference Page 1 of 18

Only for Reference  Page 1 of 18 Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

Modern techniques for effective wind load distributions on large roofs. John D. Holmes 1)

Modern techniques for effective wind load distributions on large roofs. John D. Holmes 1) The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Keynote Paper Modern techniques for effective wind load distributions on large

More information

DESIGN OF BEAMS AND SHAFTS

DESIGN OF BEAMS AND SHAFTS DESIGN OF EAMS AND SHAFTS! asis for eam Design! Stress Variations Throughout a Prismatic eam! Design of pristmatic beams! Steel beams! Wooden beams! Design of Shaft! ombined bending! Torsion 1 asis for

More information

2D - STRIP ANCHOR LIFTING SYSTEM

2D - STRIP ANCHOR LIFTING SYSTEM 2D - STRIP ANCHOR LIFTING SYSTEM WWW.TERWA.COM alterations reserved Feb-18 Page 1 PRODUCT RANGE LIFTING CLUTCHES AND TRANSPORT ANCHOR SA-B SA-ST SA-TTU SA-TTU 12.5 kn Page 15 Page 20 Page 23 Page 26 SA-TU-HP

More information

TABLE OF CONTENTS SECTION TITLE PAGE 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3

TABLE OF CONTENTS SECTION TITLE PAGE 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3 TABLE OF CONTENTS SECTION TITLE PAGE 1 INTRODUCTION 1 2 PRINCIPLES OF SEISMIC ISOLATION OF BRIDGES 3 3 ANALYSIS METHODS OF SEISMICALLY ISOLATED BRIDGES 5 3.1 Introduction 5 3.2 Loadings for the Analysis

More information

my!wind Ltd 5 kw wind turbine Static Stability Specification

my!wind Ltd 5 kw wind turbine Static Stability Specification my!wind Ltd 5 kw wind turbine Static Stability Specification 1 P a g e 0 3 / 0 4 / 2 0 1 4 Contents Contents... 2 List of Changes... 2 Appendixes... 2 General remarks... 3 1. Introduction... 4 2. Geometry...

More information

Fracture Test & Fracture Parameters of Self Compacting Concrete using ANSYS. Zeel Vashi 1,Megha Thomas 2 I. INTRODUCTION

Fracture Test & Fracture Parameters of Self Compacting Concrete using ANSYS. Zeel Vashi 1,Megha Thomas 2 I. INTRODUCTION International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Impact Factor: 3.45 (SJIF-2015), e-issn: 2455-2584 Volume 3, Issue 05, May-2017 Fracture Test & Fracture Parameters

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension but strong in compression Steel tendon is first stressed

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

9.5 Compression Members

9.5 Compression Members 9.5 Compression Members This section covers the following topics. Introduction Analysis Development of Interaction Diagram Effect of Prestressing Force 9.5.1 Introduction Prestressing is meaningful when

More information

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.

More information

Hand Calculations of Rubber Bearing Seismic Izolation System for Irregular Buildings in Plane

Hand Calculations of Rubber Bearing Seismic Izolation System for Irregular Buildings in Plane Hand Calculations of Rubber Bearing Seismic Izolation System for Irregular Buildings in Plane Luan MURTAJ 1, Enkelejda MURTAJ 1 Pedagogue, Department of Structural Mechanics Faculty of Civil Engineering

More information

Stress Concentrations, Fatigue, Fracture

Stress Concentrations, Fatigue, Fracture Stress Concentrations, Fatigue, Fracture The fundamental topic in this document is the development of cracks in steel. For structures subjected to cyclic loads, such cracks can develop over time and ultimately

More information

STRUCTURAL ANALYSIS OF THE LIFTING DEVICE DETECTOR SUPPORTS FOR THE LHCb VERTEX LOCATOR (VELO)

STRUCTURAL ANALYSIS OF THE LIFTING DEVICE DETECTOR SUPPORTS FOR THE LHCb VERTEX LOCATOR (VELO) National Institute for Nuclear Physics and High Energy Physics Kruislaan 409 1098 SJ Amsterdam The Netherlands NIKHEF Reference no.: MT-VELO 04-2 EDMS no: 466608 OF THE LIFTING DEVICE DETECTOR SUPPORTS

More information

Problem " Â F y = 0. ) R A + 2R B + R C = 200 kn ) 2R A + 2R B = 200 kn [using symmetry R A = R C ] ) R A + R B = 100 kn

Problem  Â F y = 0. ) R A + 2R B + R C = 200 kn ) 2R A + 2R B = 200 kn [using symmetry R A = R C ] ) R A + R B = 100 kn Problem 0. Three cables are attached as shown. Determine the reactions in the supports. Assume R B as redundant. Also, L AD L CD cos 60 m m. uation of uilibrium: + " Â F y 0 ) R A cos 60 + R B + R C cos

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

1.050: Beam Elasticity (HW#9)

1.050: Beam Elasticity (HW#9) 1050: Beam Elasticity (HW#9) MIT 1050 (Engineering Mechanics I) Fall 2007 Instructor: Markus J BUEHER Due: November 14, 2007 Team Building and Team Work: We strongly encourage you to form Homework teams

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Bending and Shear in Beams

Bending and Shear in Beams Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS Unit 2: Unit code: QCF Level: 4 Credit value: 15 Engineering Science L/601/1404 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS 1. Be able to determine the behavioural characteristics of elements of static engineering

More information

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

More information

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns.

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns. CHAPTER OBJECTIVES Discuss the behavior of columns. Discuss the buckling of columns. Determine the axial load needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods

More information

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie Journal of Applied Mathematics and Physics, 2015, 3, 577-583 Published Online May 2015 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2015.35071 Fatigue Crack Analysis on the

More information

THE INFLUENCE OF ROOF BOLTS LOCATION ON ITS INTERACTION WITH THE ROCK MASS.

THE INFLUENCE OF ROOF BOLTS LOCATION ON ITS INTERACTION WITH THE ROCK MASS. THE INFLUENCE OF ROOF BOLTS LOCATION ON ITS INTERACTION WITH THE ROCK MASS. M. Cała 1, A. Tajduś 1 ABSTRACT This paper examines the influence of roof bolts location on its interaction with rock mass in

More information

Metal Structures Lecture XIII Steel trusses

Metal Structures Lecture XIII Steel trusses Metal Structures Lecture XIII Steel trusses Contents Definition #t / 3 Geometry and cross-sections #t / 7 Types of truss structures #t / 15 Calculations #t / 29 Example #t / 57 Results of calculations

More information

Rigid pavement design

Rigid pavement design Rigid pavement design Lecture Notes in Transportation Systems Engineering Prof. Tom V. Mathew Contents 1 Overview 1 1.1 Modulus of sub-grade reaction.......................... 2 1.2 Relative stiffness

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

The Study of Vibration Reduction for Pole Shaft Type Meteorological Tower

The Study of Vibration Reduction for Pole Shaft Type Meteorological Tower International Journal of Applied Environmental Sciences ISSN 0973-6077 Volume 12, Number 6 (2017), pp. 1059-1072 Research India Publications http://www.ripublication.com The Study of Vibration Reduction

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010302 Set No. 1 I B.Tech Supplimentary Examinations, February 2008 ENGINEERING MECHANICS ( Common to Mechanical Engineering, Mechatronics, Metallurgy & Material Technology, Production Engineering,

More information

EQUIVALENT FRACTURE ENERGY CONCEPT FOR DYNAMIC RESPONSE ANALYSIS OF PROTOTYPE RC GIRDERS

EQUIVALENT FRACTURE ENERGY CONCEPT FOR DYNAMIC RESPONSE ANALYSIS OF PROTOTYPE RC GIRDERS EQUIVALENT FRACTURE ENERGY CONCEPT FOR DYNAMIC RESPONSE ANALYSIS OF PROTOTYPE RC GIRDERS Abdul Qadir Bhatti 1, Norimitsu Kishi 2 and Khaliq U Rehman Shad 3 1 Assistant Professor, Dept. of Structural Engineering,

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

Torsion Stresses in Tubes and Rods

Torsion Stresses in Tubes and Rods Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is

More information

Pullout Tests of Geogrids Embedded in Non-cohesive Soil

Pullout Tests of Geogrids Embedded in Non-cohesive Soil Archives of Hydro-Engineering and Environmental Mechanics Vol. 51 (2004), No. 2, pp. 135 147 Pullout Tests of Geogrids Embedded in Non-cohesive Soil Angelika Duszyńska, Adam F. Bolt Gdansk University of

More information

ON THE DESIGN OF A STEEL END-PLATE BEAM-TO-COLUMN BOLTED JOINT ACCORDING TO PN-EN

ON THE DESIGN OF A STEEL END-PLATE BEAM-TO-COLUMN BOLTED JOINT ACCORDING TO PN-EN CZASOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISKA I ARCHITEKTURY JOURNAL O CIVIL ENGINEERING, ENVIRONMENT AND ARCHITECTURE JCEEA, t. XXXV, z. 65 (2/18), kwiecień-czerwiec 2018, s. 187-196, DOI:10.7862/rb.2018.35

More information

COMPARATIVE STUDY OF LINEAR-ELASTIC AND NONLINEAR- INELASTIC SEISMIC RESPONSES OF FLUID-TANK SYSTEMS

COMPARATIVE STUDY OF LINEAR-ELASTIC AND NONLINEAR- INELASTIC SEISMIC RESPONSES OF FLUID-TANK SYSTEMS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1127 COMPARATIVE STUDY OF LINEAR-ELASTIC AND NONLINEAR- INELASTIC SEISMIC RESPONSES OF FLUID-TANK SYSTEMS

More information