Vortex matter in nanostructured and hybrid superconductors

Size: px
Start display at page:

Download "Vortex matter in nanostructured and hybrid superconductors"

Transcription

1 Vortex matter in nanostructured and hybrid superconductors François Peeters University of Antwerp In collaboration with: B. Baelus, M. Miloševic V.A. Schweigert (Russian Academy of Sciences, Novosibirsk) D. Vodolazov (Russian Academy of Sciences, Nizhny Novgorod) P. Deo (Bose Institute, Calcutta) A.K. Geim (University of Nijmegen, The Netherlands) (since 1: University of Manchester, UK)

2 Common wisdom about superconductivity # Superconducting phase boundary: is a material property independent of the size of the superconductor # Two general classes of superconductors # Quantization of flux in units of Φ =hc/e

3 S/N boundary: mesoscopic effects film S/N boundary depends on the size of the sample. Decreasing the size of the superconductor enhances the superconducting state

4 Magnetization T =.4K Al-disks d = µm λ() = 7 nm ξ() =.15 µm κ = λ/ξ =.8 < 1/ -4π M (a. u.) 3 1 x1 x.5 x1.3 x1.5 µm.5 µm Type I or type II behavior is no longer.75 µm only determined by the material. The size of the sample is very important and can turn a type I superconductor into a type II superconductor. r = 1. µm A.K. Geim, I.V. Grigorieva, S.V. Dubonos, J.G.S. Lok, J.C. Maan, A.E. Filippov, and F.M. Peeters, Nature 39, 59 (1997) 5 1 H (Gauss)

5 Fractional and negative vortices Al-disks R = 7.5 µm d =.1 µm T =.5 K Φ (φ ) 3 δφ H (G) 6 φ Vortex entry no longer leads to an increase of flux by a quantized unit. The amount of flux can even be negative with increasing H H (Gauss) A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, F.M. Peetrs, and V.A. Schweigert, Nature 47, 55 ()

6 Ginzburg-Landau formalism condensation energy (<) interaction energy (>) α r Gs = Gn + dr r β r 4 Ψ ( r) + Ψ( r) 1 * + Ψ m* internal magnetic field urr rr rota( r) = h( r) * r urr r r e 1 () r ih Ar () Ψ () r + (() hr H) c 8π kinetic energy operator for Cooper pairs: m*=m, e*=e applied magnetic field α = h mξ o T (1 ) T o, length scales: ξ =h / m* α coherence length λ = c m β 4 e π α penetration length

7 G s Ψ, r A Ginzburg Landau equations δ G s δψ = 1 m e i ur r h A Ψ = αψ βψ Ψ c δ δ G s r A = ur ur ur 4π r A = j c r ur ur ur j eh im ( * *) 4 e = Ψ Ψ Ψ Ψ Ψ mc A Boundary conditions: # At the superconducting/insulating interface: # Magnetic field far away from disk = applied field: e ih A Ψ= c r r n ur 1 r Ar = Ho ρ eφ

8 Superconducting Normal phase boundary E Electrons e, m, E H H Cooper pairs e*=e, m*=m, E -α 1-T/T o S N T Box Ψ Electrons Ψ(R)= R Ψ Cooper pairs (-ih -e*a/)ψ n = R

9 electrons Cooper pairs A.K. Geim, I.V. Grigorieva, S.V. Dubonos, J.G.S. Lok, J.C. Maan, A.E. Filippov, and F.M. Peeters, Nature 39, 59 (1997) R=.55µm d=.8µm ξ()=.µm

10 Circular symmetry: Giant vortex states r Ψ ( r) = F( ρ, ze ) ilϕ -M free energy L= 1 L= R/ξ=3.5 d/ξ=.18 κ=.8 8 equilibrium F( ρ) vorticity (for thin disks and cylinders) Magnetic field: A ϕ (ρ,z) [Ψ, A j ] [1D, D] - problem H/H c

11 Density of superconducting condensate density Cooper pairs L=1 L= L= L=3 L=4 L=5 L=6 L=7 L= distance in µm -magnetization (Gauss).3..1 magnetic field (Gauss) Magnetization r Ψ.5 ( r) = F( ρ, ze ) ilϕ Magnetic field distribution G 111.5G 13.43G 87.8G 79.1G 71.14G 63.7G 46.9G 38.85G L=8 L=7 L=6 L=5 L=4 L=3 L= L=1 L= R=.8µm d=.134µ m ξ()=.183 µm λ()=.7µm T=.4K ρ L (ρ ) distance in µm magnetic field (Gauss).

12 Experiment theory -M (Gauss) T=.4K R=.5 µm d=.134 µm Superconducting dots H (Gauss) Two-dimensional electron gas -magnetization (Gauss) Total magnetic field (Gauss) Averaging over detector DETECTOR DISK Magnetic field (Gauss) Distance along a line through the disc center in µm -Magnetization (Gauss) magnetic field (Gauss) T =.4K R =.8 µm d =.134 µm

13 Larger disks Small disks: symmetry of disk determines the symmetry of superconducting density r Ψ ( r) = F ( ρ, z) e ilϕ Larger disks: competition between symmetry boundary of sample and Abrikosov lattice [Ψ, A] [D, 3D] - problem

14 Giant - multi-vortex transitions F/F -M/H c (x 1-3 ) R/ξ = 4. d/ξ =.1 κ =.8 L = H /H c y/ξ y/ξ 4 H=.55H c - -4 H=.75H c Magnetic field distribution -4-4 x/ξ H=.65H c H=.8H c -4-4 x/ξ

15 Multiple-small-tunnel junctions The idea: Lead 1 (N) I 1 small tunnel junction superconductor ξ 4 Al, R=75nm, d=33nm Apply a fixed current I 1 = 1pA and measure the voltage as a function of the field. Decrease of the energy gap by the supercurrent underneath the junction (Bardeen, 196): ( J S ) = () 1 7 J J S C y/ξ x/ξ Axial symmetry: V A = V B = V C = V D -4-4 x/ξ Non-Axial symmetry: V A V B V C V D A. Kanda et al (4)

16 Multi-vortex transitions

17 Giant - multi-vortex states. L=6 L=7-4π M H (Gauss) A.K. Geim, S.V. Dubonos and J.J. Palacios, Phys. Rev. Lett. 84, 1796 ()

18 Vortex states (R=6ξ) L=6-14: one vortex in center + (L-1) vortices in a ring Are 9 vortices on a ring stable? L=1-14: two vortices in center + (L-) vortices in a ring 6 4 L = 11 y/ξ x/ξ L=1-14: three vortices in center + (L-3) vortices in a ring

19 Free energy F/F L 3 vortices on an outer ring + 3 vortices on an inner. ring for L = R = 6.ξ L vortices on a ring -. L - 1 vortices on a ring + 1 vortex in the center -.5 Giant vortex state with vorticity L L - vortices on a outer ring + vortices on a inner ring L - 3 vortices on a outer ring + 3 vortices on a inner ring H /H c F/F R = 6.ξ H /H c

20 Larger disks (L = 16) Three different vortex configurations are stable: y/ξ x/ξ y/ξ x/ξ y/ξ x/ξ (4,1) (5,11) (1,5,1) R =? H = 1.H c Lowest energy B.J. Baelus, L.R.E. Cabral, and F.M. Peeters, Phys. Rev. B 69, 9451 (4)

21 Disks with R 5? High fields: triangular lattice in the center Cooper-pair density L = 3 Voronoi construction L = 3 L. R. E. Cabral et al, PRB (4)

22 T =.4K Summary: size dependence 3 x1.5 µm Only Meissner state Only axially symmetric states (giant vortex states) Multivortex states: one vortex shell -4π M (a. u.) Multivortex states: several vortex shells 1 x. 5 x1. 3 x 1 Circular vortex shells near the boundary + Triangular vortex lattice in the center 5 1 H (Gauss).5 µm.75µm r = 1.µm Small disks Large disks

23 Entrance and exit of vortices Bean-Livingston surface barrier -.17 R=4.8ξ, d= H/H c =.86 free energy r Ψ, A -.19 [18 18, ( ) 6] x/ξ

24 Fractional and negative vortices

25 Fractional and negative vortices Al-disks R = 7.5 µm d =.1 µm T =.5 K Φ (φ ) δφ H (G) Φ (φ ) (a) (b) φ µm 1 (c) H (Gauss) H (Gauss) A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselev, F.M. Peeters, and V.A. Schweigert, Nature (London) 47, 55 ().

26 Surface roughness (d) (e) (e) (d) (c) (a) Superconducting density free energy (a) (a) (b) (c) (b) (d) (b) (a) (b) -1. (e) (c) H/H c Vortex exit Vortex entrance

27 Ring structures Sub-micron Hall probe Detector area Multiple flux entry/exit (Ørsted Laboratory, Copenhagen) R 5.5ξ w 1.3ξ D.Y. Vodolazov, F.M. Peeters, S.V. Dubonovs, A.K. Geim, Phys. Rev. B 67, 5456 (3) S. Pedersen, G. R. Koford, J. C. Hollingbery, C. B. Sorensen, and P. E. Lindelof, Phys. Rev. B 64, 145 (1).

28 Time-dependent Ginzburg-Landau equations ψ ( ) ( u + iϕψ = i A ψ+ψ ψ 1) +χ t ( i A) ( ( * )) ϕ= div Re ψ ψ

29 Comparison with experiment R 5.5 ξ w 1.3ξ

30 Conclusions Ginzburg-landau theory is able to describe the superconducting state of mesoscopic superconductors (also deep inside the superconducting state) Depending on the radius of the disk: type I, type II, multi-type I behavior Geometry (i.e. size) determines the properties Giant multi-vortex transition (second-order) Multi-vortex configurations (first order) Metastability: Hysteresis Fractional and negative flux entrance Multi-vortex entry/exit in ring structures

31 University of Antwerp Condensed Matter Theory Group Nanostructured ferromagnets + superconducting film D.S. Golubovic et al, Phys. Rev. B 68, 1753 (3) J.I. Martín et al, Phys. Rev. B 6, 911 () J.E. Villegas et al, Science 3, 1188 (3) Ferromagnets create inhomogeneous magnetic fields with <H>= will locally destroy superconductivity pinning centra <H> vortex/antivortex pairs can be created

32 University of Antwerp Condensed Matter Theory Group I II III IV V Single magnetic dot on top of a SC film Φ + /Φ VI VII VIII F/F I II III IV VII VIII d/ξ=.5 d d /ξ=.5 R d /ξ=1. κ= V m/(h C ξ 3 ) VI

33 University of Antwerp Condensed Matter Theory Group Larger magnetic disk favoring the multivortex state h mz /H c,5, 1,5 1,,5, -, r / x d d /ξ=1. R d /ξ = R /ξ d = 4. 1.

34 University of Antwerp Condensed Matter Theory Group 5 y/ξ x/ξ 5 y/ξ x/ξ The equilibrium vortex phase diagram: Solid lines: transitions between different vortex configurations for different size (R d ) and magnetic moment (m) of the dot. Dashed lines: denote the formation of a new ring of anti-vortices. N is the number of the anti-vortices involved. Shaded area: the multi-vortex state under the dot is energetically favorable (giant vortex splits into individual vortices).

35 University of Antwerp Condensed Matter Theory Group Transition between successive N-states: the baby vortex-antivortex pair F/F IV III Φ + /Φ IV III II I VIII VII VI V m/m IV III m/m

36 University of Antwerp Condensed Matter Theory Group Normal state N=1 N= N=3 N=4 Φ + /Φ =1.65 Φ + /Φ =1.63 N= Φ + /Φ =1.9 Φ + /Φ =1.7

37 University of Antwerp Condensed Matter Theory Group Normal state N=1 N= N= N=3 N=4 single dot-like behavior

38 Fractional states +3 + Unit cell - Appear only as metastable states, in the considered range of parameters - Significantly influenced by the Ginzburg-Landau parameter κ enhanced stability in strong type II superconductors

39 University of Antwerp Condensed Matter Theory Group Magnetic-field-enhanced critical current L / ξ = 6.5 a / ξ =. D / ξ =. l / ξ =.1 d / ξ =. κ = 1.

40 University of Antwerp Condensed Matter Theory Group Magnetic-field-induced superconductivity M. Lange et al., Phys. Rev. Lett. 9, 1976 (3) H/H 1 =1 φ + / φ =.8 H/H 1 = H/H 1 =

41 Conclusions Single FM dot on top of a SC film - Vortex/anti-vortex molecule - Anti-vortex ring structure Lattice of FM dots: Vortex/anti-vortex lattice Perpendicular magnetization Magnetic field enhanced critical current Magnetic field induced superconductivity New vortex/anti-vortex lattice structures: each of them may have a different unit cell

42 THE END

University of Antwerp Condensed Matter Theory Group Vortices in superconductors IV. Hybrid systems

University of Antwerp Condensed Matter Theory Group Vortices in superconductors IV. Hybrid systems Vortices in superconductors IV. Hybrid systems François Peeters Magnetic impurities T c decreases with increasing impurity density Origin: exchange interaction between electron and impurity: Γ(r i -r e

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 20 Jun 2001

arxiv:cond-mat/ v1 [cond-mat.supr-con] 20 Jun 2001 Superconducting properties of mesoscopic cylinders with enhanced surface superconductivity arxiv:cond-mat/0106403v1 [cond-mat.supr-con] 20 Jun 2001 B. J. Baelus, S. V. Yampolskii and F. M. Peeters Departement

More information

Pinning-induced formation of vortex clusters and giant vortices in mesoscopic. superconducting disks

Pinning-induced formation of vortex clusters and giant vortices in mesoscopic. superconducting disks Pinning-induced formation of vortex clusters and giant vortices in mesoscopic superconducting disks W. Escoffier, I.V. Grigorieva School of Physics and Astronomy, University of Manchester, Manchester M13

More information

Formation and size dependence of vortex shells in mesoscopic superconducting niobium disks

Formation and size dependence of vortex shells in mesoscopic superconducting niobium disks Formation and size dependence of vortex shells in mesoscopic superconducting niobium disks V. R. Misko, B. Xu, and F. M. Peeters* Department of Physics, University of Antwerpen, Groenenborgerlaan 171,

More information

Formation of vortex clusters and giant vortices in mesoscopic superconducting disks with strong disorder

Formation of vortex clusters and giant vortices in mesoscopic superconducting disks with strong disorder Journal of Physics: Conference Series Formation of vortex clusters and giant vortices in mesoscopic superconducting disks with strong disorder To cite this article: W Escoffier et al 2008 J. Phys.: Conf.

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 25 Apr 2005

arxiv:cond-mat/ v1 [cond-mat.supr-con] 25 Apr 2005 Europhysics Letters PREPRINT arxiv:cond-mat/0504645v1 [cond-mat.supr-con] 25 Apr 2005 Field-enhanced critical parameters in magnetically nanostructured superconductors M. V. Milošević and F. M. Peeters

More information

arxiv: v1 [cond-mat.supr-con] 10 Apr 2008

arxiv: v1 [cond-mat.supr-con] 10 Apr 2008 Formation and Size-Dependence of Vortex Shells in Mesoscopic Superconducting Niobium Disks V.R. Misko, B. Xu, and F.M. Peeters Department of Physics, University of Antwerpen, Groenenborgerlaan 171, B-2020

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks

From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks PHYSICAL REVIEW B 70, 144523 (2004) From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks L. R. E. Cabral,* B. J. Baelus, and F. M. Peeters Departement Fysica, Universiteit

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 10 Oct 2005

arxiv:cond-mat/ v1 [cond-mat.supr-con] 10 Oct 2005 Magnetic dipole vortex interaction in a bilayer superconductor/soft-magnet heterostructure arxiv:cond-mat/5151v1 [cond-mat.supr-con] 1 Oct 5 S. V. Yampolskii and G. I. Yampolskaya Institut für Materialwissenschaft

More information

arxiv:cond-mat/ v2 [cond-mat.supr-con] 29 Mar 2007

arxiv:cond-mat/ v2 [cond-mat.supr-con] 29 Mar 2007 Critical fields for vortex expulsion from narrow superconducting strips P. Sánchez-Lotero and J. J. Palacios Departamento de Física Aplicada, Universidad de Alicante, San Vicente del Raspeig, Alicante

More information

There are two main theories in superconductivity: Ginzburg-Landau Theory. Outline of the Lecture. Ginzburg-Landau theory

There are two main theories in superconductivity: Ginzburg-Landau Theory. Outline of the Lecture. Ginzburg-Landau theory Ginzburg-Landau Theory There are two main theories in superconductivity: i Microscopic theory describes why materials are superconducting Prof. Damian Hampshire Durham University ii Ginzburg-Landau Theory

More information

arxiv: v2 [cond-mat.supr-con] 5 Apr 2017

arxiv: v2 [cond-mat.supr-con] 5 Apr 2017 Vortex Dynamics in Type II Superconductors Dachuan Lu (Kuang Yaming Honors School, Nanjing University) (Dated: April 6, 2017) Time dependent Ginzburg-Landau equation is solved for type II superconductors

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration 5th International Workshop on Numerical Modelling of High-Temperature Superconductors, 6/15-17/2016, Bologna, Italy TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the

More information

Ginzburg-Landau length scales

Ginzburg-Landau length scales 597 Lecture 6. Ginzburg-Landau length scales This lecture begins to apply the G-L free energy when the fields are varying in space, but static in time hence a mechanical equilibrium). Thus, we will be

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

smaller mfp coh L type II

smaller mfp coh L type II Type II superconductors Superconductivity: outline of 10.10 Superconductor in magnetic field Thin superconductor in magnetic field Interface energy Type II superconductors Mixed phase Abrikosov vortices

More information

Vortices in superconductors: I. Introduction

Vortices in superconductors: I. Introduction Tutorial BEC and quantized vortices in superfluidity and superconductivity 6-77 December 007 Institute for Mathematical Sciences National University of Singapore Vortices in superconductors: I. Introduction

More information

Note that some of these solutions are only a rough list of suggestions for what a proper answer might include.

Note that some of these solutions are only a rough list of suggestions for what a proper answer might include. Suprajohtavuus/Superconductivity 763645S, Tentti/Examination 07.2.20 (Solutions) Note that some of these solutions are only a rough list of suggestions for what a proper answer might include.. Explain

More information

Anisotropy included in a nanoscale superconductor: Theoretical development

Anisotropy included in a nanoscale superconductor: Theoretical development Journal of Physics: Conference Series PPER OPEN CCESS nisotropy included in a nanoscale superconductor: Theoretical development To cite this article: O J Gaona et al 207 J. Phys.: Conf. Ser. 935 02070

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Vortex pinning in a superconducting film due to in-plane magnetized ferromagnets of different shapes: The London approximation

Vortex pinning in a superconducting film due to in-plane magnetized ferromagnets of different shapes: The London approximation PHYSICAL REVIEW B 69, 104522 2004 Vortex pinning in a superconducting film due to in-plane magnetized ferromagnets of different shapes: The London approximation M. V. Milošević and F. M. Peeters* Departement

More information

CONDENSED MATTER: towards Absolute Zero

CONDENSED MATTER: towards Absolute Zero CONDENSED MATTER: towards Absolute Zero The lowest temperatures reached for bulk matter between 1970-2000 AD. We have seen the voyages to inner & outer space in physics. There is also a voyage to the ultra-cold,

More information

Superconductivity controlled by the magnetic state of ferromagnetic nanoparticles

Superconductivity controlled by the magnetic state of ferromagnetic nanoparticles Superconductivity controlled by the magnetic state of ferromagnetic nanoparticles A.A. Fraerman 1, B.A. Gribkov 1, S.A. Gusev 1, E. Il ichev 2, A.Yu. Klimov 1, Yu.N. Nozdrin 1, G.L. Pakhomov 1, V.V. Rogov

More information

Modeling of Magnetisation and Intrinsic Properties of Ideal Type-II Superconductor in External Magnetic Field

Modeling of Magnetisation and Intrinsic Properties of Ideal Type-II Superconductor in External Magnetic Field Modeling of Magnetisation and Intrinsic Properties of Ideal Type-II Superconductor in External Magnetic Field Oleg A. Chevtchenko *1, Johan J. Smit 1, D.J. de Vries 2, F.W.A. de Pont 2 1 Technical University

More information

DE GENNES PARAMETER DEPENDENCE ON SUPERCONDUCTING PROPERTIES OF MESOSCOPIC CIRCULAR SECTOR

DE GENNES PARAMETER DEPENDENCE ON SUPERCONDUCTING PROPERTIES OF MESOSCOPIC CIRCULAR SECTOR DE GENNES PARAMETER DEPENDENCE ON SUPERCONDUCTING PROPERTIES OF MESOSCOPIC CIRCULAR SECTOR DEPENDENCIA DEL PARÁMETRO DE GENNES SOBRE LAS PROPIEDADES SUPERCONDUCTORAS DE UN SECTOR CIRCULAR MESOSCÓPICO JOSÉ

More information

Superconducting films with antidot arrays Novel behavior of the critical current

Superconducting films with antidot arrays Novel behavior of the critical current EUROPHYSICS LETTERS 1 May 2006 Europhys. Lett., 74 (3), pp. 493 499 (2006) DOI: 10.1209/epl/i2006-10013-1 Superconducting films with antidot arrays Novel behavior of the critical current G. R. Berdiyorov,

More information

arxiv: v1 [cond-mat.supr-con] 13 Jun 2017

arxiv: v1 [cond-mat.supr-con] 13 Jun 2017 arxiv:1706.04002v1 [cond-mat.supr-con] 13 Jun 2017 The Dynamics of Magnetic Vortices in Type II Superconductors with Pinning Sites Studied by the Time Dependent Ginzburg-Landau Model Mads Peter Sørensen

More information

arxiv: v1 [cond-mat.supr-con] 16 Aug 2013

arxiv: v1 [cond-mat.supr-con] 16 Aug 2013 arxiv:8.v [cond-mat.supr-con] Aug Giant vortex states in type I superconductors simulated by Ginzburg-Landau equations H. Palonen,, J. Jäykkä and P. Paturi E-mail: heikki.palonen@utu.fi Wihuri Physical

More information

Multivortex states in mesoscopic superconducting squares and triangles

Multivortex states in mesoscopic superconducting squares and triangles UNIVERSITEIT ANTWERPEN Faculteit Wetenschappen Departement Fysica Multivortex states in mesoscopic superconducting squares and triangles Proefschrift voorgelegd tot het behalen van de graad van licentiaat

More information

Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays

Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays Qinghua Chen Prof. Shi Xue Dou 1 Outline: I. An Introduction of superconductor II. Overview of vortex

More information

Properties of mesoscopic superconducting thin-film rings: London approach

Properties of mesoscopic superconducting thin-film rings: London approach PHYSICAL REVIEW B 69, 064516 2004 Properties of mesoscopic superconducting thin-film rings: London approach V. G. Kogan and John R. Clem Ames Laboratory DOE and Department of Physics and Astronomy, Iowa

More information

For a complex order parameter the Landau expansion of the free energy for small would be. hc A. (9)

For a complex order parameter the Landau expansion of the free energy for small would be. hc A. (9) Physics 17c: Statistical Mechanics Superconductivity: Ginzburg-Landau Theory Some of the key ideas for the Landau mean field description of phase transitions were developed in the context of superconductivity.

More information

Electrodynamics of superconductor-ferromagnet hybrid structures

Electrodynamics of superconductor-ferromagnet hybrid structures Electrodynamics of superconductor-ferromagnet hybrid structures A.S.Mel nikov Institute for Physics of Microstructures RAS IPM RAS S.V.Mironov A.V.Samokhvalov D.Vodolazov Yu.Erin A.Bespalov V.Vadimov M.Sapozhnikov

More information

Abrikosov vortex lattice solution

Abrikosov vortex lattice solution Abrikosov vortex lattice solution A brief exploration O. Ogunnaike Final Presentation Ogunnaike Abrikosov vortex lattice solution Physics 295b 1 / 31 Table of Contents 1 Background 2 Quantization 3 Abrikosov

More information

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom Superconductivity S2634: Physique de la matière condensée & nano-objets Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom 1 What is superconductivity? 2 Superconductivity Superconductivity generally

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Jun 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Jun 2001 Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas arxiv:cond-mat/0106368v1 [cond-mat.mes-hall] 19 Jun 2001 The quasi-bound and scattered states in a 2DEG subjected

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 15 Jul 1998

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 15 Jul 1998 Quantum states in a magnetic anti-dot J. Reijniers and F. M. Peeters Departement Natuurkunde, Universiteit Antwerpen (UIA, Universiteitsplein, B-6 Antwerpen, Belgium. arxiv:cond-mat/9876v [cond-mat.mes-hall]

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 1999

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 1999 Hall potentiometer in the ballistic regime arxiv:cond-mat/9901135v1 [cond-mat.mes-hall] 14 Jan 1999 B. J. Baelus and F. M. Peeters a) Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein

More information

Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size

Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size Quantum Mechanics Structure Properties Recall discussion in Lecture 21 Add new ideas Physics 460 F 2006 Lect 26 1 Outline Electron

More information

Quantum Phase Slip Junctions

Quantum Phase Slip Junctions Quantum Phase Slip Junctions Joël Peguiron Insitute of Physics, University of Basel Monday Morning Meeting, 24 April 2006 1 Goal Monday Morning Meeting, 24 April 2006 2 Evidence for Thermodynamic Fluctuations

More information

Vortex lattice pinning in high-temperature superconductors.

Vortex lattice pinning in high-temperature superconductors. Vortex lattice ning in high-temperature superconductors. Victor Vakaryuk. Abstract. Vortex matter in high temperature superconductors has many peculiar properties such as melting of the vortex lattice,

More information

Advances in Physics Theories and Applications ISSN X (Paper) ISSN (Online) Vol.27, 2014

Advances in Physics Theories and Applications ISSN X (Paper) ISSN (Online) Vol.27, 2014 Influence of Vortex-Antivortex Annihilation on the Potential Curve for Josephson Junction Based on The Modified Time Dependent Ginzburg-Landau Equations Abstract Hari Wisodo 1, 2, *, Arif Hidayat 1, Pekik

More information

Superconductivity - Overview

Superconductivity - Overview Superconductivity - Overview Last week (20-21.11.2017) This week (27-28.11.2017) Classification of Superconductors - Theory Summary - Josephson Effect - Paraconductivity Reading tasks Kittel: Chapter:

More information

Critical fields and intermediate state

Critical fields and intermediate state 621 Lecture 6.3 Critical fields and intermediate state Magnetic fields exert pressure on a superconductor: expelling the flux from the sample makes it denser in the space outside, which costs magnetic

More information

Theory of the lower critical magnetic field for a two-dimensional superconducting film in a non-uniform field

Theory of the lower critical magnetic field for a two-dimensional superconducting film in a non-uniform field Theory of the lower critical magnetic field for a two-dimensional superconducting film in a non-uniform field Thomas R. Lemberger and John Draskovic Dept. of Physics The Ohio State University Columbus,

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 17 Mar 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 17 Mar 2003 The interaction between a superconducting vortex and an out-of-plane magnetized ferromagnetic disk: influence of the magnet geometry arxiv:cond-mat/3331v1 [cond-mat.supr-con] 17 Mar 3 M. V. Milošević and

More information

Intermediate State in Type I superconducting sphere: pinning and size effect.

Intermediate State in Type I superconducting sphere: pinning and size effect. Intermediate State in Type I superconducting sphere: pinning and size effect. I. Shapiro and B. Ya. Shapiro Department of Physics and Institute of Superconductivity, Bar-Ilan University, 52900 Ramat- Gan,

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 4 Jul 2002

arxiv:cond-mat/ v1 [cond-mat.supr-con] 4 Jul 2002 Magnetic Pinning of Vortices in a Superconducting Film: The (anti)vortex-magnetic dipole interaction energy in the London approximation arxiv:cond-mat/27114v1 [cond-mat.supr-con] 4 Jul 22 M. V. Milošević,

More information

What was the Nobel Price in 2003 given for?

What was the Nobel Price in 2003 given for? What was the Nobel Price in 2003 given for? Krzysztof Byczuk Instytut Fizyki Teoretycznej Uniwersytet Warszawski December 18, 2003 2003 Nobel Trio Alexei A. Abrikosov, born 1928 (75 years) in Moscow, the

More information

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 015, 0 (0), P. 1 7 Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model V. L. Kulinskii, D. Yu. Panchenko

More information

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012)

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012) Superfluidity E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN-90014 University of Oulu, Finland (Dated: June 8, 01) PACS numbers: 67.40.-w, 67.57.-z, 74., 03.75.-b I. INTRODUCTION Fluids

More information

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES VORTICES in SUPERFLUIDS & SUPERCONDUCTORS CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES Quantum Vortices in Superfluids Suppose we look at a vortex in a superfluid- ie., fluid circulating

More information

Physics 525, Condensed Matter Homework 8 Due Thursday, 14 th December 2006

Physics 525, Condensed Matter Homework 8 Due Thursday, 14 th December 2006 Physics 525, Condensed Matter Homework 8 Due Thursday, 14 th December 2006 Jacob Lewis Bourjaily Problem 1: Little-Parks Experiment Consider a long, thin-walled, hollow cylinder of radius R and thickness

More information

14.4. the Ginzburg Landau theory. Phys520.nb Experimental evidence of the BCS theory III: isotope effect

14.4. the Ginzburg Landau theory. Phys520.nb Experimental evidence of the BCS theory III: isotope effect Phys520.nb 119 This is indeed what one observes experimentally for convectional superconductors. 14.3.7. Experimental evidence of the BCS theory III: isotope effect Because the attraction is mediated by

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Electric current crowding in nanostructured conductors. Alejandro V. Silhanek

Electric current crowding in nanostructured conductors. Alejandro V. Silhanek XXXVIII National Meeting on Condensed Matter Physics May 24-28, 2015, Foz do Iguaçu, PR, Brazil Electric current crowding in nanostructured conductors Alejandro V. Silhanek Experimental physics of nanostructured

More information

Chapter 1. Macroscopic Quantum Phenomena

Chapter 1. Macroscopic Quantum Phenomena Chapter 1 Macroscopic Quantum Phenomena Chap. 1-2 I. Foundations of the Josephson Effect 1. Macroscopic Quantum Phenomena 1.1 The Macroscopic Quantum Model of Superconductivity Macroscopic systems Quantum

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 7 Jul 2004

arxiv:cond-mat/ v1 [cond-mat.supr-con] 7 Jul 2004 From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks arxiv:cond-mat/0407159v1 [cond-mat.supr-con] 7 Jul 2004 L. R. E. Cabral, B. J. Baelus, and F. M. Peeters Departement

More information

Vortex Structure and Critical Parameters in Superconducting Thin Films with Arrays of Pinning Centers

Vortex Structure and Critical Parameters in Superconducting Thin Films with Arrays of Pinning Centers UNIVERSITEIT ANTWERPEN Faculteit Wetenschappen Departement Fysica Vortex Structure and Critical Parameters in Superconducting Thin Films with Arrays of Pinning Centers Proefschrift voorgelegd tot het behalen

More information

Superconductivity. Alexey Ustinov Universität Karlsruhe WS Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1

Superconductivity. Alexey Ustinov Universität Karlsruhe WS Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1 Superconductivity Alexey Ustinov Universität Karlsruhe WS 2008-2009 Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1 Lectures October 20 Phenomenon of superconductivity October 27 Magnetic properties

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

Lecture 10: Supercurrent Equation

Lecture 10: Supercurrent Equation Lecture 10: Supercurrent Equation Outline 1. Macroscopic Quantum Model 2. Supercurrent Equation and the London Equations 3. Fluxoid Quantization 4. The Normal State 5. Quantized Vortices October 13, 2005

More information

Superconductivity and the BCS theory

Superconductivity and the BCS theory Superconductivity and the BCS theory PHY 313 - Statistical Mechanics Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Monday, December, 15, 2010 1 Introduction In this report

More information

The Ginzburg-Landau Theory

The Ginzburg-Landau Theory The Ginzburg-Landau Theory A normal metal s electrical conductivity can be pictured with an electron gas with some scattering off phonons, the quanta of lattice vibrations Thermal energy is also carried

More information

WHAT IS SUPERCONDUCTIVITY??

WHAT IS SUPERCONDUCTIVITY?? WHAT IS SUPERCONDUCTIVITY?? For some materials, the resistivity vanishes at some low temperature: they become superconducting. Superconductivity is the ability of certain materials to conduct electrical

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Ginzburg-Landau Theory: Simple Applications

Ginzburg-Landau Theory: Simple Applications PHYS598 A.J.Leggett Lecture 10 Ginzburg-Landau Theory: Simple Applications 1 Ginzburg-Landau Theory: Simple Applications References: de Gennes ch. 6, Tinkham ch. 4, AJL QL sect. 5.7 Landau-Lifshitz (1936):

More information

Zurich Open Repository and Archive. Current-Induced Critical State in NbN Thin-Film Structures

Zurich Open Repository and Archive. Current-Induced Critical State in NbN Thin-Film Structures University of Zurich Zurich Open Repository and Archive Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2008 Current-Induced Critical State in NbN Thin-Film Structures Il in, K; Siegel,

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip Hofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VCH Berlin. www.philiphofmann.net 1 Superconductivity

More information

Chapter 1. Macroscopic Quantum Phenomena

Chapter 1. Macroscopic Quantum Phenomena Chapter 1 Macroscopic Quantum Phenomena Chap. 1-2 I. Foundations of the Josephson Effect 1. Macroscopic Quantum Phenomena 1.1 The Macroscopic Quantum Model of Superconductivity quantum mechanics: - physical

More information

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning.

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning. Department of Physics and Astronomy 14.6.2011 Contents Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Type II superconductors and vortices Type I ξ < λ S/N

More information

Exotic Properties of Superconductor- Ferromagnet Structures.

Exotic Properties of Superconductor- Ferromagnet Structures. SMR.1664-16 Conference on Single Molecule Magnets and Hybrid Magnetic Nanostructures 27 June - 1 July 2005 ------------------------------------------------------------------------------------------------------------------------

More information

SHANGHAI JIAO TONG UNIVERSITY LECTURE

SHANGHAI JIAO TONG UNIVERSITY LECTURE Lecture 4 SHANGHAI JIAO TONG UNIVERSITY LECTURE 4 017 Anthony J. Leggett Department of Physics University of Illinois at Urbana-Champaign, USA and Director, Center for Complex Physics Shanghai Jiao Tong

More information

LECTURE 3: Refrigeration

LECTURE 3: Refrigeration LECTURE 3: Refrigeration Refrigeration on-chip Thermoelectric refrigeration Peltier refrigerators, Peltier 1834 Thermionic refrigeration, Mahan, 1994 Korotkov and Likharev, 1999 Quantum-dot refrigerator,

More information

Ginzburg-Landau theory

Ginzburg-Landau theory Chapter 3 Ginzburg-Landau theory Many important properties of superconductors can be explained by the theory, developed by Ginzburg an Landau in 1950, before the creation of the microscopic theory. The

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Josephson supercurrent through a topological insulator surface state M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L.Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp and

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor From Last Time Solids are large numbers of atoms arranged in a regular crystal structure. Each atom has electron quantum states, but interactions shift the energies. End result is each type atomic electron

More information

(Color-)magnetic flux tubes in dense matter

(Color-)magnetic flux tubes in dense matter Seattle, Apr 17, 2018 1 Andreas Schmitt Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom (Color-)magnetic flux tubes in dense matter A. Haber,

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

Unit V Superconductivity Engineering Physics

Unit V Superconductivity Engineering Physics 1. Superconductivity ertain metals and alloys exhibit almost zero resistivity (i.e. infinite conductivity), when they are cooled to sufficiently low temperatures. This effect is called superconductivity.

More information

Chapter Phenomenological Models of Superconductivity

Chapter Phenomenological Models of Superconductivity TT1-Chap2-1 Chapter 3 3. Phenomenological Models of Superconductivity 3.1 London Theory 3.1.1 The London Equations 3.2 Macroscopic Quantum Model of Superconductivity 3.2.1 Derivation of the London Equations

More information

Ferromagnetic superconductors

Ferromagnetic superconductors Department of Physics, Norwegian University of Science and Technology Pisa, July 13 2007 Outline 1 2 Analytical framework Results 3 Tunneling Hamiltonian Josephson current 4 Quadratic term Cubic term Quartic

More information

Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor

Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor Physica C 404 (2004) 166 170 www.elsevier.com/locate/physc Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor A.A. Zhukov a, *, E.T. Filby a, P.A.J. de Groot

More information

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation V Contents Preface XI Physical Constants, Units, Mathematical Signs and Symbols 1 Introduction 1 1.1 Carbon Nanotubes 1 1.2 Theoretical Background 4 1.2.1 Metals and Conduction Electrons 4 1.2.2 Quantum

More information

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls CMS Colloquium, Los Alamos National Laboratory, December 9, 2015 Quantum Processes in Josephson Junctions & Weak Links J. A. Sauls Northwestern University e +iφ 2 e +iφ 1 111000 00000000 111111110000000

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/22839 holds various files of this Leiden University dissertation. Author: Rademaker, Louk Title: Fermions and bosons : excitons in strongly correlated materials

More information

On the Higgs mechanism in the theory of

On the Higgs mechanism in the theory of On the Higgs mechanism in the theory of superconductivity* ty Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching Outline Phenomenological

More information

Coexistence of the Meissner and Vortex States on a Nanoscale Superconducting Spherical Shell

Coexistence of the Meissner and Vortex States on a Nanoscale Superconducting Spherical Shell Coexistence of the Meissner and Vortex States on a Nanoscale Superconducting Spherical Shell The Harvard community has made this article openly available. Please share how this access benefits you. Your

More information

Vortex Liquid Crystals in Anisotropic Type II Superconductors

Vortex Liquid Crystals in Anisotropic Type II Superconductors Vortex Liquid Crystals in Anisotropic Type II Superconductors E. W. Carlson A. H. Castro Netro D. K. Campbell Boston University cond-mat/0209175 Vortex B λ Ψ r ξ In the high temperature superconductors,

More information

ABSTRACT ANODIC ALUMINUM OXIDE MEMBRANES

ABSTRACT ANODIC ALUMINUM OXIDE MEMBRANES ABSTRACT PERFORATED SUPERCONDUCTING NIOBIUM NITRIDE FILMS FORMED ON ANODIC ALUMINUM OXIDE MEMBRANES Nelson Voldeng, M.S. Department of Physics Northern Illinois University, 2011 Xhili Xiao, Director Introducing

More information

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/ Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps Michele Correggi Erwin Schrödinger Institute, Vienna T. Rindler-Daller, J. Yngvason math-ph/0606058 in collaboration with preprint

More information

Superconductivity and Superfluidity

Superconductivity and Superfluidity Superconductivity and Superfluidity Contemporary physics, Spring 2015 Partially from: Kazimierz Conder Laboratory for Developments and Methods, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland Resistivity

More information

Superconductivity. Dept of Phys. M.C. Chang

Superconductivity. Dept of Phys. M.C. Chang Superconductivity Introduction Thermal properties Magnetic properties London theory of the Meissner effect Microscopic (BCS) theory Flux quantization Quantum tunneling Dept of Phys M.C. Chang A brief history

More information

Condensed Matter Option SUPERCONDUCTIVITY Handout

Condensed Matter Option SUPERCONDUCTIVITY Handout Condensed Matter Option SUPERCONDUCTIVITY Handout Syllabus The lecture course on Superconductivity will be given in 6 lectures in Trinity term. 1. Introduction to superconductivity. 2. The London equations

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

arxiv: v1 [cond-mat.supr-con] 22 Feb 2011

arxiv: v1 [cond-mat.supr-con] 22 Feb 2011 Mesoscopic cross film cryotrons: Vortex trapping and dc Josephson like oscillations of the critical current arxiv:112.4545v1 [cond-mat.supr-con] 22 Feb 211 A.Yu. Aladyshkin, 1,2 G.W. Ataklti, 1 W. Gillijns,

More information