Electric current crowding in nanostructured conductors. Alejandro V. Silhanek

Size: px
Start display at page:

Download "Electric current crowding in nanostructured conductors. Alejandro V. Silhanek"

Transcription

1 XXXVIII National Meeting on Condensed Matter Physics May 24-28, 2015, Foz do Iguaçu, PR, Brazil Electric current crowding in nanostructured conductors Alejandro V. Silhanek Experimental physics of nanostructured materials Physics Department, University of Liège BELGIUM 1

2 Collaborators O. Adami, J. Brisbois, X. Baumans, Z. Jelic (ULg, BE) D. Cerbu, M. Timmermans, V. Zarinov, J. Van de Vondel, V.V. Moshchalkov (KUL, BE) V. Gladilin, J. Tempere, J. Devreese (UA, BE) B. Hackens (UCL, BE) M. Motta, F. Colauto, W. Ortiz (Sao Carlos, BR) J.I. Vestgarden, T.H. Johansen (Oslo, NO) J. Fritzsche (Chalmers, SE) C. Cirillo, C. Attanassio (Salerno, IT) 2

3 What is current crowding? 10 MA/cm 2 3 MA/cm 2 1 MA/cm 2 3

4 Why is it important? Electromigration Kelvin probe bridges Nanostructured superconductors Single photon detectors J 4 T. Taychatanapat et al., NanoLetters 7, 652 (2007)

5 Outline CURRENT CROWDING IN NORMAL METALS CURRENT CROWDING IN SUPERCONDUCTORS SHARP BENDS SURFACE INDENTATIONS MAGNETIC FLUX AVALANCHES NANOSTRUCTURING VIA CURRENT CROWDING CONCLUSION

6 Pre-history: normal conductors conformal mapping r i ABC g r 1/3 i 0 is the asymptotic current density in the leg i 0 The perturbations of the current crowding propagate about three strips widths into the legs Optimum curvature

7 Pre-history: normal conductors if b >> a and N >> 1 a as small as possible and b and N as large as possible

8 History: superconductors Villegas et al. (2005) Phys. Rev. B 72, A Palau et al. (2007) Phys. Rev. Lett. 98, Silhanek et al. (2008) Appl. Phys. Lett. 92, substantial deformation of the current-voltage characteristic when the voltage pads are attached close to the vertices.

9 Superconductors (vortex nucleation) W 2 2 / d Definition of J c current at which a nucleating vortex surmounts the Gibbs-free-energy barrier at the wire edge and then is driven entirely across the strip J c = R J 0 R < 1 J 0 the critical current of a superconducting strip

10 Comparison superconductors vs metals J c = R J 0 W 3 R r W Clem-Berggren (superconductor) 1/3 R r r 0 W 1/3 Hagedorn-Hall (normal metal) Vortex flow does not play a role The critical current of a right-angle bend is finite There is an optimum curvature which permits to avoid current crowding. The minimum radius being 1.27 W Clem and Berggren, Phys. Rev. B 84, (2011)

11 CC in voltage and current leads Voltage Contact C 3 2 1/3 if b W b b C 1 if b Current Contact C W 2 2 ( W a ) a 1/3 a W Clem and Berggren, Phys. Rev. B 84, (2011)

12 Supporting experimental evidence H. L. Hortensius et al. Appl. Phys. Lett. 100, (2012) NbTiN ~ 7 nm ~ 20 mm W ~ 1 mm D. Henrich et al., Phys. Rev. B 86, (2012) NbN ~ 5 nm >> W W ~ 0,3 mm

13 Field dependence H >0 London H >0 tdgl H <0 Compensation effect between the field induced stream-lines and the externally applied current at the current crowding point Clem et al., Phys. Rev. B 85, (2012)

14 Experimental confirmation Al (0) ~ 120 nm (1,22 K) ~ 8,3 mm W ~ 3,3 mm V- SiO 2 90 H > 0 I V+ I C (ma) S K, I+ H max 1 ( T) I C (µa) S H max 1.18K, I+ 1.18K, I- 1.20K, I+ 1.20K, I- 1.22K, I+ 1.22K, I ,08-0,04 0,00 0,04 0,08 H (mt) Adami et al., Appl. Phys. Lett. 102, (2013) H (mt)

15 Rectified motion of vortices Fixed J > 0 H >0 H <0 Fixed H > 0 J >0 J <0 0.5 T = 0.92 Tc Freq = 1kHz S180 Freq = 1kHz S T = 0.92 Tc ac amplitude [ma] V dc [µv] ac amplitude [ma] V dc [µv] H[mT] H[mT] Adami et al., Appl. Phys. Lett. 102, (2013)

16 Surface indentations C 1 2 C a 1/3 if 90 Current crowding is more important for the triangular indentation Clem et al., Phys. Rev. B 84, (2011)

17 Surface indentations Cerbu et al. New J. Phys. 15, (2013)

18 Surface indentations The onset of the resistive regime is mainly determined by the properties of the inlet boundary of the strip. The effect due to patterning of the outlet boundary facilitates the formation of PSLs Cerbu et al. New J. Phys. 15, (2013)

19 High field behavior M. Friesen and A. Gurevich, Phys. Rev. B 63, (2001)

20 Surface indentations (many vortices) J. I. Vestgården et al., PRB 76, (2007) Meissner currents concentrate in front of the indentation where their density reaches jc and hence lead to even deeper flux penetration. This is why the flux front near the indentation advances faster than in the rest of the film. Brisbois et al., unpublished Nb, H=2 mt, T=4K 20

21 CC in nanostructured superconductors J Nakai & Machida Physica C (2010) Tsuchiya et al. Physica C 470 S788 (2010)

22 Magnetic flux avalanches D T >> D M D M >> D T Q Adiabatic conditions, ΔT = Q/C(T) Flux motion T v>10 km/s > sound velocity 3 km/s v Abrikosov << 1 km/ s v kinematics ~ 1-10 km/ s Jc, F p 22 R. G. Mints and A. L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981)

23 Magnetic flux avalanches Motta et al. Phys. Rev. B 89, (2014)

24 Baumans et al. unpublished Electromigration

25 Conclusion In the same way that magnetic field lines lead to demagnetization effects, deformation of current stream lines lead to current crowding. This effect have important consequences on - the resistance calculation in normal metals - V(I) characteristics in superconductors - unwanted ratchet signal - hot spots (joule heating) - reduction of the critical current

26

Quantitative magneto-optical investigation of S/F hybrid structures

Quantitative magneto-optical investigation of S/F hybrid structures Quantitative magneto-optical investigation of S/F hybrid structures Jérémy Brisbois Experimental Physics of Nanostructured Materials University of Liège, Belgium Collaborators Prof. Alejandro Silhanek

More information

Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays

Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays Qinghua Chen Prof. Shi Xue Dou 1 Outline: I. An Introduction of superconductor II. Overview of vortex

More information

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration 5th International Workshop on Numerical Modelling of High-Temperature Superconductors, 6/15-17/2016, Bologna, Italy TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the

More information

Flux penetration in a superconducting film partially capped with a conducting layer

Flux penetration in a superconducting film partially capped with a conducting layer University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2017 Flux penetration in a superconducting film partially capped

More information

First vortex entry into a perpendicularly magnetized superconducting thin film

First vortex entry into a perpendicularly magnetized superconducting thin film First vortex entry into a perpendicularly magnetized superconducting thin film J. Gutierrez* 1, B. Raes* 1, J. Van de Vondel 1, A. V. Silhanek 1,2, R. B. G. Kramer 1,3, G. W. Ataklti 1, and V. V. Moshchalkov

More information

Zurich Open Repository and Archive. Current-Induced Critical State in NbN Thin-Film Structures

Zurich Open Repository and Archive. Current-Induced Critical State in NbN Thin-Film Structures University of Zurich Zurich Open Repository and Archive Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2008 Current-Induced Critical State in NbN Thin-Film Structures Il in, K; Siegel,

More information

Generation of DC electric fields due to vortex rectification in superconducting films

Generation of DC electric fields due to vortex rectification in superconducting films Physica C 437 438 (2006) 1 6 www.elsevier.com/locate/physc Generation of DC electric fields due to vortex rectification in superconducting films F.G. Aliev * Dpto. de Física de la Materia Condensada, Instituto

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Mikheenko, P.; Qviller, A.J.; Vestgården, J.I.; Chaudhuri,

More information

Vortex matter in nanostructured and hybrid superconductors

Vortex matter in nanostructured and hybrid superconductors Vortex matter in nanostructured and hybrid superconductors François Peeters University of Antwerp In collaboration with: B. Baelus, M. Miloševic V.A. Schweigert (Russian Academy of Sciences, Novosibirsk)

More information

Speed limit to the Abrikosov lattice in mesoscopic superconductors

Speed limit to the Abrikosov lattice in mesoscopic superconductors Speed limit to the Abrikosov lattice in mesoscopic superconductors G. Grimaldi, 1, A. Leo, 2, 1 P. Sabatino, 2, 1 G. Carapella, 2, 1 A. Nigro, 2, 1 S. Pace, 2, 1 V. V. Moshchalkov, 3 and A. V. Silhanek

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

Heterogeneous vortex dynamics in high temperature superconductors

Heterogeneous vortex dynamics in high temperature superconductors Heterogeneous vortex dynamics in high temperature superconductors Feng YANG Laboratoire des Solides Irradiés, Ecole Polytechnique, 91128 Palaiseau, France. June 18, 2009/PhD thesis defense Outline 1 Introduction

More information

Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor

Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor Physica C 404 (2004) 166 170 www.elsevier.com/locate/physc Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor A.A. Zhukov a, *, E.T. Filby a, P.A.J. de Groot

More information

Abrikosov vortex lattice solution

Abrikosov vortex lattice solution Abrikosov vortex lattice solution A brief exploration O. Ogunnaike Final Presentation Ogunnaike Abrikosov vortex lattice solution Physics 295b 1 / 31 Table of Contents 1 Background 2 Quantization 3 Abrikosov

More information

LECTURE 3: Refrigeration

LECTURE 3: Refrigeration LECTURE 3: Refrigeration Refrigeration on-chip Thermoelectric refrigeration Peltier refrigerators, Peltier 1834 Thermionic refrigeration, Mahan, 1994 Korotkov and Likharev, 1999 Quantum-dot refrigerator,

More information

B. Y. Zhu National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing , China.

B. Y. Zhu National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing , China. Enhanced pinning and proliferation of matching effects in a superconducting film with a Penrose array of magnetic dots arxiv:cond-mat/0611173v1 [cond-mat.supr-con] 7 Nov 2006 A. V. Silhanek, W. Gillijns,

More information

Branching of the vortex nucleation period in superconductor Nb microtubes due to inhomogeneous transport current ABSTRACT

Branching of the vortex nucleation period in superconductor Nb microtubes due to inhomogeneous transport current ABSTRACT Branching of the vortex nucleation period in superconductor Nb microtubes due to inhomogeneous transport current R. O. Rezaev 1,2, E. A. Levchenko 1, V. M. Fomin 3.* 1 National Research Tomsk Polytechnic

More information

Baruch Rosenstein Nat. Chiao Tung University

Baruch Rosenstein Nat. Chiao Tung University Dissipationless current carrying states in type II superconductors in magnetic field Baruch Rosenstein Nat. Chiao Tung University D. P. Li Peking University, Beijing, China B. Shapiro Bar Ilan University,

More information

University of Antwerp Condensed Matter Theory Group Vortices in superconductors IV. Hybrid systems

University of Antwerp Condensed Matter Theory Group Vortices in superconductors IV. Hybrid systems Vortices in superconductors IV. Hybrid systems François Peeters Magnetic impurities T c decreases with increasing impurity density Origin: exchange interaction between electron and impurity: Γ(r i -r e

More information

smaller mfp coh L type II

smaller mfp coh L type II Type II superconductors Superconductivity: outline of 10.10 Superconductor in magnetic field Thin superconductor in magnetic field Interface energy Type II superconductors Mixed phase Abrikosov vortices

More information

Stroboscopic phenomena in superconductors with dynamic pinning landscape

Stroboscopic phenomena in superconductors with dynamic pinning landscape Stroboscopic phenomena in superconductors with dynamic pinning landscape Željko L. Jelić 1,2,*, Milorad V. Milošević 2, Joris Van de Vondel 3, and Alejandro V. Silhanek 1 1 Département de Physique, Université

More information

Calculation of the temperature dependent AC susceptibility of superconducting disks

Calculation of the temperature dependent AC susceptibility of superconducting disks University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2003 Calculation of the temperature dependent AC susceptibility of superconducting

More information

MAGNETO-OPTIC IMAGING OF SINGLE VORTEX DYNAMICS IN NbSe 2 CRYSTALS

MAGNETO-OPTIC IMAGING OF SINGLE VORTEX DYNAMICS IN NbSe 2 CRYSTALS MAGNETO-OPTIC IMAGING OF SINGLE VORTEX DYNAMICS IN NbSe 2 CRYSTALS M. Baziljevich, P. E. Goa, H. Hauglin, E. Il Yashenko, T. H. Johansen Dept. of Physics, University of Oslo, Box 1048 Blindern, 0316 Oslo,

More information

Superconductivity. Dirk van Delft and Peter Kes, "The discovery of superconductivity", Physics Today 63(9), 38, 2010.

Superconductivity. Dirk van Delft and Peter Kes, The discovery of superconductivity, Physics Today 63(9), 38, 2010. Experiment Nr. 31 Superconductivity 1. Introduction When cooled down below a characteristic critical temperature T c a specific phase transition of electron system can be observed in certain materials.

More information

Dendritic flux penetration in Pb films with a periodic array of antidots

Dendritic flux penetration in Pb films with a periodic array of antidots Dendritic flux penetration in Pb films with a periodic array of antidots M. Menghini and R. J. Wijngaarden Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081,

More information

Superconductivity controlled by the magnetic state of ferromagnetic nanoparticles

Superconductivity controlled by the magnetic state of ferromagnetic nanoparticles Superconductivity controlled by the magnetic state of ferromagnetic nanoparticles A.A. Fraerman 1, B.A. Gribkov 1, S.A. Gusev 1, E. Il ichev 2, A.Yu. Klimov 1, Yu.N. Nozdrin 1, G.L. Pakhomov 1, V.V. Rogov

More information

Magnetic hysteresis from the geometrical barrier in type-ii superconducting strips

Magnetic hysteresis from the geometrical barrier in type-ii superconducting strips PHYSICAL REVIEW B VOLUME 53, NUMBER 9 1 MARCH 1996-I Magnetic hysteresis from the geometrical barrier in type-ii superconducting strips M. Benkraouda and John R. Clem Ames Laboratory and Department of

More information

MO-IMAGING OF GRANULAR AND STRUCTURED HIGH-T C SUPERCONDUCTORS

MO-IMAGING OF GRANULAR AND STRUCTURED HIGH-T C SUPERCONDUCTORS MO-IMAGING OF GRANULAR AND STRUCTURED HIGH-T C SUPERCONDUCTORS Michael R. Koblischka and Anjela Koblischka-Veneva 1 Institute of Experimental Physics, University of the Saarland, P.O. Box 151150, D-66041

More information

Vortex lattice pinning in high-temperature superconductors.

Vortex lattice pinning in high-temperature superconductors. Vortex lattice ning in high-temperature superconductors. Victor Vakaryuk. Abstract. Vortex matter in high temperature superconductors has many peculiar properties such as melting of the vortex lattice,

More information

Superconductivity at Future Hadron Colliders

Superconductivity at Future Hadron Colliders XXVI Giornate di Studio sui Rivelatori 13-17.2.2017, Cogne, Italia Superconductivity at Future Hadron Colliders René Flükiger CERN, TE-MSC, 1211 Geneva 23, Switzerland and Dept. Quantum Matter Physics,

More information

There are two main theories in superconductivity: Ginzburg-Landau Theory. Outline of the Lecture. Ginzburg-Landau theory

There are two main theories in superconductivity: Ginzburg-Landau Theory. Outline of the Lecture. Ginzburg-Landau theory Ginzburg-Landau Theory There are two main theories in superconductivity: i Microscopic theory describes why materials are superconducting Prof. Damian Hampshire Durham University ii Ginzburg-Landau Theory

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 27 Jul 1999

arxiv:cond-mat/ v1 [cond-mat.supr-con] 27 Jul 1999 Shapiro steps in a superconducting film with an antidot lattice arxiv:cond-mat/9907410v1 [cond-mat.supr-con] 27 Jul 1999 L. Van Look, E. Rosseel, M. J. Van Bael, K. Temst, V. V. Moshchalkov and Y. Bruynseraede

More information

FYSZ 460 Advanced laboratory work: Superconductivity and high T C superconductor Y 1 Ba 2 Cu 3 O 6+y

FYSZ 460 Advanced laboratory work: Superconductivity and high T C superconductor Y 1 Ba 2 Cu 3 O 6+y FYSZ 460 Advanced laboratory work: Superconductivity and high T C superconductor Y 1 Ba 2 Cu 3 O 6+y Laboratory Instructions Minna Nevala minna.nevala@phys.jyu.fi November 15, 2010 Contents 1 Introduction

More information

Theory of the lower critical magnetic field for a two-dimensional superconducting film in a non-uniform field

Theory of the lower critical magnetic field for a two-dimensional superconducting film in a non-uniform field Theory of the lower critical magnetic field for a two-dimensional superconducting film in a non-uniform field Thomas R. Lemberger and John Draskovic Dept. of Physics The Ohio State University Columbus,

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

BISTABILITY IN NbN HEB MIXER DEVICES

BISTABILITY IN NbN HEB MIXER DEVICES BISTABILITY IN NbN HEB MIXER DEVICES Yan Zhuang, Dazhen Gu and Sigfrid Yngvesson Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA 13 ABSTRACT-All researchers working

More information

arxiv:cond-mat/ v2 [cond-mat.supr-con] 29 Mar 2007

arxiv:cond-mat/ v2 [cond-mat.supr-con] 29 Mar 2007 Critical fields for vortex expulsion from narrow superconducting strips P. Sánchez-Lotero and J. J. Palacios Departamento de Física Aplicada, Universidad de Alicante, San Vicente del Raspeig, Alicante

More information

arxiv: v1 [cond-mat.supr-con] 13 Jun 2017

arxiv: v1 [cond-mat.supr-con] 13 Jun 2017 arxiv:1706.04002v1 [cond-mat.supr-con] 13 Jun 2017 The Dynamics of Magnetic Vortices in Type II Superconductors with Pinning Sites Studied by the Time Dependent Ginzburg-Landau Model Mads Peter Sørensen

More information

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning.

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning. Department of Physics and Astronomy 14.6.2011 Contents Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Type II superconductors and vortices Type I ξ < λ S/N

More information

Materials Aspects aud. Application of Superconductivity

Materials Aspects aud. Application of Superconductivity Materials Science and Device Technology Materials Aspects and Application of Superconductivity School of Environmental Science and Engineering Toshihiko Maeda, Professor 1 Contents apple Self introduction

More information

Superconducting films with antidot arrays Novel behavior of the critical current

Superconducting films with antidot arrays Novel behavior of the critical current EUROPHYSICS LETTERS 1 May 2006 Europhys. Lett., 74 (3), pp. 493 499 (2006) DOI: 10.1209/epl/i2006-10013-1 Superconducting films with antidot arrays Novel behavior of the critical current G. R. Berdiyorov,

More information

Vortices in Classical Systems

Vortices in Classical Systems Vortices in Classical Systems 4 He-II vortices: Vortices in Quantum Systems STM of NbSe 2 vortices: G. A. Williams, R. E. Packard, Hess PRL (1989). Phys. Rev. Lett. 33, 280 (1974) Pan, Hudson, Davis, RSI

More information

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES VORTICES in SUPERFLUIDS & SUPERCONDUCTORS CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES Quantum Vortices in Superfluids Suppose we look at a vortex in a superfluid- ie., fluid circulating

More information

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides Martin Dressel 1. Physikalisches Institut, Universität Stuttgart, Germany Outline 1. Introduction ESR resonators 2. Strip

More information

Features of the melting dynamics of a vortex lattice in a high-t c superconductor in the presence of pinning centers

Features of the melting dynamics of a vortex lattice in a high-t c superconductor in the presence of pinning centers Features of the melting dynamics of a vortex lattice in a high-t c superconductor in the presence of pinning centers M. E. Gracheva, V. A. Kashurnikov, a) and I. A. Rudnev Moscow State Engineering Physics

More information

Enhanced vortex pinning by a composite antidot lattice in a superconducting Pb film

Enhanced vortex pinning by a composite antidot lattice in a superconducting Pb film Enhanced vortex pinning by a composite antidot lattice in a superconducting Pb film A. V. Silhanek, 1, * L. Van Look, 2 R. Jonckheere, 2 B. Y. Zhu, 1, S. Raedts, 1 and V. V. Moshchalkov 1 1 Nanoscale Superconductivity

More information

Magnetic field dependence of kinetic inductance in. applications

Magnetic field dependence of kinetic inductance in. applications Magnetic field dependence of kinetic inductance in Bi 2 Sr 2 Ca 2 Cu 3 O 10 superconducting strip and its feasible applications S. Sarangi *, S. P. Chockalingam, S. V. Bhat Department of Physics, Indian

More information

Superconducting Pinning by Magnetic Domains in a Ferromagnet-Superconductor Bilayer

Superconducting Pinning by Magnetic Domains in a Ferromagnet-Superconductor Bilayer Vol. 106 (2004) ACTA PHYSICA POLONICA A No. 5 Proceedings of the School Superconductivity and Other Phenomena in Perovskites, Warsaw 2004 Superconducting Pinning by Magnetic Domains in a Ferromagnet-Superconductor

More information

Direct Measurement of Penetration Length in Ultra-Thin and/or Mesoscopic Superconducting Structures

Direct Measurement of Penetration Length in Ultra-Thin and/or Mesoscopic Superconducting Structures Direct Measurement of Penetration Length in Ultra-Thin and/or Mesoscopic Superconducting Structures L. Hao National Physical Laboratory, Teddington, TW11 0LW, United Kingdom; J.C. Macfarlane Department

More information

arxiv: v1 [cond-mat.supr-con] 2 Jan 2019

arxiv: v1 [cond-mat.supr-con] 2 Jan 2019 Scaling Behavior of Quasi-One-Dimensional Vortex Avalanches in Superconducting Films A. J. Qviller nsolution AS, Maries gt. 6, 0368 Oslo, Norway T. Qureishy and P. Mikheenko Department of Physics, University

More information

Lecture 4: London s Equations. Drude Model of Conductivity

Lecture 4: London s Equations. Drude Model of Conductivity Lecture 4: London s Equations Outline 1. Drude Model of Conductivity 2. Superelectron model of perfect conductivity First London Equation Perfect Conductor vs Perfect Conducting Regime 3. Superconductor:

More information

Enhanced pinning in high-temperature superconducting cuprate single crystals at low DC magnetic field

Enhanced pinning in high-temperature superconducting cuprate single crystals at low DC magnetic field Enhanced pinning in high-temperature superconducting cuprate single crystals at low DC magnetic field V.Yu.Monarkha, Yu.A.Savina, V.P.Timofeev B.Verkin Institute for Low Temperature Physics & Engineering

More information

arxiv: v1 [cond-mat.supr-con] 14 Jul 2014

arxiv: v1 [cond-mat.supr-con] 14 Jul 2014 ntrinsic detection efficiency of superconducting single photon detector in the modified hot spot model A.N. Zotova 1,2 and D.Yu. Vodolazov 1,2, 1 nstitute for Physics of Microstructures, Russian Academy

More information

The onset, evolution and magnetic braking of vortex lattice instabilities in nanostructured superconducting films

The onset, evolution and magnetic braking of vortex lattice instabilities in nanostructured superconducting films The onset, evolution and magnetic braking of vortex lattice instabilities in nanostructured superconducting films O.-A. Adami, 1 Ž. L. elić, 1, C. Xue, 3 M. Abdel-Hafiez, 1, B. Hackens, 5 V. V. Moshchalkov,

More information

Supplementary figures

Supplementary figures Supplementary figures Supplementary Figure 1. A, Schematic of a Au/SRO113/SRO214 junction. A 15-nm thick SRO113 layer was etched along with 30-nm thick SRO214 substrate layer. To isolate the top Au electrodes

More information

Magnetically Induced Electronic States in 2D Superconductors

Magnetically Induced Electronic States in 2D Superconductors Magnetically Induced Electronic States in D Superconductors Jongsoo Yoon University of Virginia B Insulator normal metal (linear I-V) Carlos Vicente Yongho Seo Yongguang Qin Yize Li Metal (U) SC T Christine

More information

Lecture 2. Phenomenology of (classic) superconductivity Phys. 598SC Fall 2015 Prof. A. J. Leggett

Lecture 2. Phenomenology of (classic) superconductivity Phys. 598SC Fall 2015 Prof. A. J. Leggett Lecture 2. Phenomenology of (classic) superconductivity Phys. 598SC Fall 2015 Prof. A. J. Leggett (References: de Gannes chapters 1-3, Tinkham chapter 1) Statements refer to classic (pre-1970) superconductors

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

( ) of the ac susceptibility as a function of temperature T, the size of which

( ) of the ac susceptibility as a function of temperature T, the size of which Ac-magnetic susceptibility in the peak-effect region of Nb 3 Sn O. Bossen 1, A. Schilling 1, and N. oyota 2 1 Physik-Institut University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

More information

Electrodynamics of superconductor-ferromagnet hybrid structures

Electrodynamics of superconductor-ferromagnet hybrid structures Electrodynamics of superconductor-ferromagnet hybrid structures A.S.Mel nikov Institute for Physics of Microstructures RAS IPM RAS S.V.Mironov A.V.Samokhvalov D.Vodolazov Yu.Erin A.Bespalov V.Vadimov M.Sapozhnikov

More information

T he smooth gradual penetration of magnetic flux in type-ii superconductor films experiencing an increasing

T he smooth gradual penetration of magnetic flux in type-ii superconductor films experiencing an increasing Lightning in superconductors J. I. Vestgården 1, D. V. Shantsev 1, Y. M. Galperin 1,2,4 & T. H. Johansen 1,3,4 SUBJECT AREAS: PHYSICS CONDENSED-MATTER PHYSICS STATISTICAL PHYSICS, THERMODYNAMICS AND NONLINEAR

More information

Modeling of Magnetisation and Intrinsic Properties of Ideal Type-II Superconductor in External Magnetic Field

Modeling of Magnetisation and Intrinsic Properties of Ideal Type-II Superconductor in External Magnetic Field Modeling of Magnetisation and Intrinsic Properties of Ideal Type-II Superconductor in External Magnetic Field Oleg A. Chevtchenko *1, Johan J. Smit 1, D.J. de Vries 2, F.W.A. de Pont 2 1 Technical University

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

arxiv: v1 [cond-mat.supr-con] 16 Aug 2013

arxiv: v1 [cond-mat.supr-con] 16 Aug 2013 arxiv:8.v [cond-mat.supr-con] Aug Giant vortex states in type I superconductors simulated by Ginzburg-Landau equations H. Palonen,, J. Jäykkä and P. Paturi E-mail: heikki.palonen@utu.fi Wihuri Physical

More information

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) PHY 300 - Junior Phyics Laboratory Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Thursday,

More information

Exotic Phenomena in Topological Insulators and Superconductors

Exotic Phenomena in Topological Insulators and Superconductors SPICE Workshop on Spin Dynamics in the Dirac System Schloss Waldthausen, Mainz, 6 June 2017 Exotic Phenomena in Topological Insulators and Superconductors Yoichi Ando Physics Institute II, University of

More information

Vortex glass scaling in Pb-doped Bi2223 single crystal

Vortex glass scaling in Pb-doped Bi2223 single crystal Vortex glass scaling in Pb-doped Bi2223 single crystal Yu. Eltsev a, S. Lee b, K. Nakao b, S. Tajima c a P. N. Lebedev Physical Institute, RAS, Moscow, 119991, Russia b Superconductivity Research Laboratory,

More information

Superconducting Single-photon Detectors

Superconducting Single-photon Detectors : Quantum Cryptography Superconducting Single-photon Detectors Hiroyuki Shibata Abstract This article describes the fabrication and properties of a single-photon detector made of a superconducting NbN

More information

Negative differential resistivity in superconductors with periodic arrays of pinning sites

Negative differential resistivity in superconductors with periodic arrays of pinning sites Negative differential resistivity in superconductors with periodic arrays of pinning sites Vyacheslav R. Misko, 1,2,3 Sergey Savel ev, 1,4 Alexander L. Rakhmanov, 1,5 and Franco Nori 1,2 1 Frontier Research

More information

Superconducting Single Photon Detectors and Diamond Nanophotonics

Superconducting Single Photon Detectors and Diamond Nanophotonics Superconducting Single Photon Detectors and Diamond Nanophotonics John Y. Shin UCSC August 30, 2015 John Y. Shin (UCSC) SSPDs and Diamond Nanophotonics August 30, 2015 1 / 26 Stepping Back, Diamond and

More information

arxiv: v1 [cond-mat.supr-con] 2 Jan 2008

arxiv: v1 [cond-mat.supr-con] 2 Jan 2008 Novel magnetoinductance effects in Josephson Junction Arrays: A single-plaquette approximation Sergei Sergeenkov arxiv:0801.0388v1 [cond-mat.supr-con] 2 Jan 2008 Departamento de Física, CCEN, Universidade

More information

Hole-arrays. U. Welp, Z. L. Xiao, J. S. Jiang, V. K. Vlasko-Vlasov, S. D. Bader, G. W. Crabtree

Hole-arrays. U. Welp, Z. L. Xiao, J. S. Jiang, V. K. Vlasko-Vlasov, S. D. Bader, G. W. Crabtree Superconducting Transition and Vortex Pinning in Nb Films Patterned with Nano-scale ole-arrays U. Welp, Z. L. Xiao, J. S. Jiang, V. K. Vlasko-Vlasov, S. D. Bader, G. W. Crabtree Materials Science Division,

More information

Magnetic Shielding for Improvement of Superconductor Performance

Magnetic Shielding for Improvement of Superconductor Performance phys. stat. sol. (a) 189, No. 2, 469 473 (2002) Magnetic Shielding for Improvement of Superconductor Performance Y. A. Genenko 1 ) Institut für Materialwissenschaft, Technische Universität Darmstadt, Petersenstr.

More information

Mechanism for flux guidance by micrometric antidot arrays in superconducting films

Mechanism for flux guidance by micrometric antidot arrays in superconducting films University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2012 Mechanism for flux guidance by micrometric antidot arrays

More information

Superconductivity and Superfluidity

Superconductivity and Superfluidity Superconductivity and Superfluidity Contemporary physics, Spring 2015 Partially from: Kazimierz Conder Laboratory for Developments and Methods, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland Resistivity

More information

Experimental ratchet effect in superconducting films with periodic arrays of asymmetric potentials

Experimental ratchet effect in superconducting films with periodic arrays of asymmetric potentials Experimental ratchet effect in superconducting films with periodic arrays of asymmetric potentials J. E. Villegas, 1 E. M. Gonzalez, 1 M. P. Gonzalez, 1 J. V. Anguita, 2 and J. L. Vicent 1 1 Departamento

More information

Superconductivity: approaching the century jubilee

Superconductivity: approaching the century jubilee SIMTECH KICK-OFF MEETING, March, 18, 2011 Superconductivity: approaching the century jubilee Andrey Varlamov Institute of Superconductivity & Innovative Materials (SPIN), Consiglio Nazionale delle Ricerche,

More information

(Color-)magnetic flux tubes in dense matter

(Color-)magnetic flux tubes in dense matter Seattle, Apr 17, 2018 1 Andreas Schmitt Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom (Color-)magnetic flux tubes in dense matter A. Haber,

More information

Using SQUID VSM Superconducting Magnets at Low Fields

Using SQUID VSM Superconducting Magnets at Low Fields Application Note 1500-011 Using SQUID VSM Superconducting Magnets at Low Fields Abstract The superconducting magnet used in SQUID VSM is capable of generating fields up to 7 tesla (7x10 4 gauss) with the

More information

Effect of the wire width on the intrinsic detection efficiency of superconductingnanowire single-photon detectors

Effect of the wire width on the intrinsic detection efficiency of superconductingnanowire single-photon detectors 1 Effect of the wire width on the intrinsic detection efficiency of superconductingnanowire single-photon detectors R. Lusche, * A. Semenov, H.-W. Hübers DLR Institute of Planetary Research, Rutherfordstrasse,

More information

Axial Magnetic Field of Superconducting Loops

Axial Magnetic Field of Superconducting Loops WJP, PHY381 (2015) Wabash Journal of Physics v2.3, p.1 Axial Magnetic Field of Superconducting Loops Inbum Lee, Tianhao Yang, and M. J. Madsen Department of Physics, Wabash College, Crawfordsville, IN

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 22 Mar 2004

arxiv:cond-mat/ v1 [cond-mat.supr-con] 22 Mar 2004 Flux pinning properties of superconductors with an array of blind holes arxiv:cond-mat/4355v1 [cond-mat.supr-con] 22 Mar 24 S. Raedts, A. V. Silhanek, M. J. Van Bael, and V. V. Moshchalkov Nanoscale Superconductivity

More information

In-phase motion of Josephson vortices in stacked SNS Josephson junctions: effect of ordered pinning

In-phase motion of Josephson vortices in stacked SNS Josephson junctions: effect of ordered pinning In-phase motion of Josephson vortices in stacked SNS Josephson junctions: effect of ordered pinning G. R. Berdiyorov, 1, 2 S. E. Savel ev, 1 M. V. Milošević, 2 F. V. Kusmartsev, 1 and F. M. Peeters 2,

More information

Abstract: Thin lead films with silicon encapsulation were made by evaporation onto

Abstract: Thin lead films with silicon encapsulation were made by evaporation onto Jada Twedt Mentor: Dr. Tom Lemberger Collaborators: John Skinta, Brent Boyce OSU REU, Summer 1999 Abstract: Thin lead films with silicon encapsulation were made by evaporation onto liquid nitrogen-cooled

More information

Quantum Phase Slip Junctions

Quantum Phase Slip Junctions Quantum Phase Slip Junctions Joël Peguiron Insitute of Physics, University of Basel Monday Morning Meeting, 24 April 2006 1 Goal Monday Morning Meeting, 24 April 2006 2 Evidence for Thermodynamic Fluctuations

More information

Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN

Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002 1667 Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN Yu. A. Ilyin, A. Nijhuis, H. H. J. ten

More information

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger High Magnetic Fields The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS R.Grössinger Coworker: M. Küpferling, H.Sassik, R.Sato, E.Wagner, O.Mayerhofer, M.Taraba ƒ1 Content CONTENT Generation

More information

Evaluation of kinetic-inductance nonlinearity in a singlecrystal NbTiN-based coplanar waveguide

Evaluation of kinetic-inductance nonlinearity in a singlecrystal NbTiN-based coplanar waveguide Proc. 14th Int. Conf. on Global Research and Education, Inter-Academia 2015 2016 The Japan Society of Applied Physics Evaluation of kinetic-inductance nonlinearity in a singlecrystal NbTiN-based coplanar

More information

Plastic strain and flux jumps in hard and composite superconductors

Plastic strain and flux jumps in hard and composite superconductors J. Phys. D: Appl. Phys., 14 (1981) 2279-83. Printed in Great Britain Plastic strain and flux jumps in hard and composite superconductors IL Maksimov and RG Mints Institute of High Temperatures, Moscow

More information

Jorge García-Cañadas

Jorge García-Cañadas Thermoelectric Network Workshop - oughborough University, 14 th April 15 - Measurement of thermoelectric properties by means of impedance spectroscopy Jorge García-Cañadas Cardiff School of Engineering

More information

Avalanche-like vortex penetration driven by pulsed microwave fields in an epitaxial LaSrCuO thin film

Avalanche-like vortex penetration driven by pulsed microwave fields in an epitaxial LaSrCuO thin film Avalanche-like vortex penetration driven by pulsed microwave fields in an epitaxial LaSrCuO thin film P.-de-J. Cuadra-Solís, J. M. Hernandez, A. García-Santiago, J. Tejada, J. Vanacken, and V. V. Moshchalkov

More information

Vortex Dynamics in Nanostructured Superconducting Weak-Pinning Channels

Vortex Dynamics in Nanostructured Superconducting Weak-Pinning Channels 2 Abstract The dynamics of vortex flow in confined geometries can be explored with weak-pinning channels of superconducting a-nbge surrounded by strongpinning NbN channel edges. Periodic constrictions

More information

Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice

Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice Joseph Hlevyack 2012 NSF/REU Program Physics Department, University of Notre Dame Advisor: Morten R. Eskildsen,

More information

Contents. 6 Summary Sumenvatting 67. List of abbreviations 71. References 75. Curriculum Vitae 82. List of publications 84

Contents. 6 Summary Sumenvatting 67. List of abbreviations 71. References 75. Curriculum Vitae 82. List of publications 84 i Contents 1 Introduction 1 1.1 Phase slip phenomenon in 1D superconductors 4 1.1.1 Time dependent Ginzburg-Landau theory 4 1.1.2 Phase slip mechanisms 7 1.1.3 Application of the Ginzburg-Landau theory

More information

Magnetic relaxation of superconducting YBCO samples in weak magnetic fields

Magnetic relaxation of superconducting YBCO samples in weak magnetic fields Magnetic relaxation of superconducting YBCO samples in weak magnetic fields V.P. Timofeev, A.N. Omelyanchouk B.Verkin Institute for Low Temperature Physics & Engineering National Academy of Sciences of

More information

Magnetic shielding in MgB2/Fe superconducting wires

Magnetic shielding in MgB2/Fe superconducting wires University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2003 Magnetic shielding in MgB2/Fe superconducting wires J. Horvat University

More information

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom Superconductivity S2634: Physique de la matière condensée & nano-objets Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom 1 What is superconductivity? 2 Superconductivity Superconductivity generally

More information

Lecture PowerPoints. Chapter 18 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 18 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 18 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene

The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene Abstract: The aim of this project was to investigate how the electrical resistance of a conductor changes if it is deposited

More information

Flux noise resulting from vortex avalanches using a simple kinetic model

Flux noise resulting from vortex avalanches using a simple kinetic model PHYSICAL REVIEW B VOLUME 60, NUMBER 13 1 OCTOBER 1999-I Flux noise resulting from vortex avalanches using a simple kinetic model G. Mohler and D. Stroud Department of Physics, The Ohio State University,

More information