Bayesian decision procedures for dose escalation - a re-analysis

Size: px
Start display at page:

Download "Bayesian decision procedures for dose escalation - a re-analysis"

Transcription

1 Bayesian decision procedures for dose escalation - a re-analysis Maria R Thomas Queen Mary,University of London February 9 th, 2010

2 Overview Phase I Dose Escalation Trial Terminology Regression Models Safety Constraint Numerical Results Doses Recommended via the Bayesian approach Computational Results Conclusions Future Work

3 Phase I Dose Escalation Trials First-into-man(phase I)studies where the subjects might be healthy volunteers receiving a mild form of therapy, or late stage patients being treated with a toxic cancer treatment To model the continuous responses (desirable outcomes) Bayesian decision-theoretic procedure for finding the optimal doses for each of a series of cohorts of subjects is derived

4 Terminology- Zhou et.al(2006) Cohort - a group of subjects dosed and observed simultaneously Starting Dose (d 1 )- the lowest dose to be tried,chosen to be safe Dose Schedule (d 1 < d 2 <...d k )- the discrete doses available for investigation Subjects in this trial are denoted by (S i ), i = 1... n Dosing periods are (P j ), j = 1... k Dose administered to S i in P j is denoted as d ij for those combinations of i and j for which an active dose is administered

5 Outcomes in the trial Dose escalation studies provide two responses referred to here as the Dose limiting event(binary response) and the Desirable outcome(continuous response) Continuous DO(Desirable outcome is a pharmacodynamic beneficial response and normally associated with eventual benefit)response observed on subject S i in period P j will be denoted by (y ij ) Dose limiting event (DLE)causes the safety committee responsible for conduct of the study,cause for concern and indicate that it might be unwise to proceed to a higher dose

6 Linear Mixed Effects Regression Model for a continuous response The model is given by the following expression y ij = θ 1 + θ 2 log d ij + s i + ε ij s i is a random subject effect assumed to have independent N(0, τ 2 ) distributions. The within-subject correlation is computed to be τ 2 assumed with value 0.6. Random error : ε ij N(0, σ 2 ) σ 2 +τ 2 and

7 Logistic Regression Model for the DLE outcome Logistic regression model is used in which the probability of a DLE occuring for subject S i in P j is given by the following expression p DLE (d ij ) = exp(β 1 + β 2 log(d ij )) 1 + exp(β 1 + β 2 log(d ij ))

8 Optimal Safe Dose Allocation Dose d is not administered for which p DLE (d) > γ where γ is some predetermined value, and is assumed to be 0.2 MTD - maximum tolerated dose for a subject is defined as the highest dose for which p DLE (d) < γ

9 Dose Allocation Dose - Escalation studies followed a predefined pattern,with a safety committee receiving data on DLE s and other relevant outcomes before confirming the doses to be administered in each round The planned doses were 10.5,35,87.5,262.5,700, and 1050 mg

10 Prior information A normal-gamma conjugate prior density is used for the parameters θ = (θ 1, θ 2 ) and precision σ 2 θ σ 2 N(µ 0, σ 2 Q 1 0 ), σ2 Ga 1 (s 0, t 0 ) Ga 1 denotes an inverse gamma distribution, and µ 0,Q 0, s 0 and t 0 are to be determined. Prior opinion concerning the continuous DO responses(given no DLE) suggests that y would be equal to at dose 10.5 mg and to at dose 700 mg

11 Prior information (contd) The prior for θ 1, θ 2 and σ 2 of a linear mixed effects regression model has the structure ( ) ( ( ) ( ) ) θ1 θ σ N , σ 2 σ 2 Ga 1 (1, 0.002)

12 Data for the study - Zhou et.al(2006)(table 1) Cohort Subject Dose(mg) DLE s Antifactor Xa(units/ML X 10)

13 Recommended doses After Cohort Actual doses Recommended

14 A simulated example to demonstrate dose escalation via the Bayesian Approach(Table 3) Cohort Subject Dose(mg) DLE s Antifactor Xa(units/ML X 10)

15 Methodology To understand their methodology I tried to reproduce Zhou et.al(2006) results To compute the posterior distributions of θ 1, θ 2 and σ 2 using the same data ordering as Zhou et.al(2006). Data presented with all the measurements for subject 1, subject 2, subject 3, subject 4, subject 5. Hierarchical linear model using Lindley and Smith(1972) with different orderings of the data from the tables(zhou et.al(2006)) Consistency of my results with one another but different to the published results

16 Results Analysis Numerical results for the posterior model of a DO given no DLE - Zhou et.al(2006)for the data of Table 1 ( ) ( ( ) ( θ1 θ σ 2 N , 2 ) ) σ 2 σ 2 Ga 1 (13.5, 0.026) Computational results for the posterior model of DO given no DLE - Zhou et.al (2006)for the data of Table 1 ( ) ( ( ) ( θ1 θ σ 2 N , 2 ) ) σ 2 σ 2 Ga 1 (13.5, 0.033) Lindley and Smith method result(table 1)-Zhou et.al(2006). Computation of the posterior distribution for (DO no DLE) for the data of Table 1. ( ) ( ( ) ( θ1 θ σ 2 N , 2 ) ) σ 2 σ 2 Ga 1 (13.5, 0.034)

17 Results Analysis Numerical Results of the posterior model for the DO given no DLE - Zhou et.al(2006)for the data of Table 3. ( ) ( ( ) ( θ1 θ σ 2 N , 2 ) ) σ 2 σ 2 Ga 1 (15, 0.019) Computational results of the posterior model for the DO S given no DLE-Zhou et.al(2006)for the data of Table 3. ( ) ( ( ) ( θ1 θ σ 2 N , 2 ) ) σ 2 σ 2 Ga 1 (15, 0.023) Lindley and Smith method result(table 3) - Zhou et.al(2006). Computation of the posterior distribution for (DO no DLE) for the data of Table 3. ( ) ( ( ) ( θ1 θ σ 2 N , 2 ) ) σ 2 σ 2 Ga 1 (15, 0.022)

18 Further analysis Why consider a third methodology?

19 WinBugs analysis for Table 1 data The mean of (θ 1, θ 2 ) t is given by ( 0.334, 0.335) t Variance covariance matrix is given by (.1956 ) WinBUGS result : 1 σ (Zhou et.al(2006)) 1 σ

20 Winbugs analysis Table 3 data The mean of (θ 1, θ 2 ) t is given by ( , ) t Variance covariance matrix is given by (.1904 ) WinBUGS result : 1 σ (Zhou et.al(2006)) 1 σ

21 Results for the Maximum likelihood fit The simulated data from the models, is fitted by the maximum likelihood to the data of Table 1: y ij = log d ij + s i + ε ij The fit to the data of Table 1 using C is as follows y ij = log d ij + s i + ε ij The fit to the data of Table 3 using C is as follows y ij = log d ij + s i + ε ij

22 Conclusions Hence from the above results it could be concluded that the maximum likelihood estimates of the slope and the intercept reported by my analysis are in agreement with the results of Zhou et.al(2006). Also from the observations of the three methods it can be concluded that my results are consistent and in agreement with each other and different to the results of Zhou et.al(2006).

23 Ongoing work Computation of cohort effects using WinBugs analysis (Senn.et al(2007)). Bayes designs of a linear model by Smith and Verdinelli(1980). Logistic Regression model and Bayesian optimality design in R.

24 References Lindley,D.V.,and Smith,A.F.M. (1972).Bayes estimates for the Linear Model.Journal of the Royal Statistical Society.Series B(Methodological),34,1-41. Maria,L.(2008).Statistical computing with R.Chapman and Hall Pub Co. Smith,A.F.M. and Verdinelli,I. (1980). A note on Bayes designs for inference using a hierarchical linear model Biometrika. 67, Senn,S.,Amin,D.,Bailey,R.A.,Bird,S.M.,Bogacka,B.,Colman,P., Garrett,A.,Grieve,A.,Lachmann,P.(2007)Statistical issues in first-in-man studies. Journal of the Royal Statistical Society, Series A,170, Whitehead,J.,Zhou, Y., Mander, A.,Ritchie,S.,Sabin, A., and Wright,A.(2006).An evaluation of Bayesian designs for dose-escalation studies in healthy volunteers.statistics in Medicine, 25, Zhou,Y.,Whitehead,J.,Bonvini,E.,and Stevens,J.(2006).Bayesian decision procedures for binary and continuous bivariate dose-escalation studies.journal of Biopharmaceutical Statistics,5,

25 Thank you for your attention!

Improving a safety of the Continual Reassessment Method via a modified allocation rule

Improving a safety of the Continual Reassessment Method via a modified allocation rule Improving a safety of the Continual Reassessment Method via a modified allocation rule Pavel Mozgunov, Thomas Jaki Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics,

More information

Phase I design for locating schedule-specific maximum tolerated doses

Phase I design for locating schedule-specific maximum tolerated doses Phase I design for locating schedule-specific maximum tolerated doses Nolan A. Wages, Ph.D. University of Virginia Division of Translational Research & Applied Statistics Department of Public Health Sciences

More information

Randomized dose-escalation design for drug combination cancer trials with immunotherapy

Randomized dose-escalation design for drug combination cancer trials with immunotherapy Randomized dose-escalation design for drug combination cancer trials with immunotherapy Pavel Mozgunov, Thomas Jaki, Xavier Paoletti Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics

More information

COMPOSITIONAL IDEAS IN THE BAYESIAN ANALYSIS OF CATEGORICAL DATA WITH APPLICATION TO DOSE FINDING CLINICAL TRIALS

COMPOSITIONAL IDEAS IN THE BAYESIAN ANALYSIS OF CATEGORICAL DATA WITH APPLICATION TO DOSE FINDING CLINICAL TRIALS COMPOSITIONAL IDEAS IN THE BAYESIAN ANALYSIS OF CATEGORICAL DATA WITH APPLICATION TO DOSE FINDING CLINICAL TRIALS M. Gasparini and J. Eisele 2 Politecnico di Torino, Torino, Italy; mauro.gasparini@polito.it

More information

Cancer phase I trial design using drug combinations when a fraction of dose limiting toxicities is attributable to one or more agents

Cancer phase I trial design using drug combinations when a fraction of dose limiting toxicities is attributable to one or more agents Cancer phase I trial design using drug combinations when a fraction of dose limiting toxicities is attributable to one or more agents José L. Jiménez 1, Mourad Tighiouart 2, Mauro Gasparini 1 1 Politecnico

More information

A Bayesian decision-theoretic approach to incorporating pre-clinical information into phase I clinical trials

A Bayesian decision-theoretic approach to incorporating pre-clinical information into phase I clinical trials A Bayesian decision-theoretic approach to incorporating pre-clinical information into phase I clinical trials Haiyan Zheng, Lisa V. Hampson Medical and Pharmaceutical Statistics Research Unit Department

More information

ADAPTIVE EXPERIMENTAL DESIGNS. Maciej Patan and Barbara Bogacka. University of Zielona Góra, Poland and Queen Mary, University of London

ADAPTIVE EXPERIMENTAL DESIGNS. Maciej Patan and Barbara Bogacka. University of Zielona Góra, Poland and Queen Mary, University of London ADAPTIVE EXPERIMENTAL DESIGNS FOR SIMULTANEOUS PK AND DOSE-SELECTION STUDIES IN PHASE I CLINICAL TRIALS Maciej Patan and Barbara Bogacka University of Zielona Góra, Poland and Queen Mary, University of

More information

McGill University. Department of Epidemiology and Biostatistics. Bayesian Analysis for the Health Sciences. Course EPIB-675.

McGill University. Department of Epidemiology and Biostatistics. Bayesian Analysis for the Health Sciences. Course EPIB-675. McGill University Department of Epidemiology and Biostatistics Bayesian Analysis for the Health Sciences Course EPIB-675 Lawrence Joseph Bayesian Analysis for the Health Sciences EPIB-675 3 credits Instructor:

More information

Bayesian Optimal Interval Design for Phase I Clinical Trials

Bayesian Optimal Interval Design for Phase I Clinical Trials Bayesian Optimal Interval Design for Phase I Clinical Trials Department of Biostatistics The University of Texas, MD Anderson Cancer Center Joint work with Suyu Liu Phase I oncology trials The goal of

More information

Multi-level Models: Idea

Multi-level Models: Idea Review of 140.656 Review Introduction to multi-level models The two-stage normal-normal model Two-stage linear models with random effects Three-stage linear models Two-stage logistic regression with random

More information

Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects

Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University September 28,

More information

The STS Surgeon Composite Technical Appendix

The STS Surgeon Composite Technical Appendix The STS Surgeon Composite Technical Appendix Overview Surgeon-specific risk-adjusted operative operative mortality and major complication rates were estimated using a bivariate random-effects logistic

More information

A weighted differential entropy based approach for dose-escalation trials

A weighted differential entropy based approach for dose-escalation trials A weighted differential entropy based approach for dose-escalation trials Pavel Mozgunov, Thomas Jaki Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics, Lancaster

More information

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing.

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Previous lecture P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Interaction Outline: Definition of interaction Additive versus multiplicative

More information

Dose-finding for Multi-drug Combinations

Dose-finding for Multi-drug Combinations Outline Background Methods Results Conclusions Multiple-agent Trials In trials combining more than one drug, monotonicity assumption may not hold for every dose The ordering between toxicity probabilities

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

Dose-finding for Multi-drug Combinations

Dose-finding for Multi-drug Combinations September 16, 2011 Outline Background Methods Results Conclusions Multiple-agent Trials In trials combining more than one drug, monotonicity assumption may not hold for every dose The ordering between

More information

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP Personal Healthcare Revolution Electronic health records (CFH) Personal genomics (DeCode, Navigenics, 23andMe) X-prize: first $10k human genome technology

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

November 2002 STA Random Effects Selection in Linear Mixed Models

November 2002 STA Random Effects Selection in Linear Mixed Models November 2002 STA216 1 Random Effects Selection in Linear Mixed Models November 2002 STA216 2 Introduction It is common practice in many applications to collect multiple measurements on a subject. Linear

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs

Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs Michael J. Daniels and Chenguang Wang Jan. 18, 2009 First, we would like to thank Joe and Geert for a carefully

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

Reconstruction of individual patient data for meta analysis via Bayesian approach

Reconstruction of individual patient data for meta analysis via Bayesian approach Reconstruction of individual patient data for meta analysis via Bayesian approach Yusuke Yamaguchi, Wataru Sakamoto and Shingo Shirahata Graduate School of Engineering Science, Osaka University Masashi

More information

Weighted differential entropy based approaches to dose-escalation in clinical trials

Weighted differential entropy based approaches to dose-escalation in clinical trials Weighted differential entropy based approaches to dose-escalation in clinical trials Pavel Mozgunov, Thomas Jaki Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics,

More information

BIAS OF MAXIMUM-LIKELIHOOD ESTIMATES IN LOGISTIC AND COX REGRESSION MODELS: A COMPARATIVE SIMULATION STUDY

BIAS OF MAXIMUM-LIKELIHOOD ESTIMATES IN LOGISTIC AND COX REGRESSION MODELS: A COMPARATIVE SIMULATION STUDY BIAS OF MAXIMUM-LIKELIHOOD ESTIMATES IN LOGISTIC AND COX REGRESSION MODELS: A COMPARATIVE SIMULATION STUDY Ingo Langner 1, Ralf Bender 2, Rebecca Lenz-Tönjes 1, Helmut Küchenhoff 2, Maria Blettner 2 1

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 10 Class Summary Last time... We began our discussion of adaptive clinical trials Specifically,

More information

Case Study in the Use of Bayesian Hierarchical Modeling and Simulation for Design and Analysis of a Clinical Trial

Case Study in the Use of Bayesian Hierarchical Modeling and Simulation for Design and Analysis of a Clinical Trial Case Study in the Use of Bayesian Hierarchical Modeling and Simulation for Design and Analysis of a Clinical Trial William R. Gillespie Pharsight Corporation Cary, North Carolina, USA PAGE 2003 Verona,

More information

BAYESIAN DOSE FINDING IN PHASE I CLINICAL TRIALS BASED ON A NEW STATISTICAL FRAMEWORK

BAYESIAN DOSE FINDING IN PHASE I CLINICAL TRIALS BASED ON A NEW STATISTICAL FRAMEWORK Statistica Sinica 17(2007), 531-547 BAYESIAN DOSE FINDING IN PHASE I CLINICAL TRIALS BASED ON A NEW STATISTICAL FRAMEWORK Y. Ji, Y. Li and G. Yin The University of Texas M. D. Anderson Cancer Center Abstract:

More information

Optimising Group Sequential Designs. Decision Theory, Dynamic Programming. and Optimal Stopping

Optimising Group Sequential Designs. Decision Theory, Dynamic Programming. and Optimal Stopping : Decision Theory, Dynamic Programming and Optimal Stopping Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj InSPiRe Conference on Methodology

More information

Bayes Estimation in Meta-analysis using a linear model theorem

Bayes Estimation in Meta-analysis using a linear model theorem University of Wollongong Research Online Applied Statistics Education and Research Collaboration (ASEARC) - Conference Papers Faculty of Engineering and Information Sciences 2012 Bayes Estimation in Meta-analysis

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

McGill University. Department of Epidemiology and Biostatistics. Bayesian Analysis for the Health Sciences. Course EPIB-682.

McGill University. Department of Epidemiology and Biostatistics. Bayesian Analysis for the Health Sciences. Course EPIB-682. McGill University Department of Epidemiology and Biostatistics Bayesian Analysis for the Health Sciences Course EPIB-682 Lawrence Joseph Intro to Bayesian Analysis for the Health Sciences EPIB-682 2 credits

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Advanced Statistics and Data Mining Summer School

More information

Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence

Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence Valen E. Johnson Texas A&M University February 27, 2014 Valen E. Johnson Texas A&M University Uniformly most powerful Bayes

More information

Bayesian modelling. Hans-Peter Helfrich. University of Bonn. Theodor-Brinkmann-Graduate School

Bayesian modelling. Hans-Peter Helfrich. University of Bonn. Theodor-Brinkmann-Graduate School Bayesian modelling Hans-Peter Helfrich University of Bonn Theodor-Brinkmann-Graduate School H.-P. Helfrich (University of Bonn) Bayesian modelling Brinkmann School 1 / 22 Overview 1 Bayesian modelling

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Sensitivity study of dose-finding methods

Sensitivity study of dose-finding methods to of dose-finding methods Sarah Zohar 1 John O Quigley 2 1. Inserm, UMRS 717,Biostatistic Department, Hôpital Saint-Louis, Paris, France 2. Inserm, Université Paris VI, Paris, France. NY 2009 1 / 21 to

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH The First Step: SAMPLE SIZE DETERMINATION THE ULTIMATE GOAL The most important, ultimate step of any of clinical research is to do draw inferences;

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University July 31, 2018

More information

Approximate analysis of covariance in trials in rare diseases, in particular rare cancers

Approximate analysis of covariance in trials in rare diseases, in particular rare cancers Approximate analysis of covariance in trials in rare diseases, in particular rare cancers Stephen Senn (c) Stephen Senn 1 Acknowledgements This work is partly supported by the European Union s 7th Framework

More information

Weakly informative priors

Weakly informative priors Department of Statistics and Department of Political Science Columbia University 21 Oct 2011 Collaborators (in order of appearance): Gary King, Frederic Bois, Aleks Jakulin, Vince Dorie, Sophia Rabe-Hesketh,

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative

More information

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i,

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i, Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives Often interest may focus on comparing a null hypothesis of no difference between groups to an ordered restricted alternative. For

More information

Nonparametric Bayesian Methods - Lecture I

Nonparametric Bayesian Methods - Lecture I Nonparametric Bayesian Methods - Lecture I Harry van Zanten Korteweg-de Vries Institute for Mathematics CRiSM Masterclass, April 4-6, 2016 Overview of the lectures I Intro to nonparametric Bayesian statistics

More information

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y Predictor or Independent variable x Model with error: for i = 1,..., n, y i = α + βx i + ε i ε i : independent errors (sampling, measurement,

More information

Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming. and Optimal Stopping

Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming. and Optimal Stopping Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming and Optimal Stopping Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj

More information

BMA-Mod : A Bayesian Model Averaging Strategy for Determining Dose-Response Relationships in the Presence of Model Uncertainty

BMA-Mod : A Bayesian Model Averaging Strategy for Determining Dose-Response Relationships in the Presence of Model Uncertainty BMA-Mod : A Bayesian Model Averaging Strategy for Determining -Response Relationships in the Presence of Model Uncertainty A. Lawrence Gould KOL 20 October, 2017 Overview and Motivation -Response Trials

More information

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology Group Sequential Tests for Delayed Responses Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Lisa Hampson Department of Mathematics and Statistics,

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Chapter 4 Multi-factor Treatment Designs with Multiple Error Terms 93

Chapter 4 Multi-factor Treatment Designs with Multiple Error Terms 93 Contents Preface ix Chapter 1 Introduction 1 1.1 Types of Models That Produce Data 1 1.2 Statistical Models 2 1.3 Fixed and Random Effects 4 1.4 Mixed Models 6 1.5 Typical Studies and the Modeling Issues

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Evidence synthesis for a single randomized controlled trial and observational data in small populations

Evidence synthesis for a single randomized controlled trial and observational data in small populations Evidence synthesis for a single randomized controlled trial and observational data in small populations Steffen Unkel, Christian Röver and Tim Friede Department of Medical Statistics University Medical

More information

High-Throughput Sequencing Course

High-Throughput Sequencing Course High-Throughput Sequencing Course DESeq Model for RNA-Seq Biostatistics and Bioinformatics Summer 2017 Outline Review: Standard linear regression model (e.g., to model gene expression as function of an

More information

Robustifying Trial-Derived Treatment Rules to a Target Population

Robustifying Trial-Derived Treatment Rules to a Target Population 1/ 39 Robustifying Trial-Derived Treatment Rules to a Target Population Yingqi Zhao Public Health Sciences Division Fred Hutchinson Cancer Research Center Workshop on Perspectives and Analysis for Personalized

More information

Spatial discrete hazards using Hierarchical Bayesian Modeling

Spatial discrete hazards using Hierarchical Bayesian Modeling Spatial discrete hazards using Hierarchical Bayesian Modeling Mathias Graf ETH Zurich, Institute for Structural Engineering, Group Risk & Safety 1 Papers -Maes, M.A., Dann M., Sarkar S., and Midtgaard,

More information

Bayesian concept for combined Phase 2a/b trials

Bayesian concept for combined Phase 2a/b trials Bayesian concept for combined Phase 2a/b trials /////////// Stefan Klein 07/12/2018 Agenda Phase 2a: PoC studies Phase 2b: dose finding studies Simulation Results / Discussion 2 /// Bayer /// Bayesian

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

A Note on Bayesian Inference After Multiple Imputation

A Note on Bayesian Inference After Multiple Imputation A Note on Bayesian Inference After Multiple Imputation Xiang Zhou and Jerome P. Reiter Abstract This article is aimed at practitioners who plan to use Bayesian inference on multiplyimputed datasets in

More information

The Bayesian Approach to Multi-equation Econometric Model Estimation

The Bayesian Approach to Multi-equation Econometric Model Estimation Journal of Statistical and Econometric Methods, vol.3, no.1, 2014, 85-96 ISSN: 2241-0384 (print), 2241-0376 (online) Scienpress Ltd, 2014 The Bayesian Approach to Multi-equation Econometric Model Estimation

More information

Represent processes and observations that span multiple levels (aka multi level models) R 2

Represent processes and observations that span multiple levels (aka multi level models) R 2 Hierarchical models Hierarchical models Represent processes and observations that span multiple levels (aka multi level models) R 1 R 2 R 3 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N i = true abundance on a

More information

Lecture 13: More on Binary Data

Lecture 13: More on Binary Data Lecture 1: More on Binary Data Link functions for Binomial models Link η = g(π) π = g 1 (η) identity π η logarithmic log π e η logistic log ( π 1 π probit Φ 1 (π) Φ(η) log-log log( log π) exp( e η ) complementary

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Measurement error as missing data: the case of epidemiologic assays. Roderick J. Little

Measurement error as missing data: the case of epidemiologic assays. Roderick J. Little Measurement error as missing data: the case of epidemiologic assays Roderick J. Little Outline Discuss two related calibration topics where classical methods are deficient (A) Limit of quantification methods

More information

Weakly informative priors

Weakly informative priors Department of Statistics and Department of Political Science Columbia University 23 Apr 2014 Collaborators (in order of appearance): Gary King, Frederic Bois, Aleks Jakulin, Vince Dorie, Sophia Rabe-Hesketh,

More information

Bayesian Inference. p(y)

Bayesian Inference. p(y) Bayesian Inference There are different ways to interpret a probability statement in a real world setting. Frequentist interpretations of probability apply to situations that can be repeated many times,

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

Logistic Regression. Advanced Methods for Data Analysis (36-402/36-608) Spring 2014

Logistic Regression. Advanced Methods for Data Analysis (36-402/36-608) Spring 2014 Logistic Regression Advanced Methods for Data Analysis (36-402/36-608 Spring 204 Classification. Introduction to classification Classification, like regression, is a predictive task, but one in which the

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

Bayesian Inference: Probit and Linear Probability Models

Bayesian Inference: Probit and Linear Probability Models Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-1-2014 Bayesian Inference: Probit and Linear Probability Models Nate Rex Reasch Utah State University Follow

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Statistical Practice

Statistical Practice Statistical Practice A Note on Bayesian Inference After Multiple Imputation Xiang ZHOU and Jerome P. REITER This article is aimed at practitioners who plan to use Bayesian inference on multiply-imputed

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters

Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters Journal of Modern Applied Statistical Methods Volume 13 Issue 1 Article 26 5-1-2014 Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters Yohei Kawasaki Tokyo University

More information

Bios 6649: Clinical Trials - Statistical Design and Monitoring

Bios 6649: Clinical Trials - Statistical Design and Monitoring Bios 6649: Clinical Trials - Statistical Design and Monitoring Spring Semester 2015 John M. Kittelson Department of Biostatistics & nformatics Colorado School of Public Health University of Colorado Denver

More information

Fiducial Inference and Generalizations

Fiducial Inference and Generalizations Fiducial Inference and Generalizations Jan Hannig Department of Statistics and Operations Research The University of North Carolina at Chapel Hill Hari Iyer Department of Statistics, Colorado State University

More information

Bayesian Analysis for Natural Language Processing Lecture 2

Bayesian Analysis for Natural Language Processing Lecture 2 Bayesian Analysis for Natural Language Processing Lecture 2 Shay Cohen February 4, 2013 Administrativia The class has a mailing list: coms-e6998-11@cs.columbia.edu Need two volunteers for leading a discussion

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

Bayesian Inference. STA 121: Regression Analysis Artin Armagan

Bayesian Inference. STA 121: Regression Analysis Artin Armagan Bayesian Inference STA 121: Regression Analysis Artin Armagan Bayes Rule...s! Reverend Thomas Bayes Posterior Prior p(θ y) = p(y θ)p(θ)/p(y) Likelihood - Sampling Distribution Normalizing Constant: p(y

More information

Subjective and Objective Bayesian Statistics

Subjective and Objective Bayesian Statistics Subjective and Objective Bayesian Statistics Principles, Models, and Applications Second Edition S. JAMES PRESS with contributions by SIDDHARTHA CHIB MERLISE CLYDE GEORGE WOODWORTH ALAN ZASLAVSKY \WILEY-

More information

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals John W. Mac McDonald & Alessandro Rosina Quantitative Methods in the Social Sciences Seminar -

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

On Fitting Generalized Linear Mixed Effects Models for Longitudinal Binary Data Using Different Correlation

On Fitting Generalized Linear Mixed Effects Models for Longitudinal Binary Data Using Different Correlation On Fitting Generalized Linear Mixed Effects Models for Longitudinal Binary Data Using Different Correlation Structures Authors: M. Salomé Cabral CEAUL and Departamento de Estatística e Investigação Operacional,

More information

Econometrics with Observational Data. Introduction and Identification Todd Wagner February 1, 2017

Econometrics with Observational Data. Introduction and Identification Todd Wagner February 1, 2017 Econometrics with Observational Data Introduction and Identification Todd Wagner February 1, 2017 Goals for Course To enable researchers to conduct careful quantitative analyses with existing VA (and non-va)

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Beta statistics. Keywords. Bayes theorem. Bayes rule

Beta statistics. Keywords. Bayes theorem. Bayes rule Keywords Beta statistics Tommy Norberg tommy@chalmers.se Mathematical Sciences Chalmers University of Technology Gothenburg, SWEDEN Bayes s formula Prior density Likelihood Posterior density Conjugate

More information

10. Exchangeability and hierarchical models Objective. Recommended reading

10. Exchangeability and hierarchical models Objective. Recommended reading 10. Exchangeability and hierarchical models Objective Introduce exchangeability and its relation to Bayesian hierarchical models. Show how to fit such models using fully and empirical Bayesian methods.

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information