Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i,

Size: px
Start display at page:

Download "Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i,"

Transcription

1 Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives Often interest may focus on comparing a null hypothesis of no difference between groups to an ordered restricted alternative. For example, we may have a k level ordered categorical predictor, w i, y i = β 0 + k 1 1(w i = h + 1)β h + ɛ i, where ɛ i N(0, σ 2 ). h=1 H 0 : β 1 =... = β k 1 = 0 homogeneity (no association) H 1 : β 1... β k 1 simple increasing order How to assess from Bayesian perspective?

2 Suppose we assumed the conjugate prior density, β = (β 0,..., β k 1 ) N(µ 0, Σ 0 ) and σ 2 IG(a 0, b 0 ). Under this prior density, we could easily calculate the posterior density Posterior probabilities of β h < 0 can be calculated We can also calculate Pr(β 1... β k 1 data) How can we address H 0 vs H 1 using this posterior? Is there a better way?

3 The Bayes factor is a standard way of comparing two hypotheses, H 0 and H 1. To calculate the Bayes factor, we need to calculate the prior and posterior probabilities of each of the two hypotheses. What are these probabilities under the conjugate normal prior? Can we use Pr(H 0 ) = 1 Pr(H 1 ) = 1 Pr(β 1... β k 1 ) as the prior? Why or why not?

4 The problem with this approach is that the typical normal conjugate prior assigns zero probability to the null hypothesis. Thus, the above strategy doesn t make sense. Instead, we want to choose a prior density for β that allocates probability to H 0 and H 1, with these probabilities adding to one. Essentially, we need a prior that has support on the restricted space Ω = {β : β 1... β k 1 }, with positive probability assigned to equalities.

5 We would also like to have a prior is easy to elicit and results in easy computation To place order restrictions on parameters in Bayesian models, Gelfand, Smith and Lee (1992) proposed priors of the form π(β) 1(β Ω) N(µ 0, Σ 0 ), which is a truncated Gaussian density This prior allocates probability one to the restricted space Ω In addition, the full conditional densities of the β s follow a conditionally conjugate normal form Is this approach good for comparing H 0 and H 1?

6 Actually, we are still assigning zero prior probability to the null hypothesis H 0. By discard draws from the multivariate normal density that are inconsistent with β 1... β k 1, we ensure that strictly increasing order is satisfied However, we never draw a value of β such that β j = β h. A generalization is to include point masses to accommodate equalites

7 In particular, first reparameterize so that γ 1 = β 1 and γ j = β j β j 1 for j = 2,..., k 1. Then choose the following prior density: π(β 0, γ) = N(β 0 ; µ 0, σ 2 0) { k 1 h=1 π 0h 1(γ h = 0) + (1 π 0h )1(γ h > 0) 0 N(γ h ; µ h, σh) 2 N(z; µ h, σh)dz 2 } The γ h parameters are assigned prior densities consisting of mixtures of point masses at zero (with probability π 0h ) and normal densities truncated below by zero. The prior probability of equivalent means for individuals with w i = j and w i = j + 1 is π 0j, for j = 1,..., k 1. The prior probability of the overall null hypothesis H 0 is π 0 = k 1 j=1 π 0j.

8 Under this prior, Pr(H 0 ) = π 0 and Pr(H 1 ) = 1 π 0. The prior has support on the restricted space Ω. In addition, the prior density is conditionally conjugate with the posterior of γ h of the form π h 1(γ h = 0) + (1 π N(γ h ; h )1(γ h > 0) µ h, σ h) 2 0 N(z; µ h, σ h)dz 2, where µ h and σ 2 h are the posterior mean and variance derived under an unrestriced N(µ 0h, σ 2 0h) prior density for γ h. π h is the posterior probability of γ h = 0 given the data and other parameters.

9 Due to the simplicity of this form, we can simply proceed by a Gibbs sampling algorithm: 1. Specify initial values for β 0, γ and σ Update σ 2 by sampling from IG full conditional 3. Update β 0 by sampling from normal full conditional 4. Update γ h, for h = 1,..., k 1, by sampling from the zeroinflated truncated normal full conditional: (a) Sample from point mass by using Bernoulli( π h ). (b) If not in point mass sample from N( µ h, σ 2 h) truncated below by Repeat 2-4.

10 Calculation of Bayes factors for hypothesis testing From the Gibbs sampling output, we have samples from the posterior density for γ. The elements of γ that are equal to zero tell us which hypothesis we are in for a given sample. For example, γ 1 =... = γ k 1 = 0 implies H 0. Thus, we are effectively moving between different hypotheses in implementing the Gibbs sampler in the same way that stochastic search algorithms move between models with different predictors. Posterior probabilities for a given hypothesis can be calculated as simply the proportion of samples for which that hypothesis holds.

11 Discussion This strategy is very useful for inferences on effects of ordered categorical predictors. For binary and ordered categorical response data, this same approach can be used by using a probit model for the ordinal response and data augmentation (Albert and Chib, 1993) for computation. This same approach can also be used for analysis of discrete time survival data using a continuation ratio probit model to characterize the survival likelihood. For other GLMs similar approaches can be used but the prior is no longer conjugate, so computation can be more intensive.

12 Midterm Review Problem Set 1. Suppose that 2500 pregnant women are enrolled in a study and the outcome is the occurrence of preterm birth. Possible predictors of preterm birth include age of the woman, smoking, socioeconomic status, body mass index, bleeding during pregnancy, serum level of dde, and several dietary factors. Formulate the problem of selecting the important predictors of preterm birth in a generalized linear model (GLM) framework. Show the components of the GLM, including the link function and distribution (in exponential family form). Describe (briefly) how estimation and inference could proceed via a frequentist approach. 2. Women are enrolled in a study when they go off of contraception with the intention of achieving a pregnancy. Suppose there are 350 women in the study who provide information on the number of menstrual cycles required to achieve a pregnancy, whether or not they smoke cigarettes, and their age at beginning the attempt. Describe a statistical model for addressing the question: Is cigarette smoking related to time to pregnancy? Formulate the statistical model within a Bayesian framework and outline the details of model fitting and inference (including the form of the posterior density, an outline of the algorithm for posterior computation, and the approach for addressing the scientific question based on the posterior). 3. A study is connected examining the impact of alcohol intake during pregnancy on the occurrence of birth defects of 5 different types. Outcome data for a child consist of 5 binary indicators of the presence or absence of the different birth defects. A physician working with you on the study notes that certain

13 children have several birth defects, possibly due to defects in important unmeasured genes, while most children have no defects. Describe a latent variable model for analyzing these data and outline (briefly) the details of a Bayesian analysis (including the form of the posterior density, an outline of the algorithm for posterior computation, and the approach for addressing the scientific question based on the posterior). 4. A toxicology study is conducted in which pregnant mice are exposed to different doses of a chemical. The outcome data consist of an ordinal ranking of the sickness of each pup in each litter, with 1 = healthy, 2 = low birth weight but otherwise healthy, 3 = malformed, and 4 = dead. The goal of the study is to see if dose is associated with health of the pup. Describe a model and analytic strategy. What is the interpretation of the model parameters? What assumptions are being made and can they be relaxed?

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Lecture 16: Mixtures of Generalized Linear Models

Lecture 16: Mixtures of Generalized Linear Models Lecture 16: Mixtures of Generalized Linear Models October 26, 2006 Setting Outline Often, a single GLM may be insufficiently flexible to characterize the data Setting Often, a single GLM may be insufficiently

More information

Gibbs Sampling in Endogenous Variables Models

Gibbs Sampling in Endogenous Variables Models Gibbs Sampling in Endogenous Variables Models Econ 690 Purdue University Outline 1 Motivation 2 Identification Issues 3 Posterior Simulation #1 4 Posterior Simulation #2 Motivation In this lecture we take

More information

Bayesian Isotonic Regression and Trend Analysis

Bayesian Isotonic Regression and Trend Analysis Bayesian Isotonic Regression and Trend Analysis Brian Neelon 1 and David B. Dunson 2, October 10, 2003 1 Department of Biostatistics, CB #7420, University of North Carolina at Chapel Hill, Chapel Hill,

More information

November 2002 STA Random Effects Selection in Linear Mixed Models

November 2002 STA Random Effects Selection in Linear Mixed Models November 2002 STA216 1 Random Effects Selection in Linear Mixed Models November 2002 STA216 2 Introduction It is common practice in many applications to collect multiple measurements on a subject. Linear

More information

Bayes methods for categorical data. April 25, 2017

Bayes methods for categorical data. April 25, 2017 Bayes methods for categorical data April 25, 2017 Motivation for joint probability models Increasing interest in high-dimensional data in broad applications Focus may be on prediction, variable selection,

More information

Bayesian Multivariate Logistic Regression

Bayesian Multivariate Logistic Regression Bayesian Multivariate Logistic Regression Sean M. O Brien and David B. Dunson Biostatistics Branch National Institute of Environmental Health Sciences Research Triangle Park, NC 1 Goals Brief review of

More information

Gibbs Sampling in Latent Variable Models #1

Gibbs Sampling in Latent Variable Models #1 Gibbs Sampling in Latent Variable Models #1 Econ 690 Purdue University Outline 1 Data augmentation 2 Probit Model Probit Application A Panel Probit Panel Probit 3 The Tobit Model Example: Female Labor

More information

Gibbs Sampling in Linear Models #1

Gibbs Sampling in Linear Models #1 Gibbs Sampling in Linear Models #1 Econ 690 Purdue University Justin L Tobias Gibbs Sampling #1 Outline 1 Conditional Posterior Distributions for Regression Parameters in the Linear Model [Lindley and

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Model Selection in GLMs. (should be able to implement frequentist GLM analyses!) Today: standard frequentist methods for model selection

Model Selection in GLMs. (should be able to implement frequentist GLM analyses!) Today: standard frequentist methods for model selection Model Selection in GLMs Last class: estimability/identifiability, analysis of deviance, standard errors & confidence intervals (should be able to implement frequentist GLM analyses!) Today: standard frequentist

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Bayesian Isotonic Regression and Trend Analysis

Bayesian Isotonic Regression and Trend Analysis Bayesian Isotonic Regression and Trend Analysis Brian Neelon 1, and David B. Dunson 2 June 9, 2003 1 Department of Biostatistics, University of North Carolina, Chapel Hill, NC 2 Biostatistics Branch, MD

More information

A Bayesian Mixture Model with Application to Typhoon Rainfall Predictions in Taipei, Taiwan 1

A Bayesian Mixture Model with Application to Typhoon Rainfall Predictions in Taipei, Taiwan 1 Int. J. Contemp. Math. Sci., Vol. 2, 2007, no. 13, 639-648 A Bayesian Mixture Model with Application to Typhoon Rainfall Predictions in Taipei, Taiwan 1 Tsai-Hung Fan Graduate Institute of Statistics National

More information

Generalized Linear Models. Last time: Background & motivation for moving beyond linear

Generalized Linear Models. Last time: Background & motivation for moving beyond linear Generalized Linear Models Last time: Background & motivation for moving beyond linear regression - non-normal/non-linear cases, binary, categorical data Today s class: 1. Examples of count and ordered

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Nonparametric Bayes Uncertainty Quantification

Nonparametric Bayes Uncertainty Quantification Nonparametric Bayes Uncertainty Quantification David Dunson Department of Statistical Science, Duke University Funded from NIH R01-ES017240, R01-ES017436 & ONR Review of Bayes Intro to Nonparametric Bayes

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Partial factor modeling: predictor-dependent shrinkage for linear regression

Partial factor modeling: predictor-dependent shrinkage for linear regression modeling: predictor-dependent shrinkage for linear Richard Hahn, Carlos Carvalho and Sayan Mukherjee JASA 2013 Review by Esther Salazar Duke University December, 2013 Factor framework The factor framework

More information

MULTILEVEL IMPUTATION 1

MULTILEVEL IMPUTATION 1 MULTILEVEL IMPUTATION 1 Supplement B: MCMC Sampling Steps and Distributions for Two-Level Imputation This document gives technical details of the full conditional distributions used to draw regression

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random

STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random STA 216: GENERALIZED LINEAR MODELS Lecture 1. Review and Introduction Much of statistics is based on the assumption that random variables are continuous & normally distributed. Normal linear regression

More information

Nonparametric Bayes tensor factorizations for big data

Nonparametric Bayes tensor factorizations for big data Nonparametric Bayes tensor factorizations for big data David Dunson Department of Statistical Science, Duke University Funded from NIH R01-ES017240, R01-ES017436 & DARPA N66001-09-C-2082 Motivation Conditional

More information

CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity. Outline:

CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity. Outline: CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity Outline: 1. NIEHS Uterine Fibroid Study Design of Study Scientific Questions Difficulties 2.

More information

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j Standard Errors & Confidence Intervals β β asy N(0, I( β) 1 ), where I( β) = [ 2 l(β, φ; y) ] β i β β= β j We can obtain asymptotic 100(1 α)% confidence intervals for β j using: β j ± Z 1 α/2 se( β j )

More information

Lecture 01: Introduction

Lecture 01: Introduction Lecture 01: Introduction Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 01: Introduction

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Advanced Herd Management Probabilities and distributions

Advanced Herd Management Probabilities and distributions Advanced Herd Management Probabilities and distributions Anders Ringgaard Kristensen Slide 1 Outline Probabilities Conditional probabilities Bayes theorem Distributions Discrete Continuous Distribution

More information

Sparse Factor-Analytic Probit Models

Sparse Factor-Analytic Probit Models Sparse Factor-Analytic Probit Models By JAMES G. SCOTT Department of Statistical Science, Duke University, Durham, North Carolina 27708-0251, U.S.A. james@stat.duke.edu PAUL R. HAHN Department of Statistical

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Practical Bayesian Quantile Regression. Keming Yu University of Plymouth, UK

Practical Bayesian Quantile Regression. Keming Yu University of Plymouth, UK Practical Bayesian Quantile Regression Keming Yu University of Plymouth, UK (kyu@plymouth.ac.uk) A brief summary of some recent work of us (Keming Yu, Rana Moyeed and Julian Stander). Summary We develops

More information

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Jonathan Gruhl March 18, 2010 1 Introduction Researchers commonly apply item response theory (IRT) models to binary and ordinal

More information

Frequentist Statistics and Hypothesis Testing Spring

Frequentist Statistics and Hypothesis Testing Spring Frequentist Statistics and Hypothesis Testing 18.05 Spring 2018 http://xkcd.com/539/ Agenda Introduction to the frequentist way of life. What is a statistic? NHST ingredients; rejection regions Simple

More information

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP Personal Healthcare Revolution Electronic health records (CFH) Personal genomics (DeCode, Navigenics, 23andMe) X-prize: first $10k human genome technology

More information

Bayesian Methods for Highly Correlated Data. Exposures: An Application to Disinfection By-products and Spontaneous Abortion

Bayesian Methods for Highly Correlated Data. Exposures: An Application to Disinfection By-products and Spontaneous Abortion Outline Bayesian Methods for Highly Correlated Exposures: An Application to Disinfection By-products and Spontaneous Abortion November 8, 2007 Outline Outline 1 Introduction Outline Outline 1 Introduction

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

Summary of Extending the Rank Likelihood for Semiparametric Copula Estimation, by Peter Hoff

Summary of Extending the Rank Likelihood for Semiparametric Copula Estimation, by Peter Hoff Summary of Extending the Rank Likelihood for Semiparametric Copula Estimation, by Peter Hoff David Gerard Department of Statistics University of Washington gerard2@uw.edu May 2, 2013 David Gerard (UW)

More information

Online Supplementary Material to: Perfluoroalkyl Chemicals, Menstrual Cycle Length and Fecundity: Findings from a. Prospective Pregnancy Study

Online Supplementary Material to: Perfluoroalkyl Chemicals, Menstrual Cycle Length and Fecundity: Findings from a. Prospective Pregnancy Study Online Supplementary Material to: Perfluoroalkyl Chemicals, Menstrual Cycle Length and Fecundity: Findings from a Prospective Pregnancy Study by Kirsten J. Lum 1,a,b, Rajeshwari Sundaram a, Dana Boyd Barr

More information

Accounting for Complex Sample Designs via Mixture Models

Accounting for Complex Sample Designs via Mixture Models Accounting for Complex Sample Designs via Finite Normal Mixture Models 1 1 University of Michigan School of Public Health August 2009 Talk Outline 1 2 Accommodating Sampling Weights in Mixture Models 3

More information

Frailty Probit model for multivariate and clustered interval-censor

Frailty Probit model for multivariate and clustered interval-censor Frailty Probit model for multivariate and clustered interval-censored failure time data University of South Carolina Department of Statistics June 4, 2013 Outline Introduction Proposed models Simulation

More information

Gibbs Sampling for the Probit Regression Model with Gaussian Markov Random Field Latent Variables

Gibbs Sampling for the Probit Regression Model with Gaussian Markov Random Field Latent Variables Gibbs Sampling for the Probit Regression Model with Gaussian Markov Random Field Latent Variables Mohammad Emtiyaz Khan Department of Computer Science University of British Columbia May 8, 27 Abstract

More information

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 4: and multivariable regression Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease Epidemiology Department Yale School of Public Health Fatma.shebl@yale.edu

More information

Dynamic Generalized Linear Models

Dynamic Generalized Linear Models Dynamic Generalized Linear Models Jesse Windle Oct. 24, 2012 Contents 1 Introduction 1 2 Binary Data (Static Case) 2 3 Data Augmentation (de-marginalization) by 4 examples 3 3.1 Example 1: CDF method.............................

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Fixed and random effects selection in linear and logistic models

Fixed and random effects selection in linear and logistic models Fixed and random effects selection in linear and logistic models Satkartar K. Kinney Institute of Statistics and Decision Sciences, Duke University, Box 9051, Durham, North Carolina 7705, U.S.A. email:

More information

Bayesian isotonic density regression

Bayesian isotonic density regression Bayesian isotonic density regression Lianming Wang and David B. Dunson Biostatistics Branch, MD A3-3 National Institute of Environmental Health Sciences U.S. National Institutes of Health P.O. Box 33,

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Fixed and Random Effects Selection in Linear and Logistic Models

Fixed and Random Effects Selection in Linear and Logistic Models Biometrics 63, 690 698 September 2007 DOI: 10.1111/j.1541-0420.2007.00771.x Fixed and Random Effects Selection in Linear and Logistic Models Satkartar K. Kinney Institute of Statistics and Decision Sciences,

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Markov Chain Monte Carlo in Practice

Markov Chain Monte Carlo in Practice Markov Chain Monte Carlo in Practice Edited by W.R. Gilks Medical Research Council Biostatistics Unit Cambridge UK S. Richardson French National Institute for Health and Medical Research Vilejuif France

More information

Optimal rules for timing intercourse to achieve pregnancy

Optimal rules for timing intercourse to achieve pregnancy Optimal rules for timing intercourse to achieve pregnancy Bruno Scarpa and David Dunson Dipartimento di Statistica ed Economia Applicate Università di Pavia Biostatistics Branch, National Institute of

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

STAT Advanced Bayesian Inference

STAT Advanced Bayesian Inference 1 / 32 STAT 625 - Advanced Bayesian Inference Meng Li Department of Statistics Jan 23, 218 The Dirichlet distribution 2 / 32 θ Dirichlet(a 1,...,a k ) with density p(θ 1,θ 2,...,θ k ) = k j=1 Γ(a j) Γ(

More information

Nonparametric Bayesian modeling for dynamic ordinal regression relationships

Nonparametric Bayesian modeling for dynamic ordinal regression relationships Nonparametric Bayesian modeling for dynamic ordinal regression relationships Athanasios Kottas Department of Applied Mathematics and Statistics, University of California, Santa Cruz Joint work with Maria

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee September 03 05, 2017 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles Linear Regression Linear regression is,

More information

Large-scale Ordinal Collaborative Filtering

Large-scale Ordinal Collaborative Filtering Large-scale Ordinal Collaborative Filtering Ulrich Paquet, Blaise Thomson, and Ole Winther Microsoft Research Cambridge, University of Cambridge, Technical University of Denmark ulripa@microsoft.com,brmt2@cam.ac.uk,owi@imm.dtu.dk

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

Bayesian Regression (1/31/13)

Bayesian Regression (1/31/13) STA613/CBB540: Statistical methods in computational biology Bayesian Regression (1/31/13) Lecturer: Barbara Engelhardt Scribe: Amanda Lea 1 Bayesian Paradigm Bayesian methods ask: given that I have observed

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Online Appendix to: Marijuana on Main Street? Estimating Demand in Markets with Limited Access

Online Appendix to: Marijuana on Main Street? Estimating Demand in Markets with Limited Access Online Appendix to: Marijuana on Main Street? Estating Demand in Markets with Lited Access By Liana Jacobi and Michelle Sovinsky This appendix provides details on the estation methodology for various speci

More information

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1 1.1 The Probability Model...1 1.2 Finite Discrete Models with Equally Likely Outcomes...5 1.2.1 Tree Diagrams...6 1.2.2 The Multiplication Principle...8

More information

Probability and Information Theory. Sargur N. Srihari

Probability and Information Theory. Sargur N. Srihari Probability and Information Theory Sargur N. srihari@cedar.buffalo.edu 1 Topics in Probability and Information Theory Overview 1. Why Probability? 2. Random Variables 3. Probability Distributions 4. Marginal

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Index. Regression Models for Time Series Analysis. Benjamin Kedem, Konstantinos Fokianos Copyright John Wiley & Sons, Inc. ISBN.

Index. Regression Models for Time Series Analysis. Benjamin Kedem, Konstantinos Fokianos Copyright John Wiley & Sons, Inc. ISBN. Regression Models for Time Series Analysis. Benjamin Kedem, Konstantinos Fokianos Copyright 0 2002 John Wiley & Sons, Inc. ISBN. 0-471-36355-3 Index Adaptive rejection sampling, 233 Adjacent categories

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables.

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Index Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Adaptive rejection metropolis sampling (ARMS), 98 Adaptive shrinkage, 132 Advanced Photo System (APS), 255 Aggregation

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

Discrete Multivariate Statistics

Discrete Multivariate Statistics Discrete Multivariate Statistics Univariate Discrete Random variables Let X be a discrete random variable which, in this module, will be assumed to take a finite number of t different values which are

More information

Inference for a Population Proportion

Inference for a Population Proportion Al Nosedal. University of Toronto. November 11, 2015 Statistical inference is drawing conclusions about an entire population based on data in a sample drawn from that population. From both frequentist

More information

2018 SISG Module 20: Bayesian Statistics for Genetics Lecture 2: Review of Probability and Bayes Theorem

2018 SISG Module 20: Bayesian Statistics for Genetics Lecture 2: Review of Probability and Bayes Theorem 2018 SISG Module 20: Bayesian Statistics for Genetics Lecture 2: Review of Probability and Bayes Theorem Jon Wakefield Departments of Statistics and Biostatistics University of Washington Outline Introduction

More information

STA216: Generalized Linear Models. Lecture 1. Review and Introduction

STA216: Generalized Linear Models. Lecture 1. Review and Introduction STA216: Generalized Linear Models Lecture 1. Review and Introduction Let y 1,..., y n denote n independent observations on a response Treat y i as a realization of a random variable Y i In the general

More information

Bayesian Inference for Dirichlet-Multinomials

Bayesian Inference for Dirichlet-Multinomials Bayesian Inference for Dirichlet-Multinomials Mark Johnson Macquarie University Sydney, Australia MLSS Summer School 1 / 50 Random variables and distributed according to notation A probability distribution

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Bayesian methods for missing data: part 1. Key Concepts. Nicky Best and Alexina Mason. Imperial College London

Bayesian methods for missing data: part 1. Key Concepts. Nicky Best and Alexina Mason. Imperial College London Bayesian methods for missing data: part 1 Key Concepts Nicky Best and Alexina Mason Imperial College London BAYES 2013, May 21-23, Erasmus University Rotterdam Missing Data: Part 1 BAYES2013 1 / 68 Outline

More information

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Sahar Z Zangeneh Robert W. Keener Roderick J.A. Little Abstract In Probability proportional

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Bayesian Econometrics

Bayesian Econometrics Bayesian Econometrics Christopher A. Sims Princeton University sims@princeton.edu September 20, 2016 Outline I. The difference between Bayesian and non-bayesian inference. II. Confidence sets and confidence

More information

A Bayesian multi-dimensional couple-based latent risk model for infertility

A Bayesian multi-dimensional couple-based latent risk model for infertility A Bayesian multi-dimensional couple-based latent risk model for infertility Zhen Chen, Ph.D. Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 January 18, 2018 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 18, 2018 1 / 9 Sampling from a Bernoulli Distribution Theorem (Beta-Bernoulli

More information

Marginal Specifications and a Gaussian Copula Estimation

Marginal Specifications and a Gaussian Copula Estimation Marginal Specifications and a Gaussian Copula Estimation Kazim Azam Abstract Multivariate analysis involving random variables of different type like count, continuous or mixture of both is frequently required

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31 Hierarchical models Dr. Jarad Niemi Iowa State University August 31, 2017 Jarad Niemi (Iowa State) Hierarchical models August 31, 2017 1 / 31 Normal hierarchical model Let Y ig N(θ g, σ 2 ) for i = 1,...,

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Generalized Linear Models and Exponential Families

Generalized Linear Models and Exponential Families Generalized Linear Models and Exponential Families David M. Blei COS424 Princeton University April 12, 2012 Generalized Linear Models x n y n β Linear regression and logistic regression are both linear

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Default Priors and Efficient Posterior Computation in Bayesian Factor Analysis

Default Priors and Efficient Posterior Computation in Bayesian Factor Analysis Default Priors and Efficient Posterior Computation in Bayesian Factor Analysis Joyee Ghosh Institute of Statistics and Decision Sciences, Duke University Box 90251, Durham, NC 27708 joyee@stat.duke.edu

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information