Frailty Probit model for multivariate and clustered interval-censor

Size: px
Start display at page:

Download "Frailty Probit model for multivariate and clustered interval-censor"

Transcription

1 Frailty Probit model for multivariate and clustered interval-censored failure time data University of South Carolina Department of Statistics June 4, 2013

2 Outline Introduction Proposed models Simulation studies Data analysis Discussion

3 Basic concepts Interval-censored data: The failure time of interest can not be observed exactly but is known to fall within some time interval. Clustered interval-censored data: One failure time event. The failure time observations are correlated because they are in the same cluster. Multivariate interval-censored data: Multiple failure time events. Subjects are independent.

4 Sexually transmitted infection (STI) data STIs are prevalent in the US population, especially among young people aged STIs can cause many serious problems such as pelvic inflammatory disease, ectopic pregnancy, tubal infertility, preterm birth, and increased susceptibility to HIV. A longitudinal study referred to as the Young Women s Project (YWP) conducted between year 1999 and year Young women aged 14 to 17 years old participated the study, regardless of prior sexual experience. At enrollment, participants had face-to-face interviews and took STI tests. They were scheduled to visits and tests every 3 months.

5 Research objectives Study the times to infections and reinfections of each type of STIs. Focus on three types: Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Trichomonas vaginalis (TV). Estimate the risk incidence functions; Estimate the covariate effects on infections. Potential covariates: race, age at enrollment, infection history, number of sexual partners, etc. Interval-censored data available for each time to infection or re-infection.

6 Two types of interval-censored data Focus on all the infections and reinfections for a specific type of STI: Different women have different numbers of infections. Each woman forms a cluster. Times to new infections from the same woman are correlated. Times to new infections from different women are independent. Clustered interval-censored data. Joint analysis of times to first infections of CT, GC, and TV: Each woman has one observed interval for each infection. The three types of infections are correlated. Multivariate interval-censored data.

7 Existing approaches for clustered interval-censored data Weibull model Bellamy et al. (2004) and Wong et al.(2005): normal frailty. Goethals et al. (2005): gamma frailty. Zhang and Sun (2010): informative cluster size. Lam et al. (2010): multiple imputation method. Cox model Wong et al. (2006): gamma frailty. Kim (2010): joint modeling approach. Kor, Cheng, and Chen (2013) frailty PH model. Additive hazards model: Li et al. (2012)

8 Proposed model The semiparametric normal frailty Probit model: F (t x, ξ) = Φ{α(t) + x β + ξ}, α is an unknown increasing function. β is the coefficient of predictor x. ξ N(0, σξ 2 ) is the frailty term. The marginal distribution of T is a Probit model of Lin and Wang (2010): F (t x) = Φ{α (t) + x β }, α (t) = cα(t), β = cβ, and c = (1 + σ 2 ξ ) 1/2. The conditional covariate effects given the frailty are proportional to the marginal covaraite effects.

9 The intra-cluster association for clustered data under the normal frailty Probit model is characterized by Spearman s correlation coefficient ρ s and median concordance κ ρ s = 6π 1 sin 1 (r/2) and κ = 2π 1 sin 1 (r), where r = σξ 2/(1 + σ2 ξ ) is the Pearson s coefficient of correlation. The same results hold for multivariate survival times under the normal frailty Probit model. In addition, Kendall s τ takes the same from as κ, i.e., τ = 2π 1 sin 1 (r).

10 Modeling α(t) α is an unknown increasing function with α(0) = and α( ) =. It is modeled over the observed data range. Modeling α(t) with monotone splines (Ramsay, 1988): α(t) = γ 0 + k γ l b l (t), l=1 where {b l, l = 1, k} are monotone spline bases. Spline functions are determine by knots and degree. γ l is restrict to be nonnegative for l 1 and γ 0 is unconstrained.

11 Figure: I-Spline basis functions

12 Likelihoods The observed data {x ij, L ij, R ij }, where x ij is the predictor and (L ij, R ij ] is the observed interval for T ij for the jth subject in cluster i, j = 1,..., n i and i = 1,..., n. The observed likelihood is n n i L obs = π(ξ i ) {F (R ij x ij, ξ i ) F (L ij x ij, ξ i )}dξ i. i=1 j=1 The conditional likelihood given the frailties and covariates is [ n ni L = F (R ij x ij, ξ i ) δ ij1 {F (R ij x ij, ξ i ) F (L ij x ij, ξ i )} δ ij2. i=1 j=1 {1 F (L ij x ij, ξ i )} δ ij3] f (ξi ).

13 Data augmentation Introduce latent variable z ij for each i and j, z ij N(α(t ij ) + x ijβ + ξ i, 1), where t ij = R ij 1 (δij1 =1) + L ij 1 (δij1 =0). The augmented data likelihood function is L aug = n i=1 [ mi j=1 ] φ{z ij α(t ij ) x ijβ ξ i }1 Cij (z ij ) σ 1 φ(σ 1 ξ i ), where C ij is the constrained space of z ij and takes (0, ) if δ ij1 = 1, (α(l ij ) α(r ij ), 0) if δ ij2 = 1, and (, 0) if δ ij3 = 1.

14 Prior specifications A multivariate normal prior N(β 0, Σ 0 ) for β. Normal prior N(m 0, ν 1 0 ) for the unconstrained γ 0. Independent exponential prior Exp(η) for all {γ l } k l=1. Gamma prior Ga(a η, b η ) for η. Gamma prior Ga(a, b) for σ 2 ξ.

15 Proposed Gibbs Sampler Sample latent vairables z ij from a truncated normal, N(α(t ij ) + x ijβ + ξ i, 1)1 Cij (z ij ). Sample β from N(ˆβ, ˆΣ), where ˆΣ = (Σ n n i x ijx ij ) 1 i=1 j=1 and [ ˆβ = ˆΣ Σ 1 0 β 0 + n n i {z ij α(t ij ) ξ i }x ij ]. i=1 j=1

16 Proposed Gibbs sampler (continued) Sample γ 0 from N(E 0, W0 1 ) where W 0 = ν 0 + n and [ n n i k ] E 0 = W0 1 ν 0 m 0 + [z ij γ l b l (t ij ) x ijβ ξ i ]. i=1 j=1 l=1 Sample γ l for each l 1, let W l = n ni i=1 j=1 b2 l (t ij). If W l = 0, sample γ l from the prior Exp(η). If W l > 0, sample γ l from N(E l, W 1 l )1 {γl >max(cl,0)}, where [ n n i E l = W 1 l c l b l (t ij )[z ij γ 0 l l i=1 j=1 = max i: δ ij2 =1 ] γ l b l (t ij ) x ijβ ξ i ] η, [ zij l l γ l (b l (R ij) b l (L ij )) b l (R ij ) b l (L ij ) ].

17 Proposed Gibbs sampler (continued) Sample ξ i for i = 1,..., n from N(µ i, σi 2) where σi 2 = (n i + σ 2 ξ ) 1 and n i µ i = σi [µ 2 ξ /σ 2ξ + ] {z ij α(t ij ) x ijβ}. j=1 Sample σ 2 ξ from Ga(a + n/2, b + 1/2 n i=1 (ξ i µ ξ ) 2 ). Sample η from Ga(a η + k, b η + k l=1 γ l). All the unknowns are sampled from their full conditional distributions in closed-form.

18 Proposed model for multivariate survival times The semiparametric normal frailty Probit model: T j ξ F j (t x, ξ) = Φ{α j (t) + x β + c j ξ}, j = 1,, J, T j has a marginal semiparametric Probit model. c j s are unknown constants except c 1 = 1 for identifiability purpose. Having c j s in the model allows different pairs of events to have different correlation. Kendall s τ between T j and T k is where r jk = τ = 2π 1 sin 1 (r jk ), c j c k σξ 2 for j k. (1+c 2 j σξ 2)(1+c2 k σ2 ξ )

19 Simulation setups Generate data from F (t x, ξ) = Φ{α(t) + x β + ξ}. x 1 N(0, 1), x 2 Bernoulli(0.5). True β 1 = 1 or 0, β 2 = 1, 0, or 1. True α(t) = 2 log(t) t Frailty ξ i N(0, ). Generated 100 data sets, each with sample size N = 200 or 50 clusters, within each cluster there are 4 observations Take 15 equal spaced knots and degree equal to 2 for specifying I spline basis.

20 Table: simulation result: ξ N(0, ) n=50 n=200 True POINT ESE SSD CP95 POINT ESE SSD CP95 β 1 = β 2 = σ = β 1 = β 2 = σ = β 1 = β 2 = σ = β 1 = β 2 = σ = β 1 = β 2 = σ = β 1 = β 2 = σ =

21 Additional simulation Also consider two cases of misspecified frailty distribution, Mixture normal : 0.45 N(0.5, ) N( 0.5, ) Exponential Gamma: exp(ξ 2 ) Ga(1, 1) All others are the same as in the original simulation setup.

22 Table: Scenario I: ξ N(0.5, 0.4) N( 0.5, 0.18) and scenario II:exp(ξ 2 ) Ga(1, 1). Scenario I Scenario II True POINT ESE SSD CP95 POINT ESE SSD CP95 β 1 = β 2 = β 1 = β 2 = β 1 = β 2 = β 1 = β 2 = β 1 = β 2 = β 1 = β 2 =

23 Mastitis data (Goethals et. al, 2009) A total of 100 cows were studied right after giving birth and were examined roughly monthly for udder infection. Why to study udder infection: udder infection is known to be associated with reduced milk yield and poor milk quality. Each cow has four udder quarters. The infection status of each udder quarter was obtained at each examination. The response of interest is the infection time of each udder quarter, which is interval-censored. Each cow forms a natural cluster, and the infection times of the four udder quarters from the same cow are correlated.

24 Objectives: to study the effects of the number of calvings and the position of udder quarter on the infection time as well as the estimation of the cumulative incidence of the udder infection. Covariates to consider: x 1 is the position of the udder quarter (changes within a cow). x 2, x 3 are dummy variables for number of calvings (change between cows).

25 Table: Result: mastitis data Mean 95% CI β ( , ) β ( , ) β ( , ) σ (0.4079, ) ρ s (0.1364, ) κ (0.0911, )

26 Lymphatic filariasis data (Williamson et al. 2008) A disease caused by Wuchereria bancrofti and transmitted by infectious mosquitoes. Bancrofti larvae grow into adult worms living in lymphatic vessels of people. Ultrasound was used to visualize the status of the worms. A study conducted in Brazil (Dreye et al., 2006). 78 worm nests were found in 47 patients that were detected to have lymphatic filariasis. Two treatment groups: DEC/ALB combination and DEC alone. Ultrasound examinations were taken at 7, 14, 30, 45, 60, 90, 180, 270, and 365 days. Objective: to study whether DEC/ALB is more effective to clear the worms than DEC alone.

27 Consider two covariates x 1 : 1 for DEC/ALB and 0 for DEC alone. x 2 : age of patient at the enrollment. Table: Data analysis of lymphatic filariasis Mean 95% CI β ( , ) β ( , ) σ (1.2813, ) ρ s (0.6087, ) κ (0.4312, )

28 Concluding remarks Proposed a normal frailty Probit model for modeling clustered and multivariate survival times. The normal frailty Probit model has good properties. Proposed fully Bayesian methods for analyzing clustered and multivariate interval-censored data. Developed efficient Gibbs samplers that do not involve Metropolis Hastings steps. Allow to estimate within-cluster correlation or pairwise correlations in explicit form.

29 Acknowledgement Funded by social science grant program at USC. Collaborators Haifeng Wu, PhD student at USC Wanzhu Tu, Professor at Indiana University Iris Lin, Assistant professor at USC Sean Wang, PhD student at USC

Frailty Probit Models for Clustered Interval- Censored Failure Time Data

Frailty Probit Models for Clustered Interval- Censored Failure Time Data University of South Carolina Scholar Commons Theses and Dissertations 2016 Frailty Probit Models for Clustered Interval- Censored Failure Time Data Haifeng Wu University of South Carolina Follow this and

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity. Outline:

CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity. Outline: CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity Outline: 1. NIEHS Uterine Fibroid Study Design of Study Scientific Questions Difficulties 2.

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i,

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i, Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives Often interest may focus on comparing a null hypothesis of no difference between groups to an ordered restricted alternative. For

More information

Bayesian Multivariate Logistic Regression

Bayesian Multivariate Logistic Regression Bayesian Multivariate Logistic Regression Sean M. O Brien and David B. Dunson Biostatistics Branch National Institute of Environmental Health Sciences Research Triangle Park, NC 1 Goals Brief review of

More information

Regularization in Cox Frailty Models

Regularization in Cox Frailty Models Regularization in Cox Frailty Models Andreas Groll 1, Trevor Hastie 2, Gerhard Tutz 3 1 Ludwig-Maximilians-Universität Munich, Department of Mathematics, Theresienstraße 39, 80333 Munich, Germany 2 University

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial

Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial Model Selection in Bayesian Survival Analysis for a Multi-country Cluster Randomized Trial Jin Kyung Park International Vaccine Institute Min Woo Chae Seoul National University R. Leon Ochiai International

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Semiparametric Regression Analysis of Bivariate Interval-Censored Data

Semiparametric Regression Analysis of Bivariate Interval-Censored Data University of South Carolina Scholar Commons Theses and Dissertations 12-15-2014 Semiparametric Regression Analysis of Bivariate Interval-Censored Data Naichen Wang University of South Carolina - Columbia

More information

Joint Modeling of Longitudinal Item Response Data and Survival

Joint Modeling of Longitudinal Item Response Data and Survival Joint Modeling of Longitudinal Item Response Data and Survival Jean-Paul Fox University of Twente Department of Research Methodology, Measurement and Data Analysis Faculty of Behavioural Sciences Enschede,

More information

MULTIVARIATE SEMIPARAMETRIC REGRESSION MODELS FOR LONGITUDINAL DATA

MULTIVARIATE SEMIPARAMETRIC REGRESSION MODELS FOR LONGITUDINAL DATA MULTIVARIATE SEMIPARAMETRIC REGRESSION MODELS FOR LONGITUDINAL DATA Zhuokai Li Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor

More information

Spatial Survival Analysis via Copulas

Spatial Survival Analysis via Copulas 1 / 38 Spatial Survival Analysis via Copulas Tim Hanson Department of Statistics University of South Carolina, U.S.A. International Conference on Survival Analysis in Memory of John P. Klein Medical College

More information

Frailty Modeling for clustered survival data: a simulation study

Frailty Modeling for clustered survival data: a simulation study Frailty Modeling for clustered survival data: a simulation study IAA Oslo 2015 Souad ROMDHANE LaREMFiQ - IHEC University of Sousse (Tunisia) souad_romdhane@yahoo.fr Lotfi BELKACEM LaREMFiQ - IHEC University

More information

A Bayesian multi-dimensional couple-based latent risk model for infertility

A Bayesian multi-dimensional couple-based latent risk model for infertility A Bayesian multi-dimensional couple-based latent risk model for infertility Zhen Chen, Ph.D. Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health

More information

Semiparametric Regression Analysis of Panel Count Data and Interval-Censored Failure Time Data

Semiparametric Regression Analysis of Panel Count Data and Interval-Censored Failure Time Data University of South Carolina Scholar Commons Theses and Dissertations 2016 Semiparametric Regression Analysis of Panel Count Data and Interval-Censored Failure Time Data Bin Yao University of South Carolina

More information

Continuous Time Survival in Latent Variable Models

Continuous Time Survival in Latent Variable Models Continuous Time Survival in Latent Variable Models Tihomir Asparouhov 1, Katherine Masyn 2, Bengt Muthen 3 Muthen & Muthen 1 University of California, Davis 2 University of California, Los Angeles 3 Abstract

More information

Frailty Models and Copulas: Similarities and Differences

Frailty Models and Copulas: Similarities and Differences Frailty Models and Copulas: Similarities and Differences KLARA GOETHALS, PAUL JANSSEN & LUC DUCHATEAU Department of Physiology and Biometrics, Ghent University, Belgium; Center for Statistics, Hasselt

More information

Lecture 5 Models and methods for recurrent event data

Lecture 5 Models and methods for recurrent event data Lecture 5 Models and methods for recurrent event data Recurrent and multiple events are commonly encountered in longitudinal studies. In this chapter we consider ordered recurrent and multiple events.

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data

On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data Yehua Li Department of Statistics University of Georgia Yongtao

More information

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA Kasun Rathnayake ; A/Prof Jun Ma Department of Statistics Faculty of Science and Engineering Macquarie University

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Xuelin Huang Department of Biostatistics M. D. Anderson Cancer Center The University of Texas Joint Work with Jing Ning, Sangbum

More information

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P.

Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Mela. P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota By: Sudipto Banerjee, Melanie M. Wall, Bradley P. Carlin November 24, 2014 Outlines of the talk

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

Survival Prediction Under Dependent Censoring: A Copula-based Approach

Survival Prediction Under Dependent Censoring: A Copula-based Approach Survival Prediction Under Dependent Censoring: A Copula-based Approach Yi-Hau Chen Institute of Statistical Science, Academia Sinica 2013 AMMS, National Sun Yat-Sen University December 7 2013 Joint work

More information

Factor Analytic Models of Clustered Multivariate Data with Informative Censoring (refer to Dunson and Perreault, 2001, Biometrics 57, )

Factor Analytic Models of Clustered Multivariate Data with Informative Censoring (refer to Dunson and Perreault, 2001, Biometrics 57, ) Factor Analytic Models of Clustered Multivariate Data with Informative Censoring (refer to Dunson and Perreault, 2001, Biometrics 57, 302-308) Consider data in which multiple outcomes are collected for

More information

Test of Association between Two Ordinal Variables while Adjusting for Covariates

Test of Association between Two Ordinal Variables while Adjusting for Covariates Test of Association between Two Ordinal Variables while Adjusting for Covariates Chun Li, Bryan Shepherd Department of Biostatistics Vanderbilt University May 13, 2009 Examples Amblyopia http://www.medindia.net/

More information

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A. Linero and M. Daniels UF, UT-Austin SRC 2014, Galveston, TX 1 Background 2 Working model

More information

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Jonathan Gruhl March 18, 2010 1 Introduction Researchers commonly apply item response theory (IRT) models to binary and ordinal

More information

Multivariate spatial modeling

Multivariate spatial modeling Multivariate spatial modeling Point-referenced spatial data often come as multivariate measurements at each location Chapter 7: Multivariate Spatial Modeling p. 1/21 Multivariate spatial modeling Point-referenced

More information

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 Department of Statistics North Carolina State University Presented by: Butch Tsiatis, Department of Statistics, NCSU

More information

Ph.D. course: Regression models. Introduction. 19 April 2012

Ph.D. course: Regression models. Introduction. 19 April 2012 Ph.D. course: Regression models Introduction PKA & LTS Sect. 1.1, 1.2, 1.4 19 April 2012 www.biostat.ku.dk/~pka/regrmodels12 Per Kragh Andersen 1 Regression models The distribution of one outcome variable

More information

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals John W. Mac McDonald & Alessandro Rosina Quantitative Methods in the Social Sciences Seminar -

More information

Longitudinal breast density as a marker of breast cancer risk

Longitudinal breast density as a marker of breast cancer risk Longitudinal breast density as a marker of breast cancer risk C. Armero (1), M. Rué (2), A. Forte (1), C. Forné (2), H. Perpiñán (1), M. Baré (3), and G. Gómez (4) (1) BIOstatnet and Universitat de València,

More information

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models John M. Neuhaus Charles E. McCulloch Division of Biostatistics University of California, San

More information

Tests of independence for censored bivariate failure time data

Tests of independence for censored bivariate failure time data Tests of independence for censored bivariate failure time data Abstract Bivariate failure time data is widely used in survival analysis, for example, in twins study. This article presents a class of χ

More information

Ph.D. course: Regression models. Regression models. Explanatory variables. Example 1.1: Body mass index and vitamin D status

Ph.D. course: Regression models. Regression models. Explanatory variables. Example 1.1: Body mass index and vitamin D status Ph.D. course: Regression models Introduction PKA & LTS Sect. 1.1, 1.2, 1.4 25 April 2013 www.biostat.ku.dk/~pka/regrmodels13 Per Kragh Andersen Regression models The distribution of one outcome variable

More information

Multistate models and recurrent event models

Multistate models and recurrent event models Multistate models Multistate models and recurrent event models Patrick Breheny December 10 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Multistate models In this final lecture,

More information

Robust MCMC Algorithms for Bayesian Inference in Stochastic Epidemic Models.

Robust MCMC Algorithms for Bayesian Inference in Stochastic Epidemic Models. Robust MCMC Algorithms for Bayesian Inference in Stochastic Epidemic Models. An Application to the 2001 UK Foot-and-Mouth Outbreak Theodore Kypraios @ University of Nottingham Gareth O. Roberts @ Lancaster

More information

Outline. Frailty modelling of Multivariate Survival Data. Clustered survival data. Clustered survival data

Outline. Frailty modelling of Multivariate Survival Data. Clustered survival data. Clustered survival data Outline Frailty modelling of Multivariate Survival Data Thomas Scheike ts@biostat.ku.dk Department of Biostatistics University of Copenhagen Marginal versus Frailty models. Two-stage frailty models: copula

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Survival Analysis. Stat 526. April 13, 2018

Survival Analysis. Stat 526. April 13, 2018 Survival Analysis Stat 526 April 13, 2018 1 Functions of Survival Time Let T be the survival time for a subject Then P [T < 0] = 0 and T is a continuous random variable The Survival function is defined

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

Bayesian shrinkage approach in variable selection for mixed

Bayesian shrinkage approach in variable selection for mixed Bayesian shrinkage approach in variable selection for mixed effects s GGI Statistics Conference, Florence, 2015 Bayesian Variable Selection June 22-26, 2015 Outline 1 Introduction 2 3 4 Outline Introduction

More information

Sample-weighted semiparametric estimates of cause-specific cumulative incidence using left-/interval censored data from electronic health records

Sample-weighted semiparametric estimates of cause-specific cumulative incidence using left-/interval censored data from electronic health records 1 / 22 Sample-weighted semiparametric estimates of cause-specific cumulative incidence using left-/interval censored data from electronic health records Noorie Hyun, Hormuzd A. Katki, Barry I. Graubard

More information

Package ICBayes. September 24, 2017

Package ICBayes. September 24, 2017 Package ICBayes September 24, 2017 Title Bayesian Semiparametric Models for Interval-Censored Data Version 1.1 Date 2017-9-24 Author Chun Pan, Bo Cai, Lianming Wang, and Xiaoyan Lin Maintainer Chun Pan

More information

Dynamic pair formation models

Dynamic pair formation models Application to sexual networks and STI 14 September 2011 Partnership duration Models for sexually transmitted infections Which frameworks? HIV/AIDS: SI framework chlamydia and gonorrhoea : SIS framework

More information

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data Malaysian Journal of Mathematical Sciences 11(3): 33 315 (217) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Approximation of Survival Function by Taylor

More information

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates Anastasios (Butch) Tsiatis Department of Statistics North Carolina State University http://www.stat.ncsu.edu/

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 15 1 / 38 Data structure t1 t2 tn i 1st subject y 11 y 12 y 1n1 Experimental 2nd subject

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

Multistate models and recurrent event models

Multistate models and recurrent event models and recurrent event models Patrick Breheny December 6 Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 1 / 22 Introduction In this final lecture, we will briefly look at two other

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS3301 / MAS8311 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-10 1 13 The Cox proportional hazards model 13.1 Introduction In the

More information

Ensemble estimation and variable selection with semiparametric regression models

Ensemble estimation and variable selection with semiparametric regression models Ensemble estimation and variable selection with semiparametric regression models Sunyoung Shin Department of Mathematical Sciences University of Texas at Dallas Joint work with Jason Fine, Yufeng Liu,

More information

A Nonparametric Approach Using Dirichlet Process for Hierarchical Generalized Linear Mixed Models

A Nonparametric Approach Using Dirichlet Process for Hierarchical Generalized Linear Mixed Models Journal of Data Science 8(2010), 43-59 A Nonparametric Approach Using Dirichlet Process for Hierarchical Generalized Linear Mixed Models Jing Wang Louisiana State University Abstract: In this paper, we

More information

Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs

Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs Michael J. Daniels and Chenguang Wang Jan. 18, 2009 First, we would like to thank Joe and Geert for a carefully

More information

Nonparametric two-sample tests of longitudinal data in the presence of a terminal event

Nonparametric two-sample tests of longitudinal data in the presence of a terminal event Nonparametric two-sample tests of longitudinal data in the presence of a terminal event Jinheum Kim 1, Yang-Jin Kim, 2 & Chung Mo Nam 3 1 Department of Applied Statistics, University of Suwon, 2 Department

More information

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data Communications for Statistical Applications and Methods 2015, Vol. 22, No. 6, 599 604 DOI: http://dx.doi.org/10.5351/csam.2015.22.6.599 Print ISSN 2287-7843 / Online ISSN 2383-4757 Estimation of Conditional

More information

5. Parametric Regression Model

5. Parametric Regression Model 5. Parametric Regression Model The Accelerated Failure Time (AFT) Model Denote by S (t) and S 2 (t) the survival functions of two populations. The AFT model says that there is a constant c > 0 such that

More information

Lecture 16: Mixtures of Generalized Linear Models

Lecture 16: Mixtures of Generalized Linear Models Lecture 16: Mixtures of Generalized Linear Models October 26, 2006 Setting Outline Often, a single GLM may be insufficiently flexible to characterize the data Setting Often, a single GLM may be insufficiently

More information

Generalized Linear Latent and Mixed Models with Composite Links and Exploded

Generalized Linear Latent and Mixed Models with Composite Links and Exploded Generalized Linear Latent and Mixed Models with Composite Links and Exploded Likelihoods Anders Skrondal 1 and Sophia Rabe-Hesketh 2 1 Norwegian Institute of Public Health, Oslo (anders.skrondal@fhi.no)

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Survival Analysis Math 434 Fall 2011

Survival Analysis Math 434 Fall 2011 Survival Analysis Math 434 Fall 2011 Part IV: Chap. 8,9.2,9.3,11: Semiparametric Proportional Hazards Regression Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/fall09/index.html Basic Model Setup

More information

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements [Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements Aasthaa Bansal PhD Pharmaceutical Outcomes Research & Policy Program University of Washington 69 Biomarkers

More information

Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation

Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation Patrick J. Heagerty PhD Department of Biostatistics University of Washington 166 ISCB 2010 Session Four Outline Examples

More information

Models for Multivariate Panel Count Data

Models for Multivariate Panel Count Data Semiparametric Models for Multivariate Panel Count Data KyungMann Kim University of Wisconsin-Madison kmkim@biostat.wisc.edu 2 April 2015 Outline 1 Introduction 2 3 4 Panel Count Data Motivation Previous

More information

Online Supplementary Material to: Perfluoroalkyl Chemicals, Menstrual Cycle Length and Fecundity: Findings from a. Prospective Pregnancy Study

Online Supplementary Material to: Perfluoroalkyl Chemicals, Menstrual Cycle Length and Fecundity: Findings from a. Prospective Pregnancy Study Online Supplementary Material to: Perfluoroalkyl Chemicals, Menstrual Cycle Length and Fecundity: Findings from a Prospective Pregnancy Study by Kirsten J. Lum 1,a,b, Rajeshwari Sundaram a, Dana Boyd Barr

More information

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Collaboration with Rudolf Winter-Ebmer, Department of Economics, Johannes Kepler University

More information

An Analysis of Record Statistics based on an Exponentiated Gumbel Model

An Analysis of Record Statistics based on an Exponentiated Gumbel Model Communications for Statistical Applications and Methods 2013, Vol. 20, No. 5, 405 416 DOI: http://dx.doi.org/10.5351/csam.2013.20.5.405 An Analysis of Record Statistics based on an Exponentiated Gumbel

More information

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Review Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 Chapter 1: background Nominal, ordinal, interval data. Distributions: Poisson, binomial,

More information

Recent Advances in Bayesian Spatial Survival Modeling

Recent Advances in Bayesian Spatial Survival Modeling 1 / 47 Recent Advances in Bayesian Spatial Survival Modeling Tim Hanson Department of Statistics University of South Carolina, U.S.A. University of Alabama Department of Mathematics April 10, 2015 2 /

More information

Marginal Survival Modeling through Spatial Copulas

Marginal Survival Modeling through Spatial Copulas 1 / 53 Marginal Survival Modeling through Spatial Copulas Tim Hanson Department of Statistics University of South Carolina, U.S.A. University of Michigan Department of Biostatistics March 31, 2016 2 /

More information

Statistical Inference for Stochastic Epidemic Models

Statistical Inference for Stochastic Epidemic Models Statistical Inference for Stochastic Epidemic Models George Streftaris 1 and Gavin J. Gibson 1 1 Department of Actuarial Mathematics & Statistics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS,

More information

Semiparametric Models for Joint Analysis of Longitudinal Data and Counting Processes

Semiparametric Models for Joint Analysis of Longitudinal Data and Counting Processes Semiparametric Models for Joint Analysis of Longitudinal Data and Counting Processes by Se Hee Kim A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial

More information

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data 1 Part III. Hypothesis Testing III.1. Log-rank Test for Right-censored Failure Time Data Consider a survival study consisting of n independent subjects from p different populations with survival functions

More information

Sample size and robust marginal methods for cluster-randomized trials with censored event times

Sample size and robust marginal methods for cluster-randomized trials with censored event times Published in final edited form as: Statistics in Medicine (2015), 34(6): 901 923 DOI: 10.1002/sim.6395 Sample size and robust marginal methods for cluster-randomized trials with censored event times YUJIE

More information

Power and Sample Size Calculations with the Additive Hazards Model

Power and Sample Size Calculations with the Additive Hazards Model Journal of Data Science 10(2012), 143-155 Power and Sample Size Calculations with the Additive Hazards Model Ling Chen, Chengjie Xiong, J. Philip Miller and Feng Gao Washington University School of Medicine

More information

Marginal Specifications and a Gaussian Copula Estimation

Marginal Specifications and a Gaussian Copula Estimation Marginal Specifications and a Gaussian Copula Estimation Kazim Azam Abstract Multivariate analysis involving random variables of different type like count, continuous or mixture of both is frequently required

More information

Stock Sampling with Interval-Censored Elapsed Duration: A Monte Carlo Analysis

Stock Sampling with Interval-Censored Elapsed Duration: A Monte Carlo Analysis Stock Sampling with Interval-Censored Elapsed Duration: A Monte Carlo Analysis Michael P. Babington and Javier Cano-Urbina August 31, 2018 Abstract Duration data obtained from a given stock of individuals

More information

On consistency of Kendall s tau under censoring

On consistency of Kendall s tau under censoring Biometria (28), 95, 4,pp. 997 11 C 28 Biometria Trust Printed in Great Britain doi: 1.193/biomet/asn37 Advance Access publication 17 September 28 On consistency of Kendall s tau under censoring BY DAVID

More information

Gibbs Sampling in Latent Variable Models #1

Gibbs Sampling in Latent Variable Models #1 Gibbs Sampling in Latent Variable Models #1 Econ 690 Purdue University Outline 1 Data augmentation 2 Probit Model Probit Application A Panel Probit Panel Probit 3 The Tobit Model Example: Female Labor

More information

Simple techniques for comparing survival functions with interval-censored data

Simple techniques for comparing survival functions with interval-censored data Simple techniques for comparing survival functions with interval-censored data Jinheum Kim, joint with Chung Mo Nam jinhkim@suwon.ac.kr Department of Applied Statistics University of Suwon Comparing survival

More information

Bayes methods for categorical data. April 25, 2017

Bayes methods for categorical data. April 25, 2017 Bayes methods for categorical data April 25, 2017 Motivation for joint probability models Increasing interest in high-dimensional data in broad applications Focus may be on prediction, variable selection,

More information

Comparison of multiple imputation methods for systematically and sporadically missing multilevel data

Comparison of multiple imputation methods for systematically and sporadically missing multilevel data Comparison of multiple imputation methods for systematically and sporadically missing multilevel data V. Audigier, I. White, S. Jolani, T. Debray, M. Quartagno, J. Carpenter, S. van Buuren, M. Resche-Rigon

More information

Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics

Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25 Residuals for the

More information

Integrated likelihoods in survival models for highlystratified

Integrated likelihoods in survival models for highlystratified Working Paper Series, N. 1, January 2014 Integrated likelihoods in survival models for highlystratified censored data Giuliana Cortese Department of Statistical Sciences University of Padua Italy Nicola

More information

Endogenous Treatment Effects for Count Data Models with Endogenous Participation or Sample Selection

Endogenous Treatment Effects for Count Data Models with Endogenous Participation or Sample Selection Endogenous Treatment Effects for Count Data Models with Endogenous Participation or Sample Selection Massimilano Bratti & Alfonso Miranda Institute of Education University of London c Bratti&Miranda (p.

More information

Introduction to BGPhazard

Introduction to BGPhazard Introduction to BGPhazard José A. García-Bueno and Luis E. Nieto-Barajas February 11, 2016 Abstract We present BGPhazard, an R package which computes hazard rates from a Bayesian nonparametric view. This

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham MCMC 2: Lecture 2 Coding and output Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham Contents 1. General (Markov) epidemic model 2. Non-Markov epidemic model 3. Debugging

More information

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model Other Survival Models (1) Non-PH models We briefly discussed the non-proportional hazards (non-ph) model λ(t Z) = λ 0 (t) exp{β(t) Z}, where β(t) can be estimated by: piecewise constants (recall how);

More information

Research Projects. Hanxiang Peng. March 4, Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis

Research Projects. Hanxiang Peng. March 4, Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis Hanxiang Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis March 4, 2009 Outline Project I: Free Knot Spline Cox Model Project I: Free Knot Spline Cox Model Consider

More information

Proportional hazards model for matched failure time data

Proportional hazards model for matched failure time data Mathematical Statistics Stockholm University Proportional hazards model for matched failure time data Johan Zetterqvist Examensarbete 2013:1 Postal address: Mathematical Statistics Dept. of Mathematics

More information

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models Thomas Kneib Department of Mathematics Carl von Ossietzky University Oldenburg Sonja Greven Department of

More information

Dependence structures with applications to actuarial science

Dependence structures with applications to actuarial science with applications to actuarial science Department of Statistics, ITAM, Mexico Recent Advances in Actuarial Mathematics, OAX, MEX October 26, 2015 Contents Order-1 process Application in survival analysis

More information