Soot - Developing anisotropic potentials from first principles for PAH molecules. Tim Totton, Alston Misquitta and Markus Kraft 12/11/2009

Size: px
Start display at page:

Download "Soot - Developing anisotropic potentials from first principles for PAH molecules. Tim Totton, Alston Misquitta and Markus Kraft 12/11/2009"

Transcription

1 Soot - Developing anisotropic potentials from first principles for PAH molecules. Tim Totton, Alston Misquitta and 12/11/2009

2 HRTEM images of soot Some evidence for different soot structures based on different fuels Top: graphitic Bottom: amorphous Pictures from: Uitz, Cracknell, Jansma and Makkee, Impact of diesel fuel composition on soot oxidation Characteristics, SAE

3 Investigating structure How do PAH molecules form clusters? How do these clusters grow? Driven by intermolecular potentials Alston Misquitta, Aron Cohen, Dwaipayan Chakrarti, Mark Miller, David Wales

4 Atom-atom potential R

5 What s the use? Study PAH clusters (i.e. soot) How do PAH molecules form clusters? What determines their shape/structure? Interactions with gas-phase molecules? Need to study Potential Energy Surface (PES) created from potential

6 Comparison of potentials Poor agreement between L-J potential and SAPT(DFT) results Good agreement with W99 potential Potential (kj/mol) LJ Gr LJ SP LJ X W99 Gr W99 SP W99 X SAPT Gr SAPT SP SAPT X Dimer Separation (Å) Graphite (Gr) Slipped Parellel (SP) Crossed (X)

7 Basin hopping Finds stle molecular clusters by searching for minima Based on potential energy landscape Uses Monte-Carlo criterion when jumping between minima Energy

8 Global minimum clusters 2 Coronene molecules 5 Coronenes molecules 10 Coronene molecules E = kj/mol E = kj/mol E = kj/mol

9 Experimental comparison Experimental HR-TEM images of an aggregate sampled from a diesel engine. Indicated are length scales of structures within a primary particle (from Mosbach et al., 2009, Combustion and Flame). A TEM-style projection of a computed cluster of 50 coronene molecules

10 Cluster Density Need to define cluster volume Used scaled van der Waals radii Define Volume in terms of scaling factor, α Determine critical α to determine density

11 Cluster density Volume varies non-linearly with α Choose critical α at minimum of dv/dα (α crit = 1.7) Corresponds to point where all intermolecular space is covered by overlapping spheres.

12 Varying density in our models For α crit = 1.7, coronene ρ = 1.1 g/cm 3, pyrene ρ = 1.0 g/cm 3 Standard soot density in models = 1.8 g/cm 3 Density has been shown to be an important parameter

13 Intermolecular Potentials Use atom-atom potentials Approximated as sum of all pairwise atomic interactions between molecules U = U R, A A< Ba Ab B ( Ω ) (molecule A atoms a and molecule B with atoms b)

14 Standard atom-atom potentials Lennard-Jones U LJ = 4ε σ R 12 σ R 6 Exponential-6 U exp 6 = B exp A R ( CR ) 6 Specific electrostatic term, e.g. U = elst qaq R b

15 Isotropic potentials Good agreement between W99 potential and SAPT(DFT) for stacked geometries 20 Poor agreement between either potential and SAPT(DFT) for T-shape geometry Potential (kj/mol) LJ Gr LJ SP LJ X W99 Gr W99 SP W99 X SAPT Gr SAPT SP SAPT X Dimer Separation (Å) Potential (kj/mol) LJ T W99 T SAPT T Dimer Separation (Å) Graphite (Gr) Slipped Parellel (SP) Crossed (X) T-shape (T)

16 How accurate are the potentials? Current isotropic atom-atom potentials parameterised to fit stacked (most stle) molecule configurations Really anisotropy in electron density Isotropic atom-atom potential

17 Ab initio methods In principal could work out high accuracy interaction energies on-the-fly BUT most initio methods are prohibited due to high computational expense. DFT is a possibility but cannot accurately predict dispersion Need to use accurate model potentials (fitted from initio data)

18 New anisotropic potential Needs Accuracy: energy barriers on PES required to answer questions out morphology and reactivity Transferility: many types of PAH (C 6 -C 400 ) in flames Simplicity: large clusters limit functional complexity

19 New anisotropic potential Start with benzene generalise to larger PAHs Functional form: U C + [ α ( R ρ ( Ω ))] f ( R ) 6, iso = G exp 6 6 R qaq R b Short-range Split into three parts: Short-range repulsion Long-range dispersion Long-range electrostatics Long-range

20 Electrostatics Simple point charge model used Ideally would use high-rank multipole model e.g. hexadecapole on atomic sites Unnecessary for PAH molecules as they don t possess strong directional moments (e.g. H-bonding) Fit partial charges to overall molecular electrostatic potential calculated from initio wavefunction.

21 Benchmark energies SAPT(DFT) to generate high accuracy interaction energy benchmarks Total interaction approximated by taking terms up to second order: int (1) elst (1) (2) (2) (2) (2) ( KS ) + E ( KS ) + E + E + E E E = E + exch ind, exch Calculate dimer energies need uniform coverage of physically important configurations ind disp disp, exch

22 Dispersion models Calculated from molecular properties (not dimer energies) Model dispersion energies of the form: E (2) disp ) 6 8 R R ( model) = f6( R) f8( R) f10( R 10 Damping functions (Tang-Toennies): f n ( R C ) = 1 exp( βr ) C ( βr ) n k = 0 k! k C R

23 Different dispersion models Complex models match SAPT(DFT) energies best Linear deviation of all models leads to scaling factor Λ = ( R ) 2 i f6 C6,iso wi Edisp,tot + ξ 6 i a A, b B R

24 Short-range energies Define SAPT(DFT) short-range energies: sr (1) exch (1) pen E = E + E + (2) ind,tot Fit parameters of Born-Mayer term to SAPT(DFT) dimer energies G exp E ( ESP) ( (1) (1) (1) E = E E ) pen elst elst [ α ( ρ ( Ω ))] R

25 Shape function - anisotropy Split shape function into atomic contributions and define in terms of θ a and θ b a ρ ( ) a ( ) b Ω = ρ θ ρ ( θ ) ρ a + a a 1 a ρ + ρ10 cosθa + ρ 2 ( ) ( 2 θ 3cos θ 1) a = a b

26 Fitting short-range energies Important to have physical parameter set Need to partition total interaction energy into atom-atom contributions Use density overlap model to provide good starting estimates and refine using harmonic constraints.

27 Density Overlap model Assumes short-range interaction is proportional to total electron density overlap between molecules, i.e. E K Esr fit = 0S ρ S ρ ρ = ( ) B r ( r) 3 ρ d r Fit E fit to E sr to get optimised K 0 A e e

28 Distributed overlap model Now look at atom-atom contributions to total energy partition total density overlap into atom-atom contributions, i.e. S ρ ρ = a e ( ) b r ( r) 3 ρ d r e Now refit E sr to E fit defined below to give set of coefficients K E sr E fit = K a A, b B S ρ

29 Refine distributed overlap model Some K are unphysical, so use K 0 as constraint and minimise = i w i i E E i fit 1 i sr w + λ ( K K ) 0 Use refined set of K to fit energies to separation and orientation dependent Born- Mayer term G exp i 2 [ α ( ρ ( Ω ))] R 2

30 Overall Potential Piece together short-range and long-range terms to give overall potential Refine against total energies of 128 benzene dimers using multivariate optimisation with tight harmonic constraints. Final fit has weighted r.m.s. residual error of only 0.49 kj/mol

31 Overall anisotropic potential Improvement over isotropic potentials Provides starting point for general PAH potential

32 Generalising to larger PAH Use a further 111 SAPT(DFT) dimer energies relating to larger PAH molecules: naphthalene (C 10 H 8 ), anthracene (C 14 H 10 ) pyrene (C 16 H 10 ) Start with BAP parameters, using tight harmonic constraints. Overall weighted r.m.s. residual error was found to be only 0.73 kj/mol

33 PAH anisotropic potential (PAHAP) Much improved agreement for non-stacked dimer configurations over W99 potential Similar high accuracy for stacked configurations

34 rk ure Fut wo Use new potential to simulate clusters of PAH molecules Coarse-grain new potential to look at much larger systems Study pathways on potential energy surface PAH rearrangement soot morphology Interaction with gas-phase species

35 Acknowledgements

Modelling Carbon Black

Modelling Carbon Black Modelling Carbon Black Matthew Celnik, Tim Totton, Abhijeet Raj, Markus Sander, Markus Kraft 09/09/09 Soot Formation Burner Reaction Zone Temperature Flame Carbon Condensation Particle Addition Inception

More information

Size-dependent melting of PAH nano-clusters: A molecular dynamic study

Size-dependent melting of PAH nano-clusters: A molecular dynamic study Size-dependent melting of PAH nano-clusters: A molecular dynamic study Dongping Chen, Tim Totton, and April 2013 PAH mobility: current questions The internal structure of a soot particle is poorly understood.

More information

Many-body dispersion interactions between semiconducting wires

Many-body dispersion interactions between semiconducting wires Many-body dispersion interactions between semiconducting wires Alston J. Misquitta TCM Group, Cavendish Laboratory University of Cambridge 26 th July, 2010 Collaborators James Spencer (Imperial College,

More information

Cambridge Centre for Computational Chemical Engineering

Cambridge Centre for Computational Chemical Engineering Cambridge Centre for Computational Chemical Engineering University of Cambridge Department of Chemical Engineering and Biotechnology Preprint ISSN 1473 4273 Modelling the Internal Structure of Nascent

More information

arxiv: v3 [physics.atom-ph] 1 Jun 2016

arxiv: v3 [physics.atom-ph] 1 Jun 2016 Ab initio atom atom potentials using CamCASP: Theory and application to multipole models for the pyridine dimer. arxiv:1512.615v3 [physics.atom-ph] 1 Jun 216 Alston J. Misquitta 1 and Anthony J. Stone

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Non-covalent force fields computed ab initio

Non-covalent force fields computed ab initio Non-covalent force fields computed ab initio Supermolecule calculations Symmetry-adapted perturbation theory (SAPT) Supermolecule calculations Requirements: E = E AB E A E B. Include electron correlation,

More information

Molecular Mechanics. Yohann Moreau. November 26, 2015

Molecular Mechanics. Yohann Moreau. November 26, 2015 Molecular Mechanics Yohann Moreau yohann.moreau@ujf-grenoble.fr November 26, 2015 Yohann Moreau (UJF) Molecular Mechanics, Label RFCT 2015 November 26, 2015 1 / 29 Introduction A so-called Force-Field

More information

Electric properties of molecules

Electric properties of molecules Electric properties of molecules For a molecule in a uniform electric fielde the Hamiltonian has the form: Ĥ(E) = Ĥ + E ˆµ x where we assume that the field is directed along the x axis and ˆµ x is the

More information

Accurate van der Waals interactions from ground state electron density

Accurate van der Waals interactions from ground state electron density Accurate van der Waals interactions from ground state electron density Alexandre Tkatchenko Theory Department, Fritz Haber Institut der MPG Berlin, Germany tkatchen@fhi berlin.mpg.de Haber Institute EXCITCM09,

More information

Intermolecular Forces in Density Functional Theory

Intermolecular Forces in Density Functional Theory Intermolecular Forces in Density Functional Theory Problems of DFT Peter Pulay at WATOC2005: There are 3 problems with DFT 1. Accuracy does not converge 2. Spin states of open shell systems often incorrect

More information

T6.2 Molecular Mechanics

T6.2 Molecular Mechanics T6.2 Molecular Mechanics We have seen that Benson group additivities are capable of giving heats of formation of molecules with accuracies comparable to those of the best ab initio procedures. However,

More information

Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate

Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate A. Arslanargin, A. Powers, S. Rick, T. Pollard, T. Beck Univ Cincinnati Chemistry Support: NSF, OSC TSRC 2016 November 2, 2016 A. Arslanargin,

More information

Dispersion Interactions from the Exchange-Hole Dipole Moment

Dispersion Interactions from the Exchange-Hole Dipole Moment Dispersion Interactions from the Exchange-Hole Dipole Moment Erin R. Johnson and Alberto Otero-de-la-Roza Chemistry and Chemical Biology, University of California, Merced E. R. Johnson (UC Merced) Dispersion

More information

Molecular mechanics. classical description of molecules. Marcus Elstner and Tomáš Kubař. April 29, 2016

Molecular mechanics. classical description of molecules. Marcus Elstner and Tomáš Kubař. April 29, 2016 classical description of molecules April 29, 2016 Chemical bond Conceptual and chemical basis quantum effect solution of the SR numerically expensive (only small molecules can be treated) approximations

More information

An Investigation of Precursors of Combustion Generated Soot Particles in Premixed Ethylene Flames Based on Laser-Induced Fluorescence

An Investigation of Precursors of Combustion Generated Soot Particles in Premixed Ethylene Flames Based on Laser-Induced Fluorescence 7 th Annual CE-CERT-SJTU Student Symposium An Investigation of Precursors of Combustion Generated Soot Particles in Premixed Ethylene Flames Based on Laser-Induced Fluorescence Chen Gu Problems of Fossil

More information

The Monomer Electron Density Force Field. (MEDFF): A Physically Inspired Model for. Non-Covalent Interactions

The Monomer Electron Density Force Field. (MEDFF): A Physically Inspired Model for. Non-Covalent Interactions The Monomer Electron Density Force Field (MEDFF): A Physically Inspired Model for Non-Covalent Interactions Steven Vandenbrande, Michel Waroquier, Veronique Van Speybroeck, and Toon Verstraelen Center

More information

Lecture 11: Potential Energy Functions

Lecture 11: Potential Energy Functions Lecture 11: Potential Energy Functions Dr. Ronald M. Levy ronlevy@temple.edu Originally contributed by Lauren Wickstrom (2011) Microscopic/Macroscopic Connection The connection between microscopic interactions

More information

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

Why Is Molecular Interaction Important in Our Life

Why Is Molecular Interaction Important in Our Life Why Is Molecular Interaction Important in ur Life QuLiS and Graduate School of Science iroshima University http://www.nabit.hiroshima-u.ac.jp/iwatasue/indexe.htm Suehiro Iwata Sept. 29, 2007 Department

More information

Chapter 2 Experimental sources of intermolecular potentials

Chapter 2 Experimental sources of intermolecular potentials Chapter 2 Experimental sources of intermolecular potentials 2.1 Overview thermodynamical properties: heat of vaporization (Trouton s rule) crystal structures ionic crystals rare gas solids physico-chemical

More information

Molecular Aggregation

Molecular Aggregation Molecular Aggregation Structure Analysis and Molecular Simulation of Crystals and Liquids ANGELO GAVEZZOTTI University of Milano OXFORD UNIVERSITY PRESS Contents PART I FUNDAMENTALS 1 The molecule: structure,

More information

The Ab Initio Nanoreactor: Discovering Chemical Reaction Networks Todd J. Martínez Department of Chemistry & The PULSE Institute Stanford University

The Ab Initio Nanoreactor: Discovering Chemical Reaction Networks Todd J. Martínez Department of Chemistry & The PULSE Institute Stanford University The Ab Initio Nanoreactor: Discovering Chemical Reaction Networks Todd J. Martínez Department of Chemistry & The PULSE Institute Stanford University Traditional Approach to Reaction Mechanisms Traditional

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Simulation Michael Bader SCCS Summer Term 2015 Molecular Dynamics Simulation, Summer Term 2015 1 Continuum Mechanics for Fluid Mechanics? Molecular Dynamics the

More information

Chapter 6 Cyclic urea - a new central unit in bent-core compounds

Chapter 6 Cyclic urea - a new central unit in bent-core compounds 82 Chapter 6 Cyclic urea - a new central unit in bent-core compounds A new class of five-ring bent-core molecules with a cyclic urea group as a central unit was synthesized [94]. A significant difference

More information

Dispersion Interactions in Density-Functional Theory

Dispersion Interactions in Density-Functional Theory Dispersion Interactions in Density-Functional Theory Erin R. Johnson and Alberto Otero-de-la-Roza Chemistry and Chemical Biology, University of California, Merced E. R. Johnson (UC Merced) Dispersion from

More information

Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers

Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers THE JOURNAL OF CHEMICAL PHYSICS 125, 044301 2006 Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers Robert Bukowski and

More information

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC The precise definition of a dihedral or torsion angle can be found in spatial geometry Angle between to planes Dihedral

More information

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166 Subject Index Ab-initio calculation 24, 122, 161. 165 Acentric factor 279, 338 Activity absolute 258, 295 coefficient 7 definition 7 Atom 23 Atomic units 93 Avogadro number 5, 92 Axilrod-Teller-forces

More information

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea The Scaled Effective Solvent Method for Predicting the Equilibrium Ensemble of Structures with Analysis of Thermodynamic Properties of Amorphous Polyethylene Glycol-Water Mixtures Hyeyoung Shin a, Tod

More information

Global Optimisation of Hydrated Sulfate Clusters

Global Optimisation of Hydrated Sulfate Clusters Global Optimisation of Hydrated Sulfate Clusters Lewis Smeeton University of Birmingham School of Chemistry 15 th December, 2014 1 / 31 1 Introduction The Hofmeister Series Hydrated Sulfate Clusters 2

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

General Physical Chemistry II

General Physical Chemistry II General Physical Chemistry II Lecture 13 Aleksey Kocherzhenko October 16, 2014" Last time " The Hückel method" Ø Used to study π systems of conjugated molecules" Ø π orbitals are treated separately from

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS

PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS TASKQUARTERLYvol.20,No4,2016,pp.353 360 PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS MARTIN ZACHARIAS Physics Department T38, Technical University of Munich James-Franck-Str.

More information

Ab-initio protein structure prediction

Ab-initio protein structure prediction Ab-initio protein structure prediction Jaroslaw Pillardy Computational Biology Service Unit Cornell Theory Center, Cornell University Ithaca, NY USA Methods for predicting protein structure 1. Homology

More information

An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation

An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation J. Comput. Chem. Jpn., Vol. 8, o. 3, pp. 97 14 (9) c 9 Society of Computer Chemistry, Japan An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation Yosuke KATAOKA* and Yuri YAMADA

More information

Force fields in computer simulation of soft nanomaterials

Force fields in computer simulation of soft nanomaterials Lecture 2 Part B Force fields in computer simulation of soft nanomaterials Recommended reading: Leach Chapter 4 1 Force Field Methods Force field methods are simulation methods that use classical force

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

Solvent Scales. ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute

Solvent Scales. ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute Solvent Scales ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute Water 78 1.17 0.47 DMS 47 0.00 0.76 DM 37 0.00 0.76 Methanol 33 0.93 0.66 MPA 29 0.00 1.05 Acetone 21 0.08 0.43 Methylene

More information

Analysis of the Lennard-Jones-38 stochastic network

Analysis of the Lennard-Jones-38 stochastic network Analysis of the Lennard-Jones-38 stochastic network Maria Cameron Joint work with E. Vanden-Eijnden Lennard-Jones clusters Pair potential: V(r) = 4e(r -12 - r -6 ) 1. Wales, D. J., Energy landscapes: calculating

More information

The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii

The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii Fundamental Points About Which to Be Thinking It s clear the PES is useful, so how can I construct it for an arbitrary

More information

The liquid-vapour interface of QDO water. Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna

The liquid-vapour interface of QDO water. Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna The liquid-vapour interface of QDO water Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna The liquid-vapour interface of QDO water 1. Molecular models 2. The Quantum Drude Oscillator

More information

The Potential Energy Surface

The Potential Energy Surface The Potential Energy Surface In this section we will explore the information that can be obtained by solving the Schrödinger equation for a molecule, or series of molecules. Of course, the accuracy of

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Susan B. Sinnott Department of Materials Science and Engineering Penn State University September 16, 2016

More information

This semester. Books

This semester. Books Models mostly proteins from detailed to more abstract models Some simulation methods This semester Books None necessary for my group and Prof Rarey Molecular Modelling: Principles and Applications Leach,

More information

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction Biophysics II Key points to be covered By A/Prof. Xiang Yang Liu Biophysics & Micro/nanostructures Lab Department of Physics, NUS 1. van der Waals Interaction 2. Hydrogen bond 3. Hydrophilic vs hydrophobic

More information

Imperfect Gases. NC State University

Imperfect Gases. NC State University Chemistry 431 Lecture 3 Imperfect Gases NC State University The Compression Factor One way to represent the relationship between ideal and real gases is to plot the deviation from ideality as the gas is

More information

Electronic Structure of Surfaces

Electronic Structure of Surfaces Electronic Structure of Surfaces When solids made of an infinite number of atoms are formed, it is a common misconception to consider each atom individually. Rather, we must consider the structure of the

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules Bioengineering 215 An Introduction to Molecular Dynamics for Biomolecules David Parker May 18, 2007 ntroduction A principal tool to study biological molecules is molecular dynamics simulations (MD). MD

More information

1.1 Atoms. 1.1 Atoms

1.1 Atoms. 1.1 Atoms 1. Chemical bonding and crystal structure 19 21 Hydrogen atom Scanning electron microscopy Ni surface Cleaved surface ZnO, TiO 2, NiO, NaCl, Si, Ge, GaAs, InP Crystals are build by small repeating units

More information

Self assembly of Carbon Atoms in Interstellar Space and Formation Mechanism of Naphthalene from Small Precursors: A Molecular Dynamics Study

Self assembly of Carbon Atoms in Interstellar Space and Formation Mechanism of Naphthalene from Small Precursors: A Molecular Dynamics Study Self assembly of Carbon Atoms in Interstellar Space and Formation Mechanism of Naphthalene from Small Precursors: A Molecular Dynamics Study Niladri Patra UIC Advisor: Dr. H. R. Sadeghpour ITAMP Large

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/309/5742/1868/dc1 Supporting Online Material for Toward High-Resolution de Novo Structure Prediction for Small Proteins Philip Bradley, Kira M. S. Misura, David Baker*

More information

On the Unusual Properties of Halogen Bonds: A Detailed ab Initio Study of X 2 -(H 2 O) 1-5 clusters (X ) Cl and Br)

On the Unusual Properties of Halogen Bonds: A Detailed ab Initio Study of X 2 -(H 2 O) 1-5 clusters (X ) Cl and Br) 5496 J. Phys. Chem. A 2009, 113, 5496 5505 On the Unusual Properties of Halogen Bonds: A Detailed ab Initio Study of X 2 -(H 2 O) 1-5 clusters (X ) Cl and Br) Margarita I. Bernal-Uruchurtu* and Ramón Hernández-Lamoneda

More information

Crystal Structure Prediction using CRYSTALG program

Crystal Structure Prediction using CRYSTALG program Crystal Structure Prediction using CRYSTALG program Yelena Arnautova Baker Laboratory of Chemistry and Chemical Biology, Cornell University Problem of crystal structure prediction: - theoretical importance

More information

Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations

Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations Supplemental Information Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations Endian Wang and Fernando A. Escobedo Table S1 Lennard-Jones

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 1 David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Time/s Multi-Scale Modeling Based on SDSC Blue Horizon (SP3) 1.728 Tflops

More information

Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation

Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation Bo Li Math Dept & CTBP, UCSD Li-Tien Cheng (Math, UCSD) Zhongming Wang (Math & Biochem, UCSD) Yang Xie (MAE,

More information

Gaussian Multipole Model (GMM)

Gaussian Multipole Model (GMM) 190 J. Chem. Theory Comput. 2010, 6, 190 202 Gaussian Multipole Model (GMM) Dennis M. Elking, G. Andrés Cisneros, Jean-Philip Piquemal, Thomas A. Darden, and Lee G. Pedersen*,, Laboratory of Structural

More information

Part III. Cellular Automata Simulation of. Monolayer Surfaces

Part III. Cellular Automata Simulation of. Monolayer Surfaces Part III Cellular Automata Simulation of Monolayer Surfaces The concept of progress acts as a protective mechanism to shield us from the terrors of the future. the words of Paul Muad Dib 193 Chapter 6

More information

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles Module17: Intermolecular Force between Surfaces and Particles Lecture 23: Intermolecular Force between Surfaces and Particles 1 We now try to understand the nature of spontaneous instability in a confined

More information

Water models in classical simulations

Water models in classical simulations Water models in classical simulations Maria Fyta Institut für Computerphysik, Universität Stuttgart Stuttgart, Germany Water transparent, odorless, tasteless and ubiquitous really simple: two H atoms attached

More information

Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations

Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations Alexandre V. Morozov, Tanja Kortemme, Kiril Tsemekhman, David Baker

More information

Molecular Dynamics Simulation of a Nanoconfined Water Film

Molecular Dynamics Simulation of a Nanoconfined Water Film Molecular Dynamics Simulation of a Nanoconfined Water Film Kyle Lindquist, Shu-Han Chao May 7, 2013 1 Introduction The behavior of water confined in nano-scale environment is of interest in many applications.

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

Adsorption of gases on solids (focus on physisorption)

Adsorption of gases on solids (focus on physisorption) Adsorption of gases on solids (focus on physisorption) Adsorption Solid surfaces show strong affinity towards gas molecules that it comes in contact with and some amt of them are trapped on the surface

More information

Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract

Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract Structuring of hydrophobic and hydrophilic polymers at interfaces Stephen Donaldson ChE 210D Final Project Abstract In this work, a simplified Lennard-Jones (LJ) sphere model is used to simulate the aggregation,

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

Dust formation in AGB stars. David Gobrecht Sergio Cristallo Luciano Piersanti Stefan T. Bromley Isabelle Cherchneff & Arkaprabha Sarangi

Dust formation in AGB stars. David Gobrecht Sergio Cristallo Luciano Piersanti Stefan T. Bromley Isabelle Cherchneff & Arkaprabha Sarangi Dust formation in AGB stars David Gobrecht Sergio Cristallo Luciano Piersanti Stefan T. Bromley Isabelle Cherchneff & Arkaprabha Sarangi Evidence for dust In presolar meteoritic grains with particular

More information

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010 All-atom Molecular Mechanics Trent E. Balius AMS 535 / CHE 535 09/27/2010 Outline Molecular models Molecular mechanics Force Fields Potential energy function functional form parameters and parameterization

More information

Theory and Modeling of Specific Ion Hydration

Theory and Modeling of Specific Ion Hydration Theory and Modeling of Specific Ion Hydration Thomas L. Beck, University of Cincinnati November 21, 2013 Thanks: Lawrence Pratt, Hank Ashbaugh, Dilip Asthagiri, PNNL group, Kevin Leung, John Weeks, Barry

More information

Exploring the energy landscape

Exploring the energy landscape Exploring the energy landscape ChE210D Today's lecture: what are general features of the potential energy surface and how can we locate and characterize minima on it Derivatives of the potential energy

More information

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Pavel Soldán, Marko T. Cvitaš and Jeremy M. Hutson University of Durham with Jean-Michel

More information

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems Molecular Mechanics I. Quantum mechanical treatment of molecular systems The first principle approach for describing the properties of molecules, including proteins, involves quantum mechanics. For example,

More information

From Dynamics to Thermodynamics using Molecular Simulation

From Dynamics to Thermodynamics using Molecular Simulation From Dynamics to Thermodynamics using Molecular Simulation David van der Spoel Computational Chemistry Physical models to describe molecules Software to evaluate models and do predictions - GROMACS Model

More information

Chapter 16 Aromatic Compounds. Discovery of Benzene

Chapter 16 Aromatic Compounds. Discovery of Benzene Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C: ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to

More information

Physics 541: Condensed Matter Physics

Physics 541: Condensed Matter Physics Physics 541: Condensed Matter Physics In-class Midterm Exam Wednesday, October 26, 2011 / 14:00 15:20 / CCIS 4-285 Student s Name: Instructions There are 23 questions. You should attempt all of them. Mark

More information

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross.

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross. Colloid Chemistry La chimica moderna e la sua comunicazione Silvia Gross Istituto Dipartimento di Scienze di e Scienze Tecnologie Chimiche Molecolari ISTM-CNR, Università Università degli Studi degli Studi

More information

Chapter 16. Aromatic Compounds

Chapter 16. Aromatic Compounds Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to

More information

Atomic structure & interatomic bonding. Chapter two

Atomic structure & interatomic bonding. Chapter two Atomic structure & interatomic bonding Chapter two 1 Atomic Structure Mass Charge Proton 1.67 х 10-27 kg + 1.60 х 10-19 C Neutron 1.67 х 10-27 kg Neutral Electron 9.11 х 10-31 kg - 1.60 х 10-19 C Electron

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

Gases and the Virial Expansion

Gases and the Virial Expansion Gases and the irial Expansion February 7, 3 First task is to examine what ensemble theory tells us about simple systems via the thermodynamic connection Calculate thermodynamic quantities: average energy,

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Lecture #20: Virial

More information

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007 Softwares for Molecular Docking Lokesh P. Tripathi NCBS 17 December 2007 Molecular Docking Attempt to predict structures of an intermolecular complex between two or more molecules Receptor-ligand (or drug)

More information

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS PRACTICAL ASPECTS OF MR RELAXATIO STUDIES OF BIOMOLECULAR DYAMICS Further reading: Can be downloaded from my web page Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. Y., MR Studies of Brownian

More information

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 16 Aromatic Compounds 2010, Prentice Hall Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized

More information

Kinetic Monte Carlo (KMC)

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Molecular Dynamics (MD): high-frequency motion dictate the time-step (e.g., vibrations). Time step is short: pico-seconds. Direct Monte Carlo (MC): stochastic (non-deterministic)

More information

Intermolecular Forces and Monte-Carlo Integration 열역학특수연구

Intermolecular Forces and Monte-Carlo Integration 열역학특수연구 Intermolecular Forces and Monte-Carlo Integration 열역학특수연구 2003.3.28 Source of the lecture note. J.M.Prausnitz and others, Molecular Thermodynamics of Fluid Phase Equiliria Atkins, Physical Chemistry Lecture

More information

Material Properties & Characterization - Surfaces

Material Properties & Characterization - Surfaces 1) XPS Spectrum analysis: The figure below shows an XPS spectrum measured on the surface of a clean insoluble homo-polyether. Using the formulas and tables in this document, answer the following questions:

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

Reactive potentials and applications

Reactive potentials and applications 1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011 Part I Continuum and particle methods Reactive potentials and applications Lecture 8 Markus J. Buehler Laboratory for Atomistic

More information

Scuola di Chimica Computazionale

Scuola di Chimica Computazionale Societa Chimica Italiana Gruppo Interdivisionale di Chimica Computazionale Scuola di Chimica Computazionale Introduzione, per Esercizi, all Uso del Calcolatore in Chimica Organica e Biologica Modellistica

More information

Subject of the Lecture:

Subject of the Lecture: Subject of the Lecture: Conceptual basis for the development of force fields. Implementation/validation Water - a worked example Extensions - combining molecular mechanics and quantum mechanics (QM/MM)

More information

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane Supplementary Information: Simulation Procedure and Physical Property Analysis Simulation Procedure The molecular

More information

Advanced Quantum Chemistry III: Part 6

Advanced Quantum Chemistry III: Part 6 Advanced Quantum Chemistry III: Part 6 Norio Yoshida Kyushu University Last updated 16-1-6 2015 Winter Term 1 Quantum Chemistry for Condensed Phase Liquid phase Solid phase Biological systems 2 Divide

More information

k θ (θ θ 0 ) 2 angles r i j r i j

k θ (θ θ 0 ) 2 angles r i j r i j 1 Force fields 1.1 Introduction The term force field is slightly misleading, since it refers to the parameters of the potential used to calculate the forces (via gradient) in molecular dynamics simulations.

More information

Investigating Popular Water Models

Investigating Popular Water Models Investigating Popular Water odels Albert DeFusco, Ken Jordan Center for olecular and aterials Simulations What are we modeling? OOOOOLLLLLDDDDDEDEEEENENNNNNN OOLL D E OOOOOLLLLLDDDDDEDEEEENENNNNNN OOLL

More information