Point and Interval Estimation II Bios 662

Size: px
Start display at page:

Download "Point and Interval Estimation II Bios 662"

Transcription

1 Point and Interval Estimation II Bios 662 Michael G. Hudgens, Ph.D. mhudgens :17 BIOS Point and Interval Estimation II

2 Nonparametric CI for the Median Suppose X 1,..., X n iid according to continuous distribution F Let ζ 1/2 be the population median We will show Pr[X (r) < ζ 1/2 < X (n r+1) ] = 1 2 n n r i=r ( ) n i Therefore, for fixed n, we choose largest r such that n r 1 ( ) n 2 n 1 α i i=r BIOS Point and Interval Estimation II

3 Let Y be a Bernoulli r.v. Bernoulli RV Y can take on two values, 0 or 1 Pr[Y = 1] = π; Pr[Y = 0] = 1 π E(Y ) = π; V ar(y ) = π(1 π) BIOS Point and Interval Estimation II

4 Binomial RV Process that produces independent Bernoulli RVs with the same probability of success π Let Y count the number of successes in n trials Y Binomial(n,π) Pr[Y = y] = ( ) n π y (1 π) n y y E(Y ) = nπ; V ar(y) = nπ(1 π) BIOS Point and Interval Estimation II

5 Derivation of CI for Median CDF Pr[X i x] = F (x) Therefore Pr[X (r) x] = Pr[at least r of the X i x] = n i=r ( ni ) F (x) i {1 F (x)} n i BIOS Point and Interval Estimation II

6 Derivation of CI for Median By law of total probability Pr[X (r) ζ p ] = Pr[X (r) ζ p, X (s) ζ p ] + Pr[X (r) ζ p, X (s) < ζ p ] If s > r, then X (s) < ζ p X (r) < ζ p Therefore Pr[X (r) ζ p ] = Pr[X (r) ζ p X (s) ] + Pr[X (s) < ζ p ] BIOS Point and Interval Estimation II

7 Derivation of CI for Median Pr[X (r) ζ p X (s) ] = Pr[X (r) ζ p ] Pr[X (s) < ζ p ] = n i=r ( ni ) F (ζp ) i {1 F (ζ p )} n i n i=s ( ni ) F (ζp ) i {1 F (ζ p )} n i = s 1 i=r If p = 1/2; F (ζ p ) = 1/2, such that Pr[X (r) ζ 0.5 X (s) ] = 1 2 n ( ni ) F (ζp ) i {1 F (ζ p )} n i s 1 i=r ( ) n i BIOS Point and Interval Estimation II

8 Derivation of CI for Median We could choose any r and s such that Pr(X (r) ζ 0.5 X (s) ) = 1 2 n s 1 i=r ( n i But the best choice for s is n r + 1 (why?) Thus we choose r such that n r 1 ( ) n 2 n i i=r 1 α ) 1 α BIOS Point and Interval Estimation II

9 Derivation of CI for Median Values of r for 95% CI for Median n r Cf page van Belle et al. BIOS Point and Interval Estimation II

10 95% CI for Betacarotene Example For n = 23, choose r = 7 such that n r + 1 = 17 Therefore (y (7) = 106, y (17) = 186) gives a 95% CI for the median betacarotene value This CI makes no assumptions about the distribution of the Y s Note: i=7 > sum(dbinom(7:16,23,1/2)) [1] ( ) 23 i = α BIOS Point and Interval Estimation II

11 SAS Code and Output proc univariate data=beta cipctldf; var base1; run; 95% Confidence Limits Order Statistics Quantile Distribution Free LCL Rank UCL Rank Coverage 99% % % % Q % Median % Q % % % % Min BIOS Point and Interval Estimation II

12 Large sample CI for median If n is sufficiently large, say n > 25, we can get an approximate 100(1 α)% CI for the median by counting n z 1 α/2 2 ordered observations to the left and right of the median and rounding out to the next integer Cf Lehmann (1998, p.84) BIOS Point and Interval Estimation II

13 Large Sample CI for Median: Example Suppose n = 100 and α = 0.05 Then n z 1 α/2 2 Rounding yields: = 5(1.96) = ± 9.8 (y (40), y (61) ) Can show r = 40 using exact method > sum(dbinom(40:60,100,1/2)) [1] > sum(dbinom(41:59,100,1/2)) [1] BIOS Point and Interval Estimation II

14 If general, Large sample CI for any quantile Pr[ζ p < Z (r) ] = r 1 where q = 1 p i=0 = r 1 i=0 ( ni ) F (ζp ) i {1 F (ζ p )} n i ( ni ) p i q n i From CLT, if Y Bin(n, p), then Y np + 1/2 npq N(0, 1) Thus Pr[ζ p Z (r) ] = Pr[Y r 1] = Pr[Z (r 1) np+1/2 npq ] = Φ( r np 1/2 npq ) BIOS Point and Interval Estimation II

15 Large sample CI for any quantile Goal is symmetric (1 α)% CI, so want r np 1/2 α/2 = Pr[ζ p < Z (r) ] = Φ( ) npq That is z 1 α/2 = r np 1/2 npq Implying r = np z 1 α/2 npq For p = 1/2, yields r = n z 1 α/2 n 2 BIOS Point and Interval Estimation II

16 Large sample CI for any quantile Similar reasoning yields s = np z 1 α/2 npq Thus (1 α)% CI for ζ p is given by (X ( r ), X ( s ) ) Note n large enough ensures r, s {1,..., n} BIOS Point and Interval Estimation II

17 References for Order Statistics A. E. Sarhan and B. G. Greenberg, Contributions to Order Statistics, H. A. David, Order Statistics D. B. Owen, Handbook of Statistical Tables E. L. Lehmann Nonparametrics: Statistical Methods Based on Ranks, BIOS Point and Interval Estimation II

18 CI for Variance Recall (result 4.4 p.95 text) Therefore (n 1)s 2 σ 2 1 α = Pr[χ 2 α/2,n 1 Implying 1 α = Pr (n 1)s2 χ 2 1 α/2,n 1 χ 2 n 1 (n 1)s2 σ 2 χ 2 1 α/2,n 1 ] σ 2 (n 1)s2 χ 2 α/2,n 1 BIOS Point and Interval Estimation II

19 CI for Variance Since the χ 2 distribution is not symmetric, need to look up both χ 2 α/2,n 1 and χ2 1 α/2,n 1 This CI is dependent on the Y s being from a normal distribution BIOS Point and Interval Estimation II

20 CI for Variance for Betacarotene Example n = 23; s 2 = χ 2.025,22 = 10.98; χ2.975,22 = Therefore, 95% CI for σ 2 (22( )/36.78, 22( )/10.98) = ( , ) 95% CI for σ = (47.05, 86.12) BIOS Point and Interval Estimation II

21 SAS Code and Output proc univariate data=beta cibasic; var base1; run; Basic Confidence Limits Assuming Normality Parameter Estimate 95% Confidence Limits Mean Std Deviation Variance BIOS Point and Interval Estimation II

22 CI for Variance - Nonnormal data Large sample theory n(s 2 n σ 2 ) d N(0, (α 4 1)σ 4 ) where α 4 = E(X µ) 4 /σ 4 is the kurtosis (cf. Dudewicz and Mishra Modern Mathematical Statistics, p. 325) Crude approximation : replace usual CI with (n 1)s 2 χ 2 1 α/2,n 1 (1 + g 2/n), (n 1)s 2 χ 2 α/2,n 1 (1 + g 2/n) where g 2 = b 2 3 and b 2 is an estimate of α 4 (cf Solomon and Stephens, Encyc of Stat Sci) BIOS Point and Interval Estimation II

23 CI for Variance - Nonnormal data Nonparametric approach such as bootstrap (cf Efron and Tibshirani An Introduction to the Bootstrap, Ch 14) Software? BIOS Point and Interval Estimation II

Power and Sample Size Bios 662

Power and Sample Size Bios 662 Power and Sample Size Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-10-31 14:06 BIOS 662 1 Power and Sample Size Outline Introduction One sample: continuous

More information

SAMPLING BIOS 662. Michael G. Hudgens, Ph.D. mhudgens :55. BIOS Sampling

SAMPLING BIOS 662. Michael G. Hudgens, Ph.D.   mhudgens :55. BIOS Sampling SAMPLIG BIOS 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-11-14 15:55 BIOS 662 1 Sampling Outline Preliminaries Simple random sampling Population mean Population

More information

Nonparametric tests. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 704: Data Analysis I

Nonparametric tests. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 704: Data Analysis I 1 / 16 Nonparametric tests Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I Nonparametric one and two-sample tests 2 / 16 If data do not come from a normal

More information

Continuous Probability Distributions

Continuous Probability Distributions 1 Chapter 5 Continuous Probability Distributions 5.1 Probability density function Example 5.1.1. Revisit Example 3.1.1. 11 12 13 14 15 16 21 22 23 24 25 26 S = 31 32 33 34 35 36 41 42 43 44 45 46 (5.1.1)

More information

Continuous Probability Distributions

Continuous Probability Distributions 1 Chapter 5 Continuous Probability Distributions 5.1 Probability density function Example 5.1.1. Revisit Example 3.1.1. 11 12 13 14 15 16 21 22 23 24 25 26 S = 31 32 33 34 35 36 41 42 43 44 45 46 (5.1.1)

More information

Sampling Distribution: Week 6

Sampling Distribution: Week 6 Sampling Distribution: Week 6 Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu February 27, 2015 Kwonsang Lee STAT111 February 27, 2015 1 / 16 Sampling Distribution: Sample Mean If X 1,

More information

Analysis of Variance II Bios 662

Analysis of Variance II Bios 662 Analysis of Variance II Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-10-24 17:21 BIOS 662 1 ANOVA II Outline Multiple Comparisons Scheffe Tukey Bonferroni

More information

Random Variable. Pr(X = a) = Pr(s)

Random Variable. Pr(X = a) = Pr(s) Random Variable Definition A random variable X on a sample space Ω is a real-valued function on Ω; that is, X : Ω R. A discrete random variable is a random variable that takes on only a finite or countably

More information

Analysis of Variance Bios 662

Analysis of Variance Bios 662 Analysis of Variance Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-10-21 13:34 BIOS 662 1 ANOVA Outline Introduction Alternative models SS decomposition

More information

Unit 14: Nonparametric Statistical Methods

Unit 14: Nonparametric Statistical Methods Unit 14: Nonparametric Statistical Methods Statistics 571: Statistical Methods Ramón V. León 8/8/2003 Unit 14 - Stat 571 - Ramón V. León 1 Introductory Remarks Most methods studied so far have been based

More information

STAT 4385 Topic 01: Introduction & Review

STAT 4385 Topic 01: Introduction & Review STAT 4385 Topic 01: Introduction & Review Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2016 Outline Welcome What is Regression Analysis? Basics

More information

Stat 315: HW #6. Fall Due: Wednesday, October 10, 2018

Stat 315: HW #6. Fall Due: Wednesday, October 10, 2018 Stat 315: HW #6 Fall 018 Due: Wednesday, October 10, 018 Updated: Monday, October 8 for misprints. 1. An airport shuttle route includes two intersections with traffic lights. Let i be the number of lights

More information

SAMPLING II BIOS 662. Michael G. Hudgens, Ph.D. mhudgens :37. BIOS Sampling II

SAMPLING II BIOS 662. Michael G. Hudgens, Ph.D.  mhudgens :37. BIOS Sampling II SAMPLING II BIOS 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-11-17 14:37 BIOS 662 1 Sampling II Outline Stratified sampling Introduction Notation and Estimands

More information

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13 PubH 5450 Biostatistics I Prof. Carlin Lecture 13 Outline Outline Sample Size Counts, Rates and Proportions Part I Sample Size Type I Error and Power Type I error rate: probability of rejecting the null

More information

Inference for Binomial Parameters

Inference for Binomial Parameters Inference for Binomial Parameters Dipankar Bandyopadhyay, Ph.D. Department of Biostatistics, Virginia Commonwealth University D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 1 / 58 Inference for

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4. UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Christopher Barr University of California, Los Angeles,

More information

1 Inverse Transform Method and some alternative algorithms

1 Inverse Transform Method and some alternative algorithms Copyright c 2016 by Karl Sigman 1 Inverse Transform Method and some alternative algorithms Assuming our computer can hand us, upon demand, iid copies of rvs that are uniformly distributed on (0, 1), it

More information

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval Epidemiology 9509 Principle of Biostatistics Chapter 11 - Inference about probability in a single population John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is

More information

CS5314 Randomized Algorithms. Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV)

CS5314 Randomized Algorithms. Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV) CS5314 Randomized Algorithms Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV) Objectives Introduce Geometric RV We then introduce Conditional Expectation Application:

More information

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses*

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Amy G. Froelich Michael D. Larsen Iowa State University *The work presented in this talk was partially supported by

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( )

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) UCLA STAT 35 Applied Computational and Interactive Probability Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Chris Barr Continuous Random Variables and Probability

More information

Stat 710: Mathematical Statistics Lecture 31

Stat 710: Mathematical Statistics Lecture 31 Stat 710: Mathematical Statistics Lecture 31 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 31 April 13, 2009 1 / 13 Lecture 31:

More information

SOLUTION FOR HOMEWORK 4, STAT 4352

SOLUTION FOR HOMEWORK 4, STAT 4352 SOLUTION FOR HOMEWORK 4, STAT 4352 Welcome to your fourth homework. Here we begin the study of confidence intervals, Errors, etc. Recall that X n := (X 1,...,X n ) denotes the vector of n observations.

More information

1 Statistical inference for a population mean

1 Statistical inference for a population mean 1 Statistical inference for a population mean 1. Inference for a large sample, known variance Suppose X 1,..., X n represents a large random sample of data from a population with unknown mean µ and known

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables We have a probability space (S, Pr). A random variable is a function X : S V (X ) for some set V (X ). In this discussion, we must have V (X ) is the real numbers X induces a

More information

WISE International Masters

WISE International Masters WISE International Masters ECONOMETRICS Instructor: Brett Graham INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This examination paper contains 32 questions. You are

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Asymptotic Statistics-VI. Changliang Zou

Asymptotic Statistics-VI. Changliang Zou Asymptotic Statistics-VI Changliang Zou Kolmogorov-Smirnov distance Example (Kolmogorov-Smirnov confidence intervals) We know given α (0, 1), there is a well-defined d = d α,n such that, for any continuous

More information

Week 2. Review of Probability, Random Variables and Univariate Distributions

Week 2. Review of Probability, Random Variables and Univariate Distributions Week 2 Review of Probability, Random Variables and Univariate Distributions Probability Probability Probability Motivation What use is Probability Theory? Probability models Basis for statistical inference

More information

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Slides prepared by Elizabeth Newton (MIT), with some slides by Jacqueline Telford (Johns Hopkins University) 1 Sampling

More information

The bootstrap. Patrick Breheny. December 6. The empirical distribution function The bootstrap

The bootstrap. Patrick Breheny. December 6. The empirical distribution function The bootstrap Patrick Breheny December 6 Patrick Breheny BST 764: Applied Statistical Modeling 1/21 The empirical distribution function Suppose X F, where F (x) = Pr(X x) is a distribution function, and we wish to estimate

More information

6 Single Sample Methods for a Location Parameter

6 Single Sample Methods for a Location Parameter 6 Single Sample Methods for a Location Parameter If there are serious departures from parametric test assumptions (e.g., normality or symmetry), nonparametric tests on a measure of central tendency (usually

More information

Reliable Inference in Conditions of Extreme Events. Adriana Cornea

Reliable Inference in Conditions of Extreme Events. Adriana Cornea Reliable Inference in Conditions of Extreme Events by Adriana Cornea University of Exeter Business School Department of Economics ExISta Early Career Event October 17, 2012 Outline of the talk Extreme

More information

An interval estimator of a parameter θ is of the form θl < θ < θu at a

An interval estimator of a parameter θ is of the form θl < θ < θu at a Chapter 7 of Devore CONFIDENCE INTERVAL ESTIMATORS An interval estimator of a parameter θ is of the form θl < θ < θu at a confidence pr (or a confidence coefficient) of 1 α. When θl =, < θ < θu is called

More information

Dr. Maddah ENMG 617 EM Statistics 10/12/12. Nonparametric Statistics (Chapter 16, Hines)

Dr. Maddah ENMG 617 EM Statistics 10/12/12. Nonparametric Statistics (Chapter 16, Hines) Dr. Maddah ENMG 617 EM Statistics 10/12/12 Nonparametric Statistics (Chapter 16, Hines) Introduction Most of the hypothesis testing presented so far assumes normally distributed data. These approaches

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Class 5 AMS-UCSC Tue 24, 2012 Winter 2012. Session 1 (Class 5) AMS-132/206 Tue 24, 2012 1 / 11 Topics Topics We will talk about... 1 Confidence Intervals

More information

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, 2016-17 Academic Year Exam Version: A INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This

More information

Chapter 3. Discrete Random Variables and Their Probability Distributions

Chapter 3. Discrete Random Variables and Their Probability Distributions Chapter 3. Discrete Random Variables and Their Probability Distributions 1 3.4-3 The Binomial random variable The Binomial random variable is related to binomial experiments (Def 3.6) 1. The experiment

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Expectation is linear. So far we saw that E(X + Y ) = E(X) + E(Y ). Let α R. Then,

Expectation is linear. So far we saw that E(X + Y ) = E(X) + E(Y ). Let α R. Then, Expectation is linear So far we saw that E(X + Y ) = E(X) + E(Y ). Let α R. Then, E(αX) = ω = ω (αx)(ω) Pr(ω) αx(ω) Pr(ω) = α ω X(ω) Pr(ω) = αe(x). Corollary. For α, β R, E(αX + βy ) = αe(x) + βe(y ).

More information

STAT100 Elementary Statistics and Probability

STAT100 Elementary Statistics and Probability STAT100 Elementary Statistics and Probability Exam, Sample Test, Summer 014 Solution Show all work clearly and in order, and circle your final answers. Justify your answers algebraically whenever possible.

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation.

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation. Chernoff Bounds Theme: try to show that it is unlikely a random variable X is far away from its expectation. The more you know about X, the better the bound you obtain. Markov s inequality: use E[X ] Chebyshev

More information

Epidemiology Wonders of Biostatistics Chapter 11 (continued) - probability in a single population. John Koval

Epidemiology Wonders of Biostatistics Chapter 11 (continued) - probability in a single population. John Koval Epidemiology 9509 Wonders of Biostatistics Chapter 11 (continued) - probability in a single population John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Class 7 AMS-UCSC Tue 31, 2012 Winter 2012. Session 1 (Class 7) AMS-132/206 Tue 31, 2012 1 / 13 Topics Topics We will talk about... 1 Hypothesis testing

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

3.8 Functions of a Random Variable

3.8 Functions of a Random Variable STAT 421 Lecture Notes 76 3.8 Functions of a Random Variable This section introduces a new and important topic: determining the distribution of a function of a random variable. We suppose that there is

More information

the law of large numbers & the CLT

the law of large numbers & the CLT the law of large numbers & the CLT Probability/Density 0.000 0.005 0.010 0.015 0.020 n = 4 0.0 0.2 0.4 0.6 0.8 1.0 x-bar 1 sums of random variables If X,Y are independent, what is the distribution of Z

More information

COMPARING GROUPS PART 1CONTINUOUS DATA

COMPARING GROUPS PART 1CONTINUOUS DATA COMPARING GROUPS PART 1CONTINUOUS DATA Min Chen, Ph.D. Assistant Professor Quantitative Biomedical Research Center Department of Clinical Sciences Bioinformatics Shared Resource Simmons Comprehensive Cancer

More information

ESTIMATION AND OUTPUT ANALYSIS (L&K Chapters 9, 10) Review performance measures (means, probabilities and quantiles).

ESTIMATION AND OUTPUT ANALYSIS (L&K Chapters 9, 10) Review performance measures (means, probabilities and quantiles). ESTIMATION AND OUTPUT ANALYSIS (L&K Chapters 9, 10) Set up standard example and notation. Review performance measures (means, probabilities and quantiles). A framework for conducting simulation experiments

More information

(Re)introduction to Statistics Dan Lizotte

(Re)introduction to Statistics Dan Lizotte (Re)introduction to Statistics Dan Lizotte 2017-01-17 Statistics The systematic collection and arrangement of numerical facts or data of any kind; (also) the branch of science or mathematics concerned

More information

Continuous Random Variables. What continuous random variables are and how to use them. I can give a definition of a continuous random variable.

Continuous Random Variables. What continuous random variables are and how to use them. I can give a definition of a continuous random variable. Continuous Random Variables Today we are learning... What continuous random variables are and how to use them. I will know if I have been successful if... I can give a definition of a continuous random

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Midterm 2 Review. CS70 Summer Lecture 6D. David Dinh 28 July UC Berkeley

Midterm 2 Review. CS70 Summer Lecture 6D. David Dinh 28 July UC Berkeley Midterm 2 Review CS70 Summer 2016 - Lecture 6D David Dinh 28 July 2016 UC Berkeley Midterm 2: Format 8 questions, 190 points, 110 minutes (same as MT1). Two pages (one double-sided sheet) of handwritten

More information

Lecture 12: Small Sample Intervals Based on a Normal Population Distribution

Lecture 12: Small Sample Intervals Based on a Normal Population Distribution Lecture 12: Small Sample Intervals Based on a Normal Population MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 24 In this lecture, we will discuss (i)

More information

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16 EE539R: Problem Set 3 Assigned: 24/08/6, Due: 3/08/6. Cover and Thomas: Problem 2.30 (Maimum Entropy): Solution: We are required to maimize H(P X ) over all distributions P X on the non-negative integers

More information

PROBABILITY DISTRIBUTION

PROBABILITY DISTRIBUTION PROBABILITY DISTRIBUTION DEFINITION: If S is a sample space with a probability measure and x is a real valued function defined over the elements of S, then x is called a random variable. Types of Random

More information

One-Sample Numerical Data

One-Sample Numerical Data One-Sample Numerical Data quantiles, boxplot, histogram, bootstrap confidence intervals, goodness-of-fit tests University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

Disjointness and Additivity

Disjointness and Additivity Midterm 2: Format Midterm 2 Review CS70 Summer 2016 - Lecture 6D David Dinh 28 July 2016 UC Berkeley 8 questions, 190 points, 110 minutes (same as MT1). Two pages (one double-sided sheet) of handwritten

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 3 Estimation and Bounds Estimation from Packet

More information

Chapter 8 of Devore , H 1 :

Chapter 8 of Devore , H 1 : Chapter 8 of Devore TESTING A STATISTICAL HYPOTHESIS Maghsoodloo A statistical hypothesis is an assumption about the frequency function(s) (i.e., PDF or pdf) of one or more random variables. Stated in

More information

Lecture 18: Simple Linear Regression

Lecture 18: Simple Linear Regression Lecture 18: Simple Linear Regression BIOS 553 Department of Biostatistics University of Michigan Fall 2004 The Correlation Coefficient: r The correlation coefficient (r) is a number that measures the strength

More information

Stat 134 Fall 2011: Notes on generating functions

Stat 134 Fall 2011: Notes on generating functions Stat 3 Fall 0: Notes on generating functions Michael Lugo October, 0 Definitions Given a random variable X which always takes on a positive integer value, we define the probability generating function

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Output Analysis for Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Output Analysis

More information

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests Chapters 3.5.1 3.5.2, 3.3.2 Prof. Tesler Math 283 Fall 2018 Prof. Tesler z and t tests for mean Math

More information

Bandits, Experts, and Games

Bandits, Experts, and Games Bandits, Experts, and Games CMSC 858G Fall 2016 University of Maryland Intro to Probability* Alex Slivkins Microsoft Research NYC * Many of the slides adopted from Ron Jin and Mohammad Hajiaghayi Outline

More information

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc IES 612/STA 4-573/STA 4-576 Winter 2008 Week 1--IES 612-STA 4-573-STA 4-576.doc Review Notes: [OL] = Ott & Longnecker Statistical Methods and Data Analysis, 5 th edition. [Handouts based on notes prepared

More information

Comparing two independent samples

Comparing two independent samples In many applications it is necessary to compare two competing methods (for example, to compare treatment effects of a standard drug and an experimental drug). To compare two methods from statistical point

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Bernoulli Trials, Binomial and Cumulative Distributions

Bernoulli Trials, Binomial and Cumulative Distributions Bernoulli Trials, Binomial and Cumulative Distributions Sec 4.4-4.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

4 Resampling Methods: The Bootstrap

4 Resampling Methods: The Bootstrap 4 Resampling Methods: The Bootstrap Situation: Let x 1, x 2,..., x n be a SRS of size n taken from a distribution that is unknown. Let θ be a parameter of interest associated with this distribution and

More information

Reference: Chapter 7 of Devore (8e)

Reference: Chapter 7 of Devore (8e) Reference: Chapter 7 of Devore (8e) CONFIDENCE INTERVAL ESTIMATORS Maghsoodloo An interval estimator of a population parameter is of the form L < < u at a confidence Pr (or a confidence coefficient) of

More information

Formulas and Tables by Mario F. Triola

Formulas and Tables by Mario F. Triola Copyright 010 Pearson Education, Inc. Ch. 3: Descriptive Statistics x f # x x f Mean 1x - x s - 1 n 1 x - 1 x s 1n - 1 s B variance s Ch. 4: Probability Mean (frequency table) Standard deviation P1A or

More information

a table or a graph or an equation.

a table or a graph or an equation. Topic (8) POPULATION DISTRIBUTIONS 8-1 So far: Topic (8) POPULATION DISTRIBUTIONS We ve seen some ways to summarize a set of data, including numerical summaries. We ve heard a little about how to sample

More information

Statistics. Statistics

Statistics. Statistics The main aims of statistics 1 1 Choosing a model 2 Estimating its parameter(s) 1 point estimates 2 interval estimates 3 Testing hypotheses Distributions used in statistics: χ 2 n-distribution 2 Let X 1,

More information

Common Discrete Distributions

Common Discrete Distributions Common Discrete Distributions Statistics 104 Autumn 2004 Taken from Statistics 110 Lecture Notes Copyright c 2004 by Mark E. Irwin Common Discrete Distributions There are a wide range of popular discrete

More information

STATISTICS 479 Exam II (100 points)

STATISTICS 479 Exam II (100 points) Name STATISTICS 79 Exam II (1 points) 1. A SAS data set was created using the following input statement: Answer parts(a) to (e) below. input State $ City $ Pop199 Income Housing Electric; (a) () Give the

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

This does not cover everything on the final. Look at the posted practice problems for other topics.

This does not cover everything on the final. Look at the posted practice problems for other topics. Class 7: Review Problems for Final Exam 8.5 Spring 7 This does not cover everything on the final. Look at the posted practice problems for other topics. To save time in class: set up, but do not carry

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH A Test #2 June 11, Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH A Test #2 June 11, Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 2. A Test #2 June, 2 Solutions. (5 + 5 + 5 pts) The probability of a student in MATH 4 passing a test is.82. Suppose students

More information

Lecture 32: Asymptotic confidence sets and likelihoods

Lecture 32: Asymptotic confidence sets and likelihoods Lecture 32: Asymptotic confidence sets and likelihoods Asymptotic criterion In some problems, especially in nonparametric problems, it is difficult to find a reasonable confidence set with a given confidence

More information

Randomized algorithm

Randomized algorithm Tutorial 4 Joyce 2009-11-24 Outline Solution to Midterm Question 1 Question 2 Question 1 Question 2 Question 3 Question 4 Question 5 Solution to Midterm Solution to Midterm Solution to Midterm Question

More information

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY. SECOND YEAR B.Sc. SEMESTER - III

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY. SECOND YEAR B.Sc. SEMESTER - III Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY SECOND YEAR B.Sc. SEMESTER - III SYLLABUS FOR S. Y. B. Sc. STATISTICS Academic Year 07-8 S.Y. B.Sc. (Statistics)

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

Some Assorted Formulae. Some confidence intervals: σ n. x ± z α/2. x ± t n 1;α/2 n. ˆp(1 ˆp) ˆp ± z α/2 n. χ 2 n 1;1 α/2. n 1;α/2

Some Assorted Formulae. Some confidence intervals: σ n. x ± z α/2. x ± t n 1;α/2 n. ˆp(1 ˆp) ˆp ± z α/2 n. χ 2 n 1;1 α/2. n 1;α/2 STA 248 H1S MIDTERM TEST February 26, 2008 SURNAME: SOLUTIONS GIVEN NAME: STUDENT NUMBER: INSTRUCTIONS: Time: 1 hour and 50 minutes Aids allowed: calculator Tables of the standard normal, t and chi-square

More information

Fundamental Tools - Probability Theory IV

Fundamental Tools - Probability Theory IV Fundamental Tools - Probability Theory IV MSc Financial Mathematics The University of Warwick October 1, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory IV 1 / 14 Model-independent

More information

1; (f) H 0 : = 55 db, H 1 : < 55.

1; (f) H 0 : = 55 db, H 1 : < 55. Reference: Chapter 8 of J. L. Devore s 8 th Edition By S. Maghsoodloo TESTING a STATISTICAL HYPOTHESIS A statistical hypothesis is an assumption about the frequency function(s) (i.e., pmf or pdf) of one

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/2016 1/33

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/2016 1/33 BIO5312 Biostatistics Lecture 03: Discrete and Continuous Probability Distributions Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 9/13/2016 1/33 Introduction In this lecture,

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

Session 11. Large-sample intervals. Small-sample intervals. Bootstrap. Confidence Intervals via the bootstrap. Dr. Syring April 2, 2019

Session 11. Large-sample intervals. Small-sample intervals. Bootstrap. Confidence Intervals via the bootstrap. Dr. Syring April 2, 2019 Session 11 Dr. Syring April 2, 2019 Confidence Intervals via the bootstrap Large-sample intervals Recall that we use the Central Limit Theorem to derive approximate confidence intervals for population

More information

Estimation of Stress-Strength Reliability Using Record Ranked Set Sampling Scheme from the Exponential Distribution

Estimation of Stress-Strength Reliability Using Record Ranked Set Sampling Scheme from the Exponential Distribution Filomat 9:5 015, 1149 116 DOI 10.98/FIL1505149S Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Estimation of Stress-Strength eliability

More information

Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory. Charles J. Geyer School of Statistics University of Minnesota

Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory. Charles J. Geyer School of Statistics University of Minnesota Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory Charles J. Geyer School of Statistics University of Minnesota 1 Asymptotic Approximation The last big subject in probability

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information