ECEN 689 Special Topics in Data Science for Communications Networks

Size: px
Start display at page:

Download "ECEN 689 Special Topics in Data Science for Communications Networks"

Transcription

1 ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 3 Estimation and Bounds

2 Estimation from Packet Sampled Flow Records!me Sampling Flow records flow 1 flow 2 flow 3 Original flows (key, #packets) = (k,p) Generic subset sum query True value X(K) = #packets in flows with key k K How to estimate from packet sampled flow records Intuition: sampling yields about 1/N th of the original packets Multiply number of sampled packets by N to estimate #original packets Key idea: can apply the idea to any subset of packets Estimate: X(K) by X (K) = N * #packets in sampled flows with key k K

3 Unbiased Estimation Consider a single item (e.g. packet) Equipped with a size x (e.g. #bytes) Sampled with probability q The Horvitz-Thompson Estimator of x is x' =! " # # # x q if##the##item##is##selected 0 otherwise Theorem: x is unbiased estimator of x: Expectation E[x ] = x E[x] = sum of estimate values weighted by their probabilities = Pr[ item sampled] * x/q + Pr[item not sampled] * 0 = q * x / q + (1-q) * 0 = x

4 Subset Sum Estimation with Horvitz-Thompson Set of items with weights {x 1, x 2,, x n } Individual sampling probabilities {q 1, q 2,, q n } Subset sum X(S) = Σ i S x i for any subset S {1,2,,n } Estimate subset sum using sum of constituent estimates X (S) = Σ i S x i where x i = x i / q i if i selected, 0 otherwise Theorem: X (S) is an unbiased estimator of X(S) Proof uses linearity of expectation E[X (S)] = E[Σ i S x i ] = Σ i S E[x i ] = Σ i S x i = X(S) Doesn t require independent sampling More on Horvitz-Thompson: Kolaczyk. Ch. 5.2 See also Duffield review article

5 Subset Sum Estimation for Packets (and Bytes) X(K) = #{ packets in samples flows with key k K} = Σ i S(K) x i, x i = 1; S(K) = packets with key k K For brevity will mostly write X for X(K) and S for S(K) Packets sampled with probability 1/N X = N* #packets in sampled flows with key k K = Σ i S(K) x i with x i = N if packet is sampled, 0 otherwise Recognize X as the HT estimator of X: E[X ] = X Can make similar construction for byte estimation

6 Estimation Accuracy Think of independent 1 in N sampling from X packets Number of samples has binomial B(X, 1/N) distribution Estimate X is distributed as N * B(X, 1/N) i.e. Example: X = 5,000, N =100, 1,000 trials of X! Pr[X'=xN] = # " X x $ & % N x (1 1/ N) x X

7 Accuracy and Bounds HT estimation: weights {x 1,, x n } & probabilities {q 1, q 2,, q n } Initially examine accuracy of subsets sums X = X(K) via variance: Var(X ) = E[ (X X) 2 ] = E[ (X ) 2 ] X 2 Assume independent sampling for the moment: x i are independent Var(X ) = Var(Σ i S x i ) = Σ i S Var( x i ) Compute variance for HT estimate of individuals x i : Exercise: Var( x i ) = x i 2 (1/p i 1) and so Var(X ) = Σ i S x i 2 (1/p i 1)

8 Confidence Intervals for HT estimates? Common to think of confidence intervals in terms of the normal distribution Because the width of the distribution is characterized by the variance But distribution of HT estimator not normal; so either 1. Find confidence intervals using variance without normal assumption 2. Exploit simple form of the distribution of the estimator

9 Towards Variance Based Bounds Theorem (Markov inequality) Let Y be non-neggtive random variable with E[Y] < Then Pr[ Y a ] E[Y] / a Proof: E[Y] = E[Y Y < a ] * Pr[ Y < a] + E[Y Y a] * Pr[ Y a ] 0 + a * Pr[ Y a ] Use: take a = n * E[Y]. Then Pr[ Y n * E[Y] ] 1/n Probability Y exceeds its expectation by factor n is less than 1/n Very general, but does not depend on (or exploit) variance More on bounds: Mitzenmacher & Upfal, Ch. 3

10 Variance Based Bounds Markov Inequality: Pr[ Y a ] E[Y] / a, for Y>0, E[Y} < Given r.v. Z, set Y = (Z E[Z]) 2 and a = b 2 Apply Markov inequality (assume E[(Z E[Z]) 2 = Var(Z) < ) Pr[ (Z E[Z]) 2 b 2 ] E[ (Z E[Z]) 2 ] / b 2 In other words (this is called Chebychev s Inequality) Pr[ Z E[Z] b ] Var[Z] / b 2 Interpretation: set b = n* Sqrt(Var[Z]) = n * StdDev(Z) Probability that Z further that n * StdDev away from mean is 1/n 2

11 Application to Packet Sampling Estimate packet counts (x i = 1) ; uniform sampling prob 1/N Chebychev Inequality for X = X (K) Var(X ) = Σ i S Var(x i ) = X *(N-1) Prob( X X b) X*(N-1) / b 2 Rewriting with b = n * X a large deviation (of X (K) proportional to its expectation X Prob( X - X n * X ) (N-1) / (n 2 * X) Behavior of bound Increasing in N: less certainty if fewer sampled packets Decreasing in X: more certainty if estimating a larger subset

12 Exponential Bounds Recall Markov Inequality: Pr[ Y a ] E[Y] / a for Y 0 with E[Y] < Obtained Chebychev using Y = (Z-E(Z)) 2. Try similar. For a r.v. Z, let Y = e tz for t 0, and set a = exp(tz 0 ) {Z z 0 } = {Y exp(tz 0 ) } since exp(tz 0 ) is increasing in z 0 when t 0 Apply Markov Inequality: Pr[Z z o ] exp(-tz 0 )E[e tz ] Which value of t to take? The value of t that minimizes the upper bound! Pr[Z z 0 ] min t 0 exp(-tz 0 ) E[e tz ] 12

13 Exponential Bounds and Packet Sampling Independent packet sampling with probability q = 1/N Exponential bound Pr[Z z 0 ] min t 0 exp(tz 0 ) E[e tz ] Take Z = X =X (K) and z =(1+ δ) X (large deviation) Product form: exp(t X ) = exp(tσ i S x i ) = Π i S exp(t x i ) x i are independent, so expectation preserves product E[exp(t X )] = Π i S E[exp(t x i )] = E[exp(t x 1 )] X Exponential moment for single x i E[exp(t x 1 )] = 1* Pr[x 1 =0] + e t/q * Pr[x 1 =1/q] = (1-q) + q*e t/q Combining: Pr[ X (1+δ) X ] f(q, δ) X with f(q, δ) = min t 0 e -t(1+δ) (1+q (e t/q -1)) 13

14 Minimization and Chernoff Bounds Common to use further bound 1+q (e t/q -1) Exp q(e t/q -1) More convenient final result, especially if non-equal probabilities q i f(q, δ) g(q, δ) = min t 0 e -t(1+δ) Exp q(e t/q -1) Minimized when t = q log(1+δ), yielding g(q, δ) = ( e δ / (1+δ) 1+δ ) q Combining: Pr[X (1+δ) X ] ( e δ / (1+δ) 1+δ ) qx Bound depends only on δ: the size of the large deviation qx = X/N: exponentially small in the average number of samples Simpler bound using e δ / (1+δ) 1+δ < Exp[-δ 2 / 3] for 0<δ<1 14

15 Illustration: 2 Bounds Exp[-δ 2 / 3] e δ / (1+δ) 1+δ δ 15

16 Illustration: Exponentially small in E[#samples]=n n=1 (e δ / (1+δ) 1+δ ) n n=10 n=100 δ 16

17 Corresponding Lower Bounds Pr[X (1-δ) X ] ( e -δ / (1-δ) 1-δ ) qx Simplified bound using e -δ / (1-δ) 1-δ < Exp[-δ 2 / 2] for 0<δ<1 Exercise: verify 17

18 Confidence Bounds for X So far: given X, we can compute bounds on distribution of X e.g. Pr[X (1+δ) X ] ε for some small ε = exp(-δ 2 X/(3N)) In practice, we are given estimate X, want to bound true X Idea for lower bound: Given some small target ε, and our estimate X Find largest possible value X min for X < X such that: Pr[estimate is X or larger] ε exp(-δ 2 X/(3N)) X=1 X=10 X=100 ε 18

19 Confidence Bounds for X Find largest possible value X min for X < X such that Pr[estimate is X or larger] ε i.e. Pr[X X =(1+δ) X ] ε (*) where X has same distribution as X but we now consider X fixed Use (any) upper bound e.g. Pr[X (1+δ)X] exp(-δ 2 X/(3N)) For (*) to hold it suffices that: exp(-δ 2 X/(3N)) ε with δ = X /X -1 i.e. - (X /X -1) 2 X/(3N) log(ε) (**) X min is largest such X < X for which (**) is true Exercise: X min = X + (β-(β(β+4x )) 1/2 )/2 where β = -3N log(ε) Similar upper bound X max for X, using Chernoff Lower bound 19

20 Summary of HT and Bounds HT tells us how to make unbiased estimates from samples Size of bytes in flows from packet sampled netflow How accurate is estimate Chebychev Inequality and Chernoff Bounds General results, but can be applied to HT estimates Confidence intervals for true quantities from estimates 20

Proving the central limit theorem

Proving the central limit theorem SOR3012: Stochastic Processes Proving the central limit theorem Gareth Tribello March 3, 2019 1 Purpose In the lectures and exercises we have learnt about the law of large numbers and the central limit

More information

MATH2715: Statistical Methods

MATH2715: Statistical Methods MATH2715: Statistical Methods Exercises V (based on lectures 9-10, work week 6, hand in lecture Mon 7 Nov) ALL questions count towards the continuous assessment for this module. Q1. If X gamma(α,λ), write

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

Lecture 01 August 31, 2017

Lecture 01 August 31, 2017 Sketching Algorithms for Big Data Fall 2017 Prof. Jelani Nelson Lecture 01 August 31, 2017 Scribe: Vinh-Kha Le 1 Overview In this lecture, we overviewed the six main topics covered in the course, reviewed

More information

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation.

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation. Chernoff Bounds Theme: try to show that it is unlikely a random variable X is far away from its expectation. The more you know about X, the better the bound you obtain. Markov s inequality: use E[X ] Chebyshev

More information

Lecture 4: Sampling, Tail Inequalities

Lecture 4: Sampling, Tail Inequalities Lecture 4: Sampling, Tail Inequalities Variance and Covariance Moment and Deviation Concentration and Tail Inequalities Sampling and Estimation c Hung Q. Ngo (SUNY at Buffalo) CSE 694 A Fun Course 1 /

More information

1 Approximate Counting by Random Sampling

1 Approximate Counting by Random Sampling COMP8601: Advanced Topics in Theoretical Computer Science Lecture 5: More Measure Concentration: Counting DNF Satisfying Assignments, Hoeffding s Inequality Lecturer: Hubert Chan Date: 19 Sep 2013 These

More information

Stat 475 Life Contingencies I. Chapter 2: Survival models

Stat 475 Life Contingencies I. Chapter 2: Survival models Stat 475 Life Contingencies I Chapter 2: Survival models The future lifetime random variable Notation We are interested in analyzing and describing the future lifetime of an individual. We use (x) to denote

More information

Expectation of geometric distribution

Expectation of geometric distribution Expectation of geometric distribution What is the probability that X is finite? Can now compute E(X): Σ k=1f X (k) = Σ k=1(1 p) k 1 p = pσ j=0(1 p) j = p 1 1 (1 p) = 1 E(X) = Σ k=1k (1 p) k 1 p = p [ Σ

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 CS 70 Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 Today we shall discuss a measure of how close a random variable tends to be to its expectation. But first we need to see how to compute

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

6.1 Moment Generating and Characteristic Functions

6.1 Moment Generating and Characteristic Functions Chapter 6 Limit Theorems The power statistics can mostly be seen when there is a large collection of data points and we are interested in understanding the macro state of the system, e.g., the average,

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

Twelfth Problem Assignment

Twelfth Problem Assignment EECS 401 Not Graded PROBLEM 1 Let X 1, X 2,... be a sequence of independent random variables that are uniformly distributed between 0 and 1. Consider a sequence defined by (a) Y n = max(x 1, X 2,..., X

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

Lecture 7: Chapter 7. Sums of Random Variables and Long-Term Averages

Lecture 7: Chapter 7. Sums of Random Variables and Long-Term Averages Lecture 7: Chapter 7. Sums of Random Variables and Long-Term Averages ELEC206 Probability and Random Processes, Fall 2014 Gil-Jin Jang gjang@knu.ac.kr School of EE, KNU page 1 / 15 Chapter 7. Sums of Random

More information

Expectation of geometric distribution. Variance and Standard Deviation. Variance: Examples

Expectation of geometric distribution. Variance and Standard Deviation. Variance: Examples Expectation of geometric distribution Variance and Standard Deviation What is the probability that X is finite? Can now compute E(X): Σ k=f X (k) = Σ k=( p) k p = pσ j=0( p) j = p ( p) = E(X) = Σ k=k (

More information

Approximate Counting and Markov Chain Monte Carlo

Approximate Counting and Markov Chain Monte Carlo Approximate Counting and Markov Chain Monte Carlo A Randomized Approach Arindam Pal Department of Computer Science and Engineering Indian Institute of Technology Delhi March 18, 2011 April 8, 2011 Arindam

More information

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13 Discrete Mathematics & Mathematical Reasoning Chapter 7 (continued): Markov and Chebyshev s Inequalities; and Examples in probability: the birthday problem Kousha Etessami U. of Edinburgh, UK Kousha Etessami

More information

Final Solutions Fri, June 8

Final Solutions Fri, June 8 EE178: Probabilistic Systems Analysis, Spring 2018 Final Solutions Fri, June 8 1. Small problems (62 points) (a) (8 points) Let X 1, X 2,..., X n be independent random variables uniformly distributed on

More information

1 Hoeffding s Inequality

1 Hoeffding s Inequality Proailistic Method: Hoeffding s Inequality and Differential Privacy Lecturer: Huert Chan Date: 27 May 22 Hoeffding s Inequality. Approximate Counting y Random Sampling Suppose there is a ag containing

More information

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0.

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0. () () a. X is a binomial distribution with n = 000, p = /6 b. The expected value, variance, and standard deviation of X is: E(X) = np = 000 = 000 6 var(x) = np( p) = 000 5 6 666 stdev(x) = np( p) = 000

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

Tail Inequalities Randomized Algorithms. Sariel Har-Peled. December 20, 2002

Tail Inequalities Randomized Algorithms. Sariel Har-Peled. December 20, 2002 Tail Inequalities 497 - Randomized Algorithms Sariel Har-Peled December 0, 00 Wir mssen wissen, wir werden wissen (We must know, we shall know) David Hilbert 1 Tail Inequalities 1.1 The Chernoff Bound

More information

variance of independent variables: sum of variances So chebyshev predicts won t stray beyond stdev.

variance of independent variables: sum of variances So chebyshev predicts won t stray beyond stdev. Announcements No class monday. Metric embedding seminar. Review expectation notion of high probability. Markov. Today: Book 4.1, 3.3, 4.2 Chebyshev. Remind variance, standard deviation. σ 2 = E[(X µ X

More information

Bandits, Experts, and Games

Bandits, Experts, and Games Bandits, Experts, and Games CMSC 858G Fall 2016 University of Maryland Intro to Probability* Alex Slivkins Microsoft Research NYC * Many of the slides adopted from Ron Jin and Mohammad Hajiaghayi Outline

More information

Lectures 6: Degree Distributions and Concentration Inequalities

Lectures 6: Degree Distributions and Concentration Inequalities University of Washington Lecturer: Abraham Flaxman/Vahab S Mirrokni CSE599m: Algorithms and Economics of Networks April 13 th, 007 Scribe: Ben Birnbaum Lectures 6: Degree Distributions and Concentration

More information

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials).

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials). Tail Inequalities William Hunt Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV William.Hunt@mail.wvu.edu Introduction In this chapter, we are interested

More information

Math Spring Practice for the final Exam.

Math Spring Practice for the final Exam. Math 4 - Spring 8 - Practice for the final Exam.. Let X, Y, Z be three independnet random variables uniformly distributed on [, ]. Let W := X + Y. Compute P(W t) for t. Honors: Compute the CDF function

More information

Homework 4 Solutions

Homework 4 Solutions CS 174: Combinatorics and Discrete Probability Fall 01 Homework 4 Solutions Problem 1. (Exercise 3.4 from MU 5 points) Recall the randomized algorithm discussed in class for finding the median of a set

More information

CS145: Probability & Computing

CS145: Probability & Computing CS45: Probability & Computing Lecture 5: Concentration Inequalities, Law of Large Numbers, Central Limit Theorem Instructor: Eli Upfal Brown University Computer Science Figure credits: Bertsekas & Tsitsiklis,

More information

2008 Winton. Statistical Testing of RNGs

2008 Winton. Statistical Testing of RNGs 1 Statistical Testing of RNGs Criteria for Randomness For a sequence of numbers to be considered a sequence of randomly acquired numbers, it must have two basic statistical properties: Uniformly distributed

More information

Lecture 2 Sep 5, 2017

Lecture 2 Sep 5, 2017 CS 388R: Randomized Algorithms Fall 2017 Lecture 2 Sep 5, 2017 Prof. Eric Price Scribe: V. Orestis Papadigenopoulos and Patrick Rall NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS 1

More information

Variance reduction. Michel Bierlaire. Transport and Mobility Laboratory. Variance reduction p. 1/18

Variance reduction. Michel Bierlaire. Transport and Mobility Laboratory. Variance reduction p. 1/18 Variance reduction p. 1/18 Variance reduction Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Variance reduction p. 2/18 Example Use simulation to compute I = 1 0 e x dx We

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

18.175: Lecture 8 Weak laws and moment-generating/characteristic functions

18.175: Lecture 8 Weak laws and moment-generating/characteristic functions 18.175: Lecture 8 Weak laws and moment-generating/characteristic functions Scott Sheffield MIT 18.175 Lecture 8 1 Outline Moment generating functions Weak law of large numbers: Markov/Chebyshev approach

More information

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval Epidemiology 9509 Principle of Biostatistics Chapter 11 - Inference about probability in a single population John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is

More information

Introduction to Probability

Introduction to Probability LECTURE NOTES Course 6.041-6.431 M.I.T. FALL 2000 Introduction to Probability Dimitri P. Bertsekas and John N. Tsitsiklis Professors of Electrical Engineering and Computer Science Massachusetts Institute

More information

1 Large Deviations. Korea Lectures June 2017 Joel Spencer Tuesday Lecture III

1 Large Deviations. Korea Lectures June 2017 Joel Spencer Tuesday Lecture III Korea Lectures June 017 Joel Spencer Tuesday Lecture III 1 Large Deviations We analyze how random variables behave asymptotically Initially we consider the sum of random variables that take values of 1

More information

Most data analysis starts with some data set; we will call this data set P. It will be composed of a set of n

Most data analysis starts with some data set; we will call this data set P. It will be composed of a set of n 3 Convergence This topic will overview a variety of extremely powerful analysis results that span statistics, estimation theorem, and big data. It provides a framework to think about how to aggregate more

More information

Data Stream Methods. Graham Cormode S. Muthukrishnan

Data Stream Methods. Graham Cormode S. Muthukrishnan Data Stream Methods Graham Cormode graham@dimacs.rutgers.edu S. Muthukrishnan muthu@cs.rutgers.edu Plan of attack Frequent Items / Heavy Hitters Counting Distinct Elements Clustering items in Streams Motivating

More information

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations EECS 70 Discrete Mathematics and Probability Theory Fall 204 Anant Sahai Note 5 Random Variables: Distributions, Independence, and Expectations In the last note, we saw how useful it is to have a way of

More information

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Sections 8.2 -- 8.3: Convergence in Probability and in Distribution Jiaping Wang Department of Mathematical Science 04/22/2013,

More information

The space complexity of approximating the frequency moments

The space complexity of approximating the frequency moments The space complexity of approximating the frequency moments Felix Biermeier November 24, 2015 1 Overview Introduction Approximations of frequency moments lower bounds 2 Frequency moments Problem Estimate

More information

14.1 Finding frequent elements in stream

14.1 Finding frequent elements in stream Chapter 14 Streaming Data Model 14.1 Finding frequent elements in stream A very useful statistics for many applications is to keep track of elements that occur more frequently. It can come in many flavours

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

{X i } realize. n i=1 X i. Note that again X is a random variable. If we are to

{X i } realize. n i=1 X i. Note that again X is a random variable. If we are to 3 Convergence This topic will overview a variety of extremely powerful analysis results that span statistics, estimation theorem, and big data. It provides a framework to think about how to aggregate more

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

CS5314 Randomized Algorithms. Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV)

CS5314 Randomized Algorithms. Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV) CS5314 Randomized Algorithms Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV) Objectives Introduce Geometric RV We then introduce Conditional Expectation Application:

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

Lecture 1 September 3, 2013

Lecture 1 September 3, 2013 CS 229r: Algorithms for Big Data Fall 2013 Prof. Jelani Nelson Lecture 1 September 3, 2013 Scribes: Andrew Wang and Andrew Liu 1 Course Logistics The problem sets can be found on the course website: http://people.seas.harvard.edu/~minilek/cs229r/index.html

More information

COMPSCI 240: Reasoning Under Uncertainty

COMPSCI 240: Reasoning Under Uncertainty COMPSCI 240: Reasoning Under Uncertainty Andrew Lan and Nic Herndon University of Massachusetts at Amherst Spring 2019 Lecture 20: Central limit theorem & The strong law of large numbers Markov and Chebyshev

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EE 26 Spring 2006 Final Exam Wednesday, May 7, 8am am DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 80 minutes to complete the final. The final consists of five

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

11.1 Set Cover ILP formulation of set cover Deterministic rounding

11.1 Set Cover ILP formulation of set cover Deterministic rounding CS787: Advanced Algorithms Lecture 11: Randomized Rounding, Concentration Bounds In this lecture we will see some more examples of approximation algorithms based on LP relaxations. This time we will use

More information

Lecture 18: March 15

Lecture 18: March 15 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 18: March 15 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

{X i } realize. n i=1 X i. Note that again X is a random variable. If we are to

{X i } realize. n i=1 X i. Note that again X is a random variable. If we are to 3 Convergence This topic will overview a variety of extremely powerful analysis results that span statistics, estimation theorem, and big data. It provides a framework to think about how to aggregate more

More information

1 Dimension Reduction in Euclidean Space

1 Dimension Reduction in Euclidean Space CSIS0351/8601: Randomized Algorithms Lecture 6: Johnson-Lindenstrauss Lemma: Dimension Reduction Lecturer: Hubert Chan Date: 10 Oct 011 hese lecture notes are supplementary materials for the lectures.

More information

Randomized Algorithms Week 2: Tail Inequalities

Randomized Algorithms Week 2: Tail Inequalities Randomized Algorithms Week 2: Tail Inequalities Rao Kosaraju In this section, we study three ways to estimate the tail probabilities of random variables. Please note that the more information we know about

More information

Optimization and Simulation

Optimization and Simulation Optimization and Simulation Variance reduction Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne M.

More information

(Practice Version) Midterm Exam 2

(Practice Version) Midterm Exam 2 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 7, 2014 (Practice Version) Midterm Exam 2 Last name First name SID Rules. DO NOT open

More information

Randomized algorithm

Randomized algorithm Tutorial 4 Joyce 2009-11-24 Outline Solution to Midterm Question 1 Question 2 Question 1 Question 2 Question 3 Question 4 Question 5 Solution to Midterm Solution to Midterm Solution to Midterm Question

More information

Essentials on the Analysis of Randomized Algorithms

Essentials on the Analysis of Randomized Algorithms Essentials on the Analysis of Randomized Algorithms Dimitris Diochnos Feb 0, 2009 Abstract These notes were written with Monte Carlo algorithms primarily in mind. Topics covered are basic (discrete) random

More information

CDA5530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables

CDA5530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables CDA5530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Definition Random variable (R.V.) X: A function on sample space X: S R Cumulative distribution function

More information

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a]

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a] U.C. Berkeley CS273: Parallel and Distributed Theory Lecture 4 Professor Satish Rao September 7, 2010 Lecturer: Satish Rao Last revised September 13, 2010 Lecture 4 1 Deviation bounds. Deviation bounds

More information

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability Probability Theory Chapter 6 Convergence Four different convergence concepts Let X 1, X 2, be a sequence of (usually dependent) random variables Definition 1.1. X n converges almost surely (a.s.), or with

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

ECE Lecture #9 Part 2 Overview

ECE Lecture #9 Part 2 Overview ECE 450 - Lecture #9 Part Overview Bivariate Moments Mean or Expected Value of Z = g(x, Y) Correlation and Covariance of RV s Functions of RV s: Z = g(x, Y); finding f Z (z) Method : First find F(z), by

More information

University of Regina. Lecture Notes. Michael Kozdron

University of Regina. Lecture Notes. Michael Kozdron University of Regina Statistics 252 Mathematical Statistics Lecture Notes Winter 2005 Michael Kozdron kozdron@math.uregina.ca www.math.uregina.ca/ kozdron Contents 1 The Basic Idea of Statistics: Estimating

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

1 Randomized reduction: a first start

1 Randomized reduction: a first start 6.S078 Fine-Grained Algorithms and Complexity MIT Lectures 3 and 4 February 14 and 21, 2018 Today: In the previous two lectures, we mentioned ETH and SETH, about the time complexity of SAT. Today we want

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 13 Measuring and Inferring Traffic Matrices

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 203 Vazirani Note 2 Random Variables: Distribution and Expectation We will now return once again to the question of how many heads in a typical sequence

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 5 Optimizing Fixed Size Samples Sampling as

More information

Discrete Mathematics and Probability Theory Fall 2012 Vazirani Note 14. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2012 Vazirani Note 14. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 202 Vazirani Note 4 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected in, randomly

More information

Lecture 4: September Reminder: convergence of sequences

Lecture 4: September Reminder: convergence of sequences 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 4: September 6 In this lecture we discuss the convergence of random variables. At a high-level, our first few lectures focused

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 18

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 18 EECS 7 Discrete Mathematics and Probability Theory Spring 214 Anant Sahai Note 18 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces Ω,

More information

Probability Theory Overview and Analysis of Randomized Algorithms

Probability Theory Overview and Analysis of Randomized Algorithms Probability Theory Overview and Analysis of Randomized Algorithms Analysis of Algorithms Prepared by John Reif, Ph.D. Probability Theory Topics a) Random Variables: Binomial and Geometric b) Useful Probabilistic

More information

Lecture 2: Review of Basic Probability Theory

Lecture 2: Review of Basic Probability Theory ECE 830 Fall 2010 Statistical Signal Processing instructor: R. Nowak, scribe: R. Nowak Lecture 2: Review of Basic Probability Theory Probabilistic models will be used throughout the course to represent

More information

A crash course in probability. Periklis A. Papakonstantinou Rutgers Business School

A crash course in probability. Periklis A. Papakonstantinou Rutgers Business School A crash course in probability Periklis A. Papakonstantinou Rutgers Business School i LECTURE NOTES IN Elements of Probability and Statistics Periklis A. Papakonstantinou MSIS, Rutgers Business School Piscataway,

More information

Expectation is linear. So far we saw that E(X + Y ) = E(X) + E(Y ). Let α R. Then,

Expectation is linear. So far we saw that E(X + Y ) = E(X) + E(Y ). Let α R. Then, Expectation is linear So far we saw that E(X + Y ) = E(X) + E(Y ). Let α R. Then, E(αX) = ω = ω (αx)(ω) Pr(ω) αx(ω) Pr(ω) = α ω X(ω) Pr(ω) = αe(x). Corollary. For α, β R, E(αX + βy ) = αe(x) + βe(y ).

More information

CSE 312 Final Review: Section AA

CSE 312 Final Review: Section AA CSE 312 TAs December 8, 2011 General Information General Information Comprehensive Midterm General Information Comprehensive Midterm Heavily weighted toward material after the midterm Pre-Midterm Material

More information

Frequency Estimators

Frequency Estimators Frequency Estimators Outline for Today Randomized Data Structures Our next approach to improving performance. Count-Min Sketches A simple and powerful data structure for estimating frequencies. Count Sketches

More information

Tail and Concentration Inequalities

Tail and Concentration Inequalities CSE 694: Probabilistic Analysis and Randomized Algorithms Lecturer: Hung Q. Ngo SUNY at Buffalo, Spring 2011 Last update: February 19, 2011 Tail and Concentration Ineualities From here on, we use 1 A to

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

ECON Fundamentals of Probability

ECON Fundamentals of Probability ECON 351 - Fundamentals of Probability Maggie Jones 1 / 32 Random Variables A random variable is one that takes on numerical values, i.e. numerical summary of a random outcome e.g., prices, total GDP,

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

If g is also continuous and strictly increasing on J, we may apply the strictly increasing inverse function g 1 to this inequality to get

If g is also continuous and strictly increasing on J, we may apply the strictly increasing inverse function g 1 to this inequality to get 18:2 1/24/2 TOPIC. Inequalities; measures of spread. This lecture explores the implications of Jensen s inequality for g-means in general, and for harmonic, geometric, arithmetic, and related means in

More information

Basic Probability. Introduction

Basic Probability. Introduction Basic Probability Introduction The world is an uncertain place. Making predictions about something as seemingly mundane as tomorrow s weather, for example, is actually quite a difficult task. Even with

More information

Expectation, Variance and Standard Deviation for Continuous Random Variables Class 6, Jeremy Orloff and Jonathan Bloom

Expectation, Variance and Standard Deviation for Continuous Random Variables Class 6, Jeremy Orloff and Jonathan Bloom Expectation, Variance and Standard Deviation for Continuous Random Variables Class 6, 8.5 Jeremy Orloff and Jonathan Bloom Learning Goals. Be able to compute and interpret expectation, variance, and standard

More information

Intelligent Data Analysis. Principal Component Analysis. School of Computer Science University of Birmingham

Intelligent Data Analysis. Principal Component Analysis. School of Computer Science University of Birmingham Intelligent Data Analysis Principal Component Analysis Peter Tiňo School of Computer Science University of Birmingham Discovering low-dimensional spatial layout in higher dimensional spaces - 1-D/3-D example

More information

Handout 5. α a1 a n. }, where. xi if a i = 1 1 if a i = 0.

Handout 5. α a1 a n. }, where. xi if a i = 1 1 if a i = 0. Notes on Complexity Theory Last updated: October, 2005 Jonathan Katz Handout 5 1 An Improved Upper-Bound on Circuit Size Here we show the result promised in the previous lecture regarding an upper-bound

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

1 Review of The Learning Setting

1 Review of The Learning Setting COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #8 Scribe: Changyan Wang February 28, 208 Review of The Learning Setting Last class, we moved beyond the PAC model: in the PAC model we

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22

Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22 CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22 Random Variables and Expectation Question: The homeworks of 20 students are collected in, randomly shuffled and returned to the students.

More information