1 Inverse Transform Method and some alternative algorithms

Size: px
Start display at page:

Download "1 Inverse Transform Method and some alternative algorithms"

Transcription

1 Copyright c 2016 by Karl Sigman 1 Inverse Transform Method and some alternative algorithms Assuming our computer can hand us, upon demand, iid copies of rvs that are uniformly distributed on (0, 1), it is imperative that we be able to use these uniforms to generate rvs of any desired distribution (exponential, Bernoulli etc.). The first general method that we present is called the inverse transform method. As a quick example for motivation: Suppose that we want a random variable X that has an exponential distribution at rate λ: The cumulative distribution function (CDF) is given by F (x) = P (X x) = 1 e λx, x 0. Then simply define X = 1 ln (U), λ where ln (y) denotes the natural logarithm of y > 0. Proof: P (X x) = P ( 1 ln (U) x) λ = P (ln (U) λx) = P (U e λx ) = 1 e λx. (Recall that P (U y) = 1 y, y (0, 1).) It turns out that this kind of clever transformation involves the inverse function of a CDF only. We now present this general method. Let F (x), x IR, denote any cumulative distribution function (cdf) (continuous or not). In other words, F (x) = P (X x), x IR, for some random variable X. Recall that F : IR [0, 1] is thus a non-negative and non-decreasing (monotone) function that is continuous from the right and has left hand limits, with values in [0, 1]; moreover F ( ) = lim x F (x) = 1 and F ( ) = lim x F (x) = 0. Our objective is to generate (simulate) rvs X distributed as F ; that is, we want to simulate a rv X such that P (X x) = F (x), x IR. Define the generalized inverse of F, F 1 : [0, 1] IR, via (1) F 1 (y) = min{x : F (x) y}, y [0, 1]. If F is continuous, then F is invertible (since it is thus continuous and strictly increasing) in which case F 1 (y) = min{x : F (x) = y}, the ordinary inverse function and thus F (F 1 (y)) = y and F 1 (F (x)) = x. In general it holds that F 1 (F (x)) x and F (F 1 (y)) y. F 1 (y) is a non-decreasing (monotone) function in y. This simple fact yields a simple method for simulating a rv X distributed as F : Proposition 1.1 (The Inverse Transform Method) Let F (x), x IR, denote any cumulative distribution function (cdf) (continuous or not). Let F 1 (y), y [0, 1] denote the inverse function defined in (1). Define X = F 1 (U), where U has the continuous uniform distribution over the interval (0, 1). Then X is distributed as F, that is, P (X x) = F (x), x IR. 1

2 Proof : We must show that P (F 1 (U) x) = F (x), x IR. First suppose that F is continuous. Then we will show that (equality of events) {F 1 (U) x} = {U F (x)}, so that by taking probabilities (and letting a = F (x) in P (U a) = a) yields the result: P (F 1 (U) x) = P (U F (x)) = F (x). To this end: F (F 1 (y)) = y and so (by monotonicity of F ) if F 1 (U) x, then U = F (F 1 (U)) F (x), or U F (x). Similarly F 1 (F (x)) = x and so if U F (x), then F 1 (U) x. We conclude equality of the two events as was to be shown. In the general (continuous or not) case, it is easily shown that {U < F (x)} {F 1 (U) x} {U F (x)}, which yields the same result after taking probabilities (since P (U = F (x)) = 0 since U is a continuous rv.) 1.1 Examples The inverse transform method can be used in practice as long as we are able to get an explicit formula for F 1 (y) in closed form. We illustrate with some examples. We use the notation U unif(0, 1) to denote that U is a rv with the continuous uniform distribution over the interval (0, 1). 1. Exponential distribution: F (x) = 1 e λx, x 0, where λ > 0 is a constant. Solving the equation y = 1 e λx for x in terms of y (0, 1) yields x = F 1 (y) = (1/λ) ln (1 y). This yields X = (1/λ) ln (1 U). But (as is easily checked, see below) 1 U has a unif(0, 1) distribution too, since U does, and thus we can simplify the algorithm by replacing 1 U by U: Algorithm for generating an exponential rv at rate λ: ii Set X = 1 λ ln (U). P (1 U x) = P (U 1 x) = 1 (1 x) = x, x (0, 1); indeed 1 U is unif(0, 1). 2. Discrete rvs: discrete inverse-transform method: Consider a non-negative discrete rv X with probability mass function (pmf) p(k) = P (X = k), k 0. In this case, F (x) is not continuous, but the construction X = F 1 (U) is explicitly given by (see proof below): Algorithm for generating a discrete random variable: (a) Generate U unif(0, 1). (b) Set X = 0 if U p(0), otherwise set X = k, if k 1 p(i) < U k p(i), k 1. 2

3 This is known as the discrete inverse-transform method. It easily can be extended to cover discrete random variables that are not necessarily non-negative. The algorithm is easily verified directly by recalling that P (a < U b) = b a, for 0 a < b 1; here we use a = k 1 p(i) < b = k p(i), and so b a = p(k). 3. Bernoulli (p) and Binomial (n, p) distributions: Suppose we want to generate a Bernoulli (p) rv X, in which case P (X = 0) = 1 p and P (X = 1) = p for some p (0, 1). Then the discrete inverse-transform method yields: Algorithm for generating a Bernoulli (p) rv X: ii Set X = 0 if U 1 p; X = 1 if U > 1 p. Since 1 U is also unif(0, 1), we can re-do the above by replacing U by 1 U and obtain Another Algorithm for generating a Bernoulli (p) rv X: ii Set X = 1 if U p; X = 0 if U > p. Suppose we want X to have a binomial (n, p) distribution, that is, ( ) n p(k) = P (X = k) = p k (1 p) n k, 0 k n. k One could, in principle, use the discrete inverse-transform method with these p(k), but we also can note that X can be represented (in distribution) as the sum of n iid Bernoulli (p) rvs, Y 1,..., Y n ; n X = Y i, i=1 the number of successes out of n iid Bernoulli (p) trials. Alternative algorithm for generating a binomial (n, p) rv X: i Generate n iid rvs U 1, U 2,..., U n unif(0, 1). ii For each 1 i n, set Y i = 1 if U i p; Y i = 0 if U i > 1 p. (This yields n iid Bernoulli (p) rvs) iii Set X = n i=1 Y i. The advantage of this algorithm is its simplicity, we do not need to do the various computations involving the p(k). On the other hand, this algorithm requires n uniforms for each copy of X versus only one uniform when using the discrete inverse-transform method. Thus we might not want to use this algorithm when n is quite large. Poisson approximation to the binomial distribution In fact, when n is very large, and p is small, it follows (e.g., can be proved; there is a theorem lurking here that is stated below), that the distribution of X is very approximately the Poisson distribution with mean np: For α > 0, consider a sequence of Binomial 3

4 (n, p(n)) rvs X n in which p(n) = α/n, n 1. Note how E(X n ) = np(n) = α, n 1, but the distribution of X n is changing as n increases: more Bernoulli trials are performed but with a decreasing probability of success; p(n) 0 as n, even though they each have the same expected number of successes, α. Then X n converges in distribution to the Poisson distribution with mean α: The proof is based on writing out lim P (X α αk n = k) = e n k!, k 0. P (X n = k) = ( ) n ( α k n )k (1 α n )n k, taking the limit as n and showing that it converges to e α αk k!, k 0. As an application, suppose a circuit board has n = 1000 independent components within, each defective with probability p = 1/1000. Then letting X denote the total number of defective components within the circuit, it has a binomial (1000, 1/1000) distribution, but we can say that X approximately has a Poisson distribution with mean 1000(1/1000) = 1. Thus, the probability that none of the components are defective, P (X = 0), can be closely approximated (within 3 decimal places) by e 1 = The exact answer is (1 p) 1000 = (0.999) 1000 = This motivates our next example. 4. Poisson distribution with mean α: In this case α αk p(k) = P (X = k) = e k!, k 0. We could thus use the discrete inverse-transform method, but of course it involves computing (in advance) pieces like αk k!. Here we present an alternative algorithm that makes use of properties of a Poisson process at rate α. The trick is to recall that if {N(t) : t 0} is the counting process of a Poisson process at rate α, then N(t) has a Poisson distribution with mean αt; in particular (t = 1), N(1) has a Poisson distribution with mean α. Thus if we can simulate N(1), then we can set X = N(1) and we are done. Let Y = N(1) + 1, and let t n = X 1 + +X n denote the n th point of the Poisson process; the X i are iid with an exponential distribution at rate α. Note that Y = min{n 1 : t n > 1} = min{n 1 : X X n > 1}, a stopping time. Using the inverse transform method to generate the iid exponential interraival times X i, we can represent X i = (1/α) ln(u i ). We then can re-write (recalling that ln(xy) = ln(x) + ln(y)) Y = min{n 1 : ln(u 1 ) + + ln(u n ) < α} = min{n 1 : ln(u 1 U n ) < α} = min{n 1 : U 1 U n < e α } We thus can simulate Y by simply consecutively generating independent uniforms U i and taking the product until the product first falls below e α. The number of uniforms 4

5 required yields Y. Then we get X = N(1) = Y 1 as our desired Poisson. Here then is the resulting algorithm: Alternative algorithm for generating a Poisson rv X with mean α: i Set X = 0, P = 1 ii Generate U unif(0, 1), set P = UP iii If P < e α, then stop. Otherwise if P e α, then set X = X + 1 and go back to ii. iii Output X. Note that, unlike the inverse transform method, which would only require one U, the above algorithm requires a random number of U i, Y = X + 1 uniforms to be precise, and unknown in advance. On the other hand this algorithm does not require computing pieces like αk k!. On average, the number of U i required is E(X + 1) = α + 1. If α is not too big, then this algorithm can be considered very efficient. 5

ECE353: Probability and Random Processes. Lecture 5 - Cumulative Distribution Function and Expectation

ECE353: Probability and Random Processes. Lecture 5 - Cumulative Distribution Function and Expectation ECE353: Probability and Random Processes Lecture 5 - Cumulative Distribution Function and Expectation Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu

More information

1 Acceptance-Rejection Method

1 Acceptance-Rejection Method Copyright c 2016 by Karl Sigman 1 Acceptance-Rejection Method As we already know, finding an explicit formula for F 1 (y), y [0, 1], for the cdf of a rv X we wish to generate, F (x) = P (X x), x R, is

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Expectations Expectations Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Expectations

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

IEOR 4703: Homework 2 Solutions

IEOR 4703: Homework 2 Solutions IEOR 4703: Homework 2 Solutions Exercises for which no programming is required Let U be uniformly distributed on the interval (0, 1); P (U x) = x, x (0, 1). We assume that your computer can sequentially

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Basic concepts of probability theory

Basic concepts of probability theory Basic concepts of probability theory Random variable discrete/continuous random variable Transform Z transform, Laplace transform Distribution Geometric, mixed-geometric, Binomial, Poisson, exponential,

More information

Copyright c 2006 Jason Underdown Some rights reserved. choose notation. n distinct items divided into r distinct groups.

Copyright c 2006 Jason Underdown Some rights reserved. choose notation. n distinct items divided into r distinct groups. Copyright & License Copyright c 2006 Jason Underdown Some rights reserved. choose notation binomial theorem n distinct items divided into r distinct groups Axioms Proposition axioms of probability probability

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Basic concepts of probability theory

Basic concepts of probability theory Basic concepts of probability theory Random variable discrete/continuous random variable Transform Z transform, Laplace transform Distribution Geometric, mixed-geometric, Binomial, Poisson, exponential,

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Basic concepts of probability theory

Basic concepts of probability theory Basic concepts of probability theory Random variable discrete/continuous random variable Transform Z transform, Laplace transform Distribution Geometric, mixed-geometric, Binomial, Poisson, exponential,

More information

1 Poisson processes, and Compound (batch) Poisson processes

1 Poisson processes, and Compound (batch) Poisson processes Copyright c 2007 by Karl Sigman 1 Poisson processes, and Compound (batch) Poisson processes 1.1 Point Processes Definition 1.1 A simple point process ψ = {t n : n 1} is a sequence of strictly increasing

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Introduction to Probability and Statistics Slides 3 Chapter 3

Introduction to Probability and Statistics Slides 3 Chapter 3 Introduction to Probability and Statistics Slides 3 Chapter 3 Ammar M. Sarhan, asarhan@mathstat.dal.ca Department of Mathematics and Statistics, Dalhousie University Fall Semester 2008 Dr. Ammar M. Sarhan

More information

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13 Discrete Mathematics & Mathematical Reasoning Chapter 7 (continued): Markov and Chebyshev s Inequalities; and Examples in probability: the birthday problem Kousha Etessami U. of Edinburgh, UK Kousha Etessami

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

Dr. Maddah ENMG 617 EM Statistics 10/15/12. Nonparametric Statistics (2) (Goodness of fit tests)

Dr. Maddah ENMG 617 EM Statistics 10/15/12. Nonparametric Statistics (2) (Goodness of fit tests) Dr. Maddah ENMG 617 EM Statistics 10/15/12 Nonparametric Statistics (2) (Goodness of fit tests) Introduction Probability models used in decision making (Operations Research) and other fields require fitting

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

Chapter 6: Random Processes 1

Chapter 6: Random Processes 1 Chapter 6: Random Processes 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Generating Random Variates 2 (Chapter 8, Law)

Generating Random Variates 2 (Chapter 8, Law) B. Maddah ENMG 6 Simulation /5/08 Generating Random Variates (Chapter 8, Law) Generating random variates from U(a, b) Recall that a random X which is uniformly distributed on interval [a, b], X ~ U(a,

More information

1 Stationary point processes

1 Stationary point processes Copyright c 22 by Karl Sigman Stationary point processes We present here a brief introduction to stationay point processes on the real line.. Basic notation for point processes We consider simple point

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 29, 2014 Introduction Introduction The world of the model-builder

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER. Two hours MATH38181 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER EXTREME VALUES AND FINANCIAL RISK Examiner: Answer any FOUR

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

Order Statistics and Distributions

Order Statistics and Distributions Order Statistics and Distributions 1 Some Preliminary Comments and Ideas In this section we consider a random sample X 1, X 2,..., X n common continuous distribution function F and probability density

More information

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015 Review : STAT 36 Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics August 25, 25 Support of a Random Variable The support of a random variable, which is usually denoted

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

1 Some basic renewal theory: The Renewal Reward Theorem

1 Some basic renewal theory: The Renewal Reward Theorem Copyright c 27 by Karl Sigman Some basic renewal theory: The Renewal Reward Theorem Here, we will present some basic results in renewal theory such as the elementary renewal theorem, and then the very

More information

Statistics for scientists and engineers

Statistics for scientists and engineers Statistics for scientists and engineers February 0, 006 Contents Introduction. Motivation - why study statistics?................................... Examples..................................................3

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Chapter 6 : Moment Functions Néhémy Lim 1 1 Department of Statistics, University of Washington, USA Winter Quarter 2016 of Common Distributions Outline 1 2 3 of Common Distributions

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2 Probability Density Functions and the Normal Distribution Quantitative Understanding in Biology, 1.2 1. Discrete Probability Distributions 1.1. The Binomial Distribution Question: You ve decided to flip

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

It can be shown that if X 1 ;X 2 ;:::;X n are independent r.v. s with

It can be shown that if X 1 ;X 2 ;:::;X n are independent r.v. s with Example: Alternative calculation of mean and variance of binomial distribution A r.v. X has the Bernoulli distribution if it takes the values 1 ( success ) or 0 ( failure ) with probabilities p and (1

More information

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER. Three hours To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER EXTREME VALUES AND FINANCIAL RISK Examiner: Answer QUESTION 1, QUESTION

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Discrete Distributions Chapter 6

Discrete Distributions Chapter 6 Discrete Distributions Chapter 6 Negative Binomial Distribution section 6.3 Consider k r, r +,... independent Bernoulli trials with probability of success in one trial being p. Let the random variable

More information

Lecture 8 : The Geometric Distribution

Lecture 8 : The Geometric Distribution 0/ 24 The geometric distribution is a special case of negative binomial, it is the case r = 1. It is so important we give it special treatment. Motivating example Suppose a couple decides to have children

More information

Common Discrete Distributions

Common Discrete Distributions Common Discrete Distributions Statistics 104 Autumn 2004 Taken from Statistics 110 Lecture Notes Copyright c 2004 by Mark E. Irwin Common Discrete Distributions There are a wide range of popular discrete

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process.

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. Stationary independent increments 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. 2. If each set of increments, corresponding to non-overlapping collection of

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

Fundamental Tools - Probability Theory II

Fundamental Tools - Probability Theory II Fundamental Tools - Probability Theory II MSc Financial Mathematics The University of Warwick September 29, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory II 1 / 22 Measurable random

More information

1 Sequences of events and their limits

1 Sequences of events and their limits O.H. Probability II (MATH 2647 M15 1 Sequences of events and their limits 1.1 Monotone sequences of events Sequences of events arise naturally when a probabilistic experiment is repeated many times. For

More information

Sampling Random Variables

Sampling Random Variables Sampling Random Variables Introduction Sampling a random variable X means generating a domain value x X in such a way that the probability of generating x is in accordance with p(x) (respectively, f(x)),

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

Slides 8: Statistical Models in Simulation

Slides 8: Statistical Models in Simulation Slides 8: Statistical Models in Simulation Purpose and Overview The world the model-builder sees is probabilistic rather than deterministic: Some statistical model might well describe the variations. An

More information

Continuous Probability Spaces

Continuous Probability Spaces Continuous Probability Spaces Ω is not countable. Outcomes can be any real number or part of an interval of R, e.g. heights, weights and lifetimes. Can not assign probabilities to each outcome and add

More information

Ch3. Generating Random Variates with Non-Uniform Distributions

Ch3. Generating Random Variates with Non-Uniform Distributions ST4231, Semester I, 2003-2004 Ch3. Generating Random Variates with Non-Uniform Distributions This chapter mainly focuses on methods for generating non-uniform random numbers based on the built-in standard

More information

The Distributions of Stopping Times For Ordinary And Compound Poisson Processes With Non-Linear Boundaries: Applications to Sequential Estimation.

The Distributions of Stopping Times For Ordinary And Compound Poisson Processes With Non-Linear Boundaries: Applications to Sequential Estimation. The Distributions of Stopping Times For Ordinary And Compound Poisson Processes With Non-Linear Boundaries: Applications to Sequential Estimation. Binghamton University Department of Mathematical Sciences

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

STAT 430/510: Lecture 15

STAT 430/510: Lecture 15 STAT 430/510: Lecture 15 James Piette June 23, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.4... Conditional Distribution: Discrete Def: The conditional

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

Introduction to Probability

Introduction to Probability LECTURE NOTES Course 6.041-6.431 M.I.T. FALL 2000 Introduction to Probability Dimitri P. Bertsekas and John N. Tsitsiklis Professors of Electrical Engineering and Computer Science Massachusetts Institute

More information

Modeling Rare Events

Modeling Rare Events Modeling Rare Events Chapter 4 Lecture 15 Yiren Ding Shanghai Qibao Dwight High School April 24, 2016 Yiren Ding Modeling Rare Events 1 / 48 Outline 1 The Poisson Process Three Properties Stronger Property

More information

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

Common ontinuous random variables

Common ontinuous random variables Common ontinuous random variables CE 311S Earlier, we saw a number of distribution families Binomial Negative binomial Hypergeometric Poisson These were useful because they represented common situations:

More information

On linear and non-linear equations. (Sect. 1.6).

On linear and non-linear equations. (Sect. 1.6). On linear and non-linear equations. (Sect. 1.6). Review: Linear differential equations. Non-linear differential equations. The Picard-Lindelöf Theorem. Properties of solutions to non-linear ODE. The Proof

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer September 5, 2012 Contents 1 Discrete Uniform Distribution 2 2 General Discrete Uniform Distribution 2 3 Uniform Distribution 3 4 General Uniform

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

Fundamental Tools - Probability Theory IV

Fundamental Tools - Probability Theory IV Fundamental Tools - Probability Theory IV MSc Financial Mathematics The University of Warwick October 1, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory IV 1 / 14 Model-independent

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

1 Bernoulli Distribution: Single Coin Flip

1 Bernoulli Distribution: Single Coin Flip STAT 350 - An Introduction to Statistics Named Discrete Distributions Jeremy Troisi Bernoulli Distribution: Single Coin Flip trial of an experiment that yields either a success or failure. X Bern(p),X

More information

2905 Queueing Theory and Simulation PART IV: SIMULATION

2905 Queueing Theory and Simulation PART IV: SIMULATION 2905 Queueing Theory and Simulation PART IV: SIMULATION 22 Random Numbers A fundamental step in a simulation study is the generation of random numbers, where a random number represents the value of a random

More information

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Copyright c 2007 by Karl Sigman 1 Simulating normal Gaussian rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Fundamental to many applications

More information

Midterm Examination. STA 215: Statistical Inference. Due Wednesday, 2006 Mar 8, 1:15 pm

Midterm Examination. STA 215: Statistical Inference. Due Wednesday, 2006 Mar 8, 1:15 pm Midterm Examination STA 215: Statistical Inference Due Wednesday, 2006 Mar 8, 1:15 pm This is an open-book take-home examination. You may work on it during any consecutive 24-hour period you like; please

More information

1 Delayed Renewal Processes: Exploiting Laplace Transforms

1 Delayed Renewal Processes: Exploiting Laplace Transforms IEOR 6711: Stochastic Models I Professor Whitt, Tuesday, October 22, 213 Renewal Theory: Proof of Blackwell s theorem 1 Delayed Renewal Processes: Exploiting Laplace Transforms The proof of Blackwell s

More information

Probability reminders

Probability reminders CS246 Winter 204 Mining Massive Data Sets Probability reminders Sammy El Ghazzal selghazz@stanfordedu Disclaimer These notes may contain typos, mistakes or confusing points Please contact the author so

More information

Lecture 17: The Exponential and Some Related Distributions

Lecture 17: The Exponential and Some Related Distributions Lecture 7: The Exponential and Some Related Distributions. Definition Definition: A continuous random variable X is said to have the exponential distribution with parameter if the density of X is e x if

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

Random Number Generators

Random Number Generators 1/18 Random Number Generators Professor Karl Sigman Columbia University Department of IEOR New York City USA 2/18 Introduction Your computer generates" numbers U 1, U 2, U 3,... that are considered independent

More information

Limiting Distributions

Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the two fundamental results

More information

EE126: Probability and Random Processes

EE126: Probability and Random Processes EE126: Probability and Random Processes Lecture 18: Poisson Process Abhay Parekh UC Berkeley March 17, 2011 1 1 Review 2 Poisson Process 2 Bernoulli Process An arrival process comprised of a sequence of

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 10. Poisson processes. Section 10.5. Nonhomogenous Poisson processes Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/14 Nonhomogenous Poisson processes Definition

More information

Probability Theory and Statistics (EE/TE 3341) Homework 3 Solutions

Probability Theory and Statistics (EE/TE 3341) Homework 3 Solutions Probability Theory and Statistics (EE/TE 3341) Homework 3 Solutions Yates and Goodman 3e Solution Set: 3.2.1, 3.2.3, 3.2.10, 3.2.11, 3.3.1, 3.3.3, 3.3.10, 3.3.18, 3.4.3, and 3.4.4 Problem 3.2.1 Solution

More information

Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3).

Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3). Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3). First of all, we note that µ = 2 and σ = 2. (a) Since X 3 is equivalent

More information

POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS

POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS 1.1. The Rutherford-Chadwick-Ellis Experiment. About 90 years ago Ernest Rutherford and his collaborators at the Cavendish Laboratory in Cambridge conducted

More information

Topic 3 - Discrete distributions

Topic 3 - Discrete distributions Topic 3 - Discrete distributions Basics of discrete distributions Mean and variance of a discrete distribution Binomial distribution Poisson distribution and process 1 A random variable is a function which

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 4 Statistical Models in Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 2 Transformations and Expectations Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 14, 2015 Outline 1 Distributions of Functions

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information