Statistical Inference

Size: px
Start display at page:

Download "Statistical Inference"

Transcription

1 Statistical Inference Classical and Bayesian Methods Class 7 AMS-UCSC Tue 31, 2012 Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

2 Topics Topics We will talk about... 1 Hypothesis testing Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

3 Significance level/size of the test Definition Level of significance/size of a test Which test is the best? We would like to have a test δ with low values of its power function for θ Ω 0 and high values of its power function for θ Ω 1. These two goals can not be reached simultaneously. Normally you select a number 0 < α 0 < 1 such that: π(θ α) α 0, for all θ Ω 0 The value of α 0 is the level of the test and we say that the test has a level of significance α 0 Size of a test The size of a test is defined as: α(δ) = sup θ Ω0 π(θ δ). A test is a level α 0 test if and only if its size is at most α 0. If the null hypothesis is simple (H 0 : θ = θ 0 ), the size of δ will be α(δ) = π(θ 0 δ) Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

4 Significance level/size of the test Example 1 Testing hypothesis about the Mean of a Normal Distribution with Known Variance In the previous class (page 11) our test δ was to reject H 0 : µ = µ 0 if X n µ 0 c. The variable Y = X n µ 0 has a Normal distribution with zero mean and variance σ 2 /n when µ = µ 0. For each α 0 we can find the value of c such that Pr( X n µ 0 c) = α 0. Due to the symmetry of the Normal distribution, the value of c must be the 1 α 0 /2 quantile of the distribution of Y. This quantile is c = Φ 1 (1 α 0 /2)σ/n 1/2 We can rewrite this test in terms of the statistic Z = n 1/2 X n µ 0 σ and reject H 0 if Z Φ 1 (1 α 0 /2) Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

5 The p-value Definition Calculating p-values Instead of choosing a value of α 0 in advance, we can report the value of the Z statistic and the smallest level α 0 such that we would reject the null hypothesis at level α 0 with the observed data. This value is the p-value. p-value Is the smallest level α 0 such that we would reject the null hypothesis at level α 0 with the observed data An experimenter who rejects a null hypothesis if and only if the p-value is at most α 0 is using a test with level of significance α 0. An experimenter who wants a level α 0 test, will reject the null hypothesis if and only if the p-value is at most α 0. For this reason the p-value is sometimes called the observed level of significance. Because the p-value is calculated as a probability in the upper tail of the distribution of a test statistics T, it is sometimes called the tail area. Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

6 The p-value Example Calculating p-value: Mean of a Normal distribution with known variance Suppose you fix α 0 = 0.05, you would reject H 0 if Z > Φ 1 (1 0.05/2) = If the observed value of Z = 2.78 we would reject H 0. On another hand, the hypothesis H 0 would be rejected for every level of significance α 0 such that 2.78 Φ 1 (1 α 0 /2). This inequality translate into α This value p = is called the p-value. You would also reject H 0 at level 0.01 since 0.01 > Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

7 Example 2 Testing hypothesis about the Uniform Distribution Let X 1, X 2,..., X n be a sample from a Uniform distribution in the interval [0, θ] with θ unknown. We want to test the hypothesis: H 0 : 3 θ 4 H 1 : θ < 3 or θ > 4 The MLE of θ is Y n = max{x 1, X 2,..., X n }. Let δ be the test: Do not reject H 0 if 2.9 < Y n < 4, and rejects H 0 if Y n does not lie in this interval. Critical region of the test: All values of X 1, X 2,..., X n for which either Y n 2.9 or Y n 4. (R : (, 2.9] [4, )) Power function of the test: This is specified by the relation: π(θ δ) = Pr(Y n 2.9 θ) + Pr(Y n 4 θ) Size of the test: α(δ) = sup 3 θ 4 π(θ δ) Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

8 Example 2 Testing hypothesis about the Uniform Distribution (Cont.) Power Function Calculation We need to calculate π(θ δ) for all values of θ. If θ 2.9: Pr(Y n 2.9 θ) = 1 and Pr(Y n 4 θ) = 0, therefore π(θ δ) = 1 If 2.9 < θ 4: Pr(Y n 2.9 θ) = (2.9/θ) n and Pr(Y n 4 θ) = 0, therefore π(θ δ) = (2.9/θ) n (*) If θ > 4: Pr(Y n 2.9 θ) = (2.9/θ) n and Pr(Y n 4 θ) = 1 (4/θ) n, therefore π(θ δ) = (2.9/θ) n + 1 (4/θ) n (*): Remember that if X 1, X 2,..., X n is a set of iid random variables, Pr(Y n y θ) = Pr(X 1 y θ).pr(x 2 y θ)... Pr(X n y θ) = F (y θ) n Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

9 Example 2 Testing hypothesis about the Uniform Distribution (Cont.) The size of δ is α(δ) = sup 3 θ 4 π(θ δ). Since the function is decreasing in the interval 3 θ 4, α(δ) = π(δ θ) = (2.9/3) n. If n = 68 then the size of δ = (2.9/3) 68 = δ is a level α 0 test for every level of significance α Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

10 Example 2 Testing hypothesis about the Uniform Distribution (Cont.) Sketch of the Power Function Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

11 Example 3 Testing hypothesis about a Bernoulli parameter Let X 1, X 2,..., X n be a sample from a Bernoulli distribution with parameter p unknown. We want to test the hypothesis: H 0 : p p 0 H 1 : p > p 0 Let Y = n i=1 X i. Y has a binomial distribution with parameters n and p. If p is large, Y will be large. Suppose we choose δ the test that rejects H 0 if Y c for some constant c. For a test of size α 0, c should be the smallest number such that Pr(Y c p = p 0 ) α 0. Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

12 Example 3 Testing hypothesis about a Bernoulli parameter (Cont.) If n = 10, p 0 = 0.3 and α 0 = 0.1 we must choose c > 5. The reason for this is that 10 Pr(Y = y p = 0.3) = and 10 y=5 y=6 Pr(Y = y p = 0.3) = Note: In this problem the p value is the Pr(Y y p = p 0 ). If Y = 6 is observed, then Pr(Y 6 p = 0.3) = is the p value. Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

13 Thanks for your attention... Winter Session 1 (Class 7) AMS-132/206 Tue 31, / 13

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Class 6 AMS-UCSC Thu 26, 2012 Winter 2012. Session 1 (Class 6) AMS-132/206 Thu 26, 2012 1 / 15 Topics Topics We will talk about... 1 Hypothesis testing

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Revision Class for Midterm Exam AMS-UCSC Th Feb 9, 2012 Winter 2012. Session 1 (Revision Class) AMS-132/206 Th Feb 9, 2012 1 / 23 Topics Topics We will

More information

Topic 10: Hypothesis Testing

Topic 10: Hypothesis Testing Topic 10: Hypothesis Testing Course 003, 2016 Page 0 The Problem of Hypothesis Testing A statistical hypothesis is an assertion or conjecture about the probability distribution of one or more random variables.

More information

Topic 10: Hypothesis Testing

Topic 10: Hypothesis Testing Topic 10: Hypothesis Testing Course 003, 2017 Page 0 The Problem of Hypothesis Testing A statistical hypothesis is an assertion or conjecture about the probability distribution of one or more random variables.

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Class 5 AMS-UCSC Tue 24, 2012 Winter 2012. Session 1 (Class 5) AMS-132/206 Tue 24, 2012 1 / 11 Topics Topics We will talk about... 1 Confidence Intervals

More information

Visual interpretation with normal approximation

Visual interpretation with normal approximation Visual interpretation with normal approximation H 0 is true: H 1 is true: p =0.06 25 33 Reject H 0 α =0.05 (Type I error rate) Fail to reject H 0 β =0.6468 (Type II error rate) 30 Accept H 1 Visual interpretation

More information

Nonparametric Tests. Mathematics 47: Lecture 25. Dan Sloughter. Furman University. April 20, 2006

Nonparametric Tests. Mathematics 47: Lecture 25. Dan Sloughter. Furman University. April 20, 2006 Nonparametric Tests Mathematics 47: Lecture 25 Dan Sloughter Furman University April 20, 2006 Dan Sloughter (Furman University) Nonparametric Tests April 20, 2006 1 / 14 The sign test Suppose X 1, X 2,...,

More information

Absolute Value Equations and Inequalities. Use the distance definition of absolute value.

Absolute Value Equations and Inequalities. Use the distance definition of absolute value. Chapter 2 Section 7 2.7 Absolute Value Equations and Inequalities Objectives 1 2 3 4 5 6 Use the distance definition of absolute value. Solve equations of the form ax + b = k, for k > 0. Solve inequalities

More information

1 Statistical inference for a population mean

1 Statistical inference for a population mean 1 Statistical inference for a population mean 1. Inference for a large sample, known variance Suppose X 1,..., X n represents a large random sample of data from a population with unknown mean µ and known

More information

Solution: First note that the power function of the test is given as follows,

Solution: First note that the power function of the test is given as follows, Problem 4.5.8: Assume the life of a tire given by X is distributed N(θ, 5000 ) Past experience indicates that θ = 30000. The manufacturere claims the tires made by a new process have mean θ > 30000. Is

More information

TUTORIAL 8 SOLUTIONS #

TUTORIAL 8 SOLUTIONS # TUTORIAL 8 SOLUTIONS #9.11.21 Suppose that a single observation X is taken from a uniform density on [0,θ], and consider testing H 0 : θ = 1 versus H 1 : θ =2. (a) Find a test that has significance level

More information

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3 Hypothesis Testing CB: chapter 8; section 0.3 Hypothesis: statement about an unknown population parameter Examples: The average age of males in Sweden is 7. (statement about population mean) The lowest

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses 9.2 Testing Simple Hypotheses 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the Means of Two

More information

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses.

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses. Stat 300A Theory of Statistics Homework 7: Solutions Nikos Ignatiadis Due on November 28, 208 Solutions should be complete and concisely written. Please, use a separate sheet or set of sheets for each

More information

Hypothesis Testing. ECE 3530 Spring Antonio Paiva

Hypothesis Testing. ECE 3530 Spring Antonio Paiva Hypothesis Testing ECE 3530 Spring 2010 Antonio Paiva What is hypothesis testing? A statistical hypothesis is an assertion or conjecture concerning one or more populations. To prove that a hypothesis is

More information

Uniformly and Restricted Most Powerful Bayesian Tests

Uniformly and Restricted Most Powerful Bayesian Tests Uniformly and Restricted Most Powerful Bayesian Tests Valen E. Johnson and Scott Goddard Texas A&M University June 6, 2014 Valen E. Johnson and Scott Goddard Texas A&MUniformly University Most Powerful

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections 1 / 22 : Hypothesis Testing Sections Skip: 9.2 Testing Simple Hypotheses Skip: 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.5 The t Test 9.6 Comparing the Means of Two Normal Distributions

More information

CSE 312 Final Review: Section AA

CSE 312 Final Review: Section AA CSE 312 TAs December 8, 2011 General Information General Information Comprehensive Midterm General Information Comprehensive Midterm Heavily weighted toward material after the midterm Pre-Midterm Material

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics MAS 713 Chapter 8 Previous lecture: 1 Bayesian Inference 2 Decision theory 3 Bayesian Vs. Frequentist 4 Loss functions 5 Conjugate priors Any questions? Mathematical Statistics

More information

Point Estimation. Vibhav Gogate The University of Texas at Dallas

Point Estimation. Vibhav Gogate The University of Texas at Dallas Point Estimation Vibhav Gogate The University of Texas at Dallas Some slides courtesy of Carlos Guestrin, Chris Bishop, Dan Weld and Luke Zettlemoyer. Basics: Expectation and Variance Binary Variables

More information

LECTURE 5 HYPOTHESIS TESTING

LECTURE 5 HYPOTHESIS TESTING October 25, 2016 LECTURE 5 HYPOTHESIS TESTING Basic concepts In this lecture we continue to discuss the normal classical linear regression defined by Assumptions A1-A5. Let θ Θ R d be a parameter of interest.

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 8 Probability and Statistical Models Motivating ideas AMS 131: Suppose that the random variable

More information

Math 152. Rumbos Fall Solutions to Assignment #12

Math 152. Rumbos Fall Solutions to Assignment #12 Math 52. umbos Fall 2009 Solutions to Assignment #2. Suppose that you observe n iid Bernoulli(p) random variables, denoted by X, X 2,..., X n. Find the LT rejection region for the test of H o : p p o versus

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information

Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS

Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS 1a. Under the null hypothesis X has the binomial (100,.5) distribution with E(X) = 50 and SE(X) = 5. So P ( X 50 > 10) is (approximately) two tails

More information

Topic 15: Simple Hypotheses

Topic 15: Simple Hypotheses Topic 15: November 10, 2009 In the simplest set-up for a statistical hypothesis, we consider two values θ 0, θ 1 in the parameter space. We write the test as H 0 : θ = θ 0 versus H 1 : θ = θ 1. H 0 is

More information

Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book)

Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book) Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book) Principal Topics The approach to certainty with increasing evidence. The approach to consensus for several agents, with increasing

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 11 The Prior Distribution Definition Suppose that one has a statistical model with parameter

More information

Lecture 8 Inequality Testing and Moment Inequality Models

Lecture 8 Inequality Testing and Moment Inequality Models Lecture 8 Inequality Testing and Moment Inequality Models Inequality Testing In the previous lecture, we discussed how to test the nonlinear hypothesis H 0 : h(θ 0 ) 0 when the sample information comes

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 January 18, 2018 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 18, 2018 1 / 9 Sampling from a Bernoulli Distribution Theorem (Beta-Bernoulli

More information

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1 Chapter 4 HOMEWORK ASSIGNMENTS These homeworks may be modified as the semester progresses. It is your responsibility to keep up to date with the correctly assigned homeworks. There may be some errors in

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006 Hypothesis Testing Part I James J. Heckman University of Chicago Econ 312 This draft, April 20, 2006 1 1 A Brief Review of Hypothesis Testing and Its Uses values and pure significance tests (R.A. Fisher)

More information

Confidence Intervals for Normal Data Spring 2014

Confidence Intervals for Normal Data Spring 2014 Confidence Intervals for Normal Data 18.05 Spring 2014 Agenda Today Review of critical values and quantiles. Computing z, t, χ 2 confidence intervals for normal data. Conceptual view of confidence intervals.

More information

Introduction to Machine Learning. Lecture 2

Introduction to Machine Learning. Lecture 2 Introduction to Machine Learning Lecturer: Eran Halperin Lecture 2 Fall Semester Scribe: Yishay Mansour Some of the material was not presented in class (and is marked with a side line) and is given for

More information

Study Ch. 9.3, #47 53 (45 51), 55 61, (55 59)

Study Ch. 9.3, #47 53 (45 51), 55 61, (55 59) GOALS: 1. Understand that 2 approaches of hypothesis testing exist: classical or critical value, and p value. We will use the p value approach. 2. Understand the critical value for the classical approach

More information

Confidence Interval Estimation

Confidence Interval Estimation Department of Psychology and Human Development Vanderbilt University 1 Introduction 2 3 4 5 Relationship to the 2-Tailed Hypothesis Test Relationship to the 1-Tailed Hypothesis Test 6 7 Introduction In

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

Statistics Ph.D. Qualifying Exam: Part II November 9, 2002

Statistics Ph.D. Qualifying Exam: Part II November 9, 2002 Statistics Ph.D. Qualifying Exam: Part II November 9, 2002 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Richard Lockhart Simon Fraser University STAT 830 Fall 2018 Richard Lockhart (Simon Fraser University) STAT 830 Hypothesis Testing STAT 830 Fall 2018 1 / 30 Purposes of These

More information

Summary: the confidence interval for the mean (σ 2 known) with gaussian assumption

Summary: the confidence interval for the mean (σ 2 known) with gaussian assumption Summary: the confidence interval for the mean (σ known) with gaussian assumption on X Let X be a Gaussian r.v. with mean µ and variance σ. If X 1, X,..., X n is a random sample drawn from X then the confidence

More information

Bayesian Computation

Bayesian Computation Bayesian Computation CAS Centennial Celebration and Annual Meeting New York, NY November 10, 2014 Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut CAS Antitrust

More information

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing 1 In most statistics problems, we assume that the data have been generated from some unknown probability distribution. We desire

More information

Partitioning the Parameter Space. Topic 18 Composite Hypotheses

Partitioning the Parameter Space. Topic 18 Composite Hypotheses Topic 18 Composite Hypotheses Partitioning the Parameter Space 1 / 10 Outline Partitioning the Parameter Space 2 / 10 Partitioning the Parameter Space Simple hypotheses limit us to a decision between one

More information

Zwiers FW and Kharin VV Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11:

Zwiers FW and Kharin VV Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11: Statistical Analysis of EXTREMES in GEOPHYSICS Zwiers FW and Kharin VV. 1998. Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11:2200 2222. http://www.ral.ucar.edu/staff/ericg/readinggroup.html

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Design of the Fuzzy Rank Tests Package

Design of the Fuzzy Rank Tests Package Design of the Fuzzy Rank Tests Package Charles J. Geyer July 15, 2013 1 Introduction We do fuzzy P -values and confidence intervals following Geyer and Meeden (2005) and Thompson and Geyer (2007) for three

More information

Lecture 11: Probability, Order Statistics and Sampling

Lecture 11: Probability, Order Statistics and Sampling 5-75: Graduate Algorithms February, 7 Lecture : Probability, Order tatistics and ampling Lecturer: David Whitmer cribes: Ilai Deutel, C.J. Argue Exponential Distributions Definition.. Given sample space

More information

BTRY 4090: Spring 2009 Theory of Statistics

BTRY 4090: Spring 2009 Theory of Statistics BTRY 4090: Spring 2009 Theory of Statistics Guozhang Wang September 25, 2010 1 Review of Probability We begin with a real example of using probability to solve computationally intensive (or infeasible)

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 5, 2011 Lecture 13: Basic elements and notions in decision theory Basic elements X : a sample from a population P P Decision: an action

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank Predicting performance Assume the estimated error rate is 5%. How close is this to the true error rate? Depends on the amount of test data Prediction

More information

MTMS Mathematical Statistics

MTMS Mathematical Statistics MTMS.01.099 Mathematical Statistics Lecture 12. Hypothesis testing. Power function. Approximation of Normal distribution and application to Binomial distribution Tõnu Kollo Fall 2016 Hypothesis Testing

More information

Inference in Regression Analysis

Inference in Regression Analysis Inference in Regression Analysis Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 1 Today: Normal Error Regression Model Y i = β 0 + β 1 X i + ǫ i Y i value

More information

Introductory Econometrics. Review of statistics (Part II: Inference)

Introductory Econometrics. Review of statistics (Part II: Inference) Introductory Econometrics Review of statistics (Part II: Inference) Jun Ma School of Economics Renmin University of China October 1, 2018 1/16 Null and alternative hypotheses Usually, we have two competing

More information

Reliable Inference in Conditions of Extreme Events. Adriana Cornea

Reliable Inference in Conditions of Extreme Events. Adriana Cornea Reliable Inference in Conditions of Extreme Events by Adriana Cornea University of Exeter Business School Department of Economics ExISta Early Career Event October 17, 2012 Outline of the talk Extreme

More information

Fin285a:Computer Simulations and Risk Assessment Section 2.3.2:Hypothesis testing, and Confidence Intervals

Fin285a:Computer Simulations and Risk Assessment Section 2.3.2:Hypothesis testing, and Confidence Intervals Fin285a:Computer Simulations and Risk Assessment Section 2.3.2:Hypothesis testing, and Confidence Intervals Overview Hypothesis testing terms Testing a die Testing issues Estimating means Confidence intervals

More information

STAT 4385 Topic 01: Introduction & Review

STAT 4385 Topic 01: Introduction & Review STAT 4385 Topic 01: Introduction & Review Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2016 Outline Welcome What is Regression Analysis? Basics

More information

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm Statistics GIDP Ph.D. Qualifying Exam Theory Jan, 06, 9:00am-:00pm Instructions: Provide answers on the supplied pads of paper; write on only one side of each sheet. Complete exactly 5 of the 6 problems.

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

How do we compare the relative performance among competing models?

How do we compare the relative performance among competing models? How do we compare the relative performance among competing models? 1 Comparing Data Mining Methods Frequent problem: we want to know which of the two learning techniques is better How to reliably say Model

More information

BINF702 SPRING 2015 Chapter 7 Hypothesis Testing: One-Sample Inference

BINF702 SPRING 2015 Chapter 7 Hypothesis Testing: One-Sample Inference BINF702 SPRING 2015 Chapter 7 Hypothesis Testing: One-Sample Inference BINF702 SPRING 2014 Chapter 7 Hypothesis Testing 1 Section 7.9 One-Sample c 2 Test for the Variance of a Normal Distribution Eq. 7.40

More information

Review. Midterm Exam. Midterm Review. May 6th, 2015 AMS-UCSC. Spring Session 1 (Midterm Review) AMS-5 May 6th, / 24

Review. Midterm Exam. Midterm Review. May 6th, 2015 AMS-UCSC. Spring Session 1 (Midterm Review) AMS-5 May 6th, / 24 Midterm Exam Midterm Review AMS-UCSC May 6th, 2015 Spring 2015. Session 1 (Midterm Review) AMS-5 May 6th, 2015 1 / 24 Topics Topics We will talk about... 1 Review Spring 2015. Session 1 (Midterm Review)

More information

Two examples of the use of fuzzy set theory in statistics. Glen Meeden University of Minnesota.

Two examples of the use of fuzzy set theory in statistics. Glen Meeden University of Minnesota. Two examples of the use of fuzzy set theory in statistics Glen Meeden University of Minnesota http://www.stat.umn.edu/~glen/talks 1 Fuzzy set theory Fuzzy set theory was introduced by Zadeh in (1965) as

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Introduction to Statistics

Introduction to Statistics MTH4106 Introduction to Statistics Notes 15 Spring 2013 Testing hypotheses about the mean Earlier, we saw how to test hypotheses about a proportion, using properties of the Binomial distribution It is

More information

Math 180B Problem Set 3

Math 180B Problem Set 3 Math 180B Problem Set 3 Problem 1. (Exercise 3.1.2) Solution. By the definition of conditional probabilities we have Pr{X 2 = 1, X 3 = 1 X 1 = 0} = Pr{X 3 = 1 X 2 = 1, X 1 = 0} Pr{X 2 = 1 X 1 = 0} = P

More information

F79SM STATISTICAL METHODS

F79SM STATISTICAL METHODS F79SM STATISTICAL METHODS SUMMARY NOTES 9 Hypothesis testing 9.1 Introduction As before we have a random sample x of size n of a population r.v. X with pdf/pf f(x;θ). The distribution we assign to X is

More information

Hypothesis testing: theory and methods

Hypothesis testing: theory and methods Statistical Methods Warsaw School of Economics November 3, 2017 Statistical hypothesis is the name of any conjecture about unknown parameters of a population distribution. The hypothesis should be verifiable

More information

STA 732: Inference. Notes 10. Parameter Estimation from a Decision Theoretic Angle. Other resources

STA 732: Inference. Notes 10. Parameter Estimation from a Decision Theoretic Angle. Other resources STA 732: Inference Notes 10. Parameter Estimation from a Decision Theoretic Angle Other resources 1 Statistical rules, loss and risk We saw that a major focus of classical statistics is comparing various

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

Bayesian Inference: Posterior Intervals

Bayesian Inference: Posterior Intervals Bayesian Inference: Posterior Intervals Simple values like the posterior mean E[θ X] and posterior variance var[θ X] can be useful in learning about θ. Quantiles of π(θ X) (especially the posterior median)

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1.

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1. Problem 1 (21 points) An economist runs the regression y i = β 0 + x 1i β 1 + x 2i β 2 + x 3i β 3 + ε i (1) The results are summarized in the following table: Equation 1. Variable Coefficient Std. Error

More information

Multiple Regression Analysis

Multiple Regression Analysis Multiple Regression Analysis y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inference 0 Assumptions of the Classical Linear Model (CLM)! So far, we know: 1. The mean and variance of the OLS estimators

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2

LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2 LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2 Data Analysis: The mean egg masses (g) of the two different types of eggs may be exactly the same, in which case you may be tempted to accept

More information

Notes on Decision Theory and Prediction

Notes on Decision Theory and Prediction Notes on Decision Theory and Prediction Ronald Christensen Professor of Statistics Department of Mathematics and Statistics University of New Mexico October 7, 2014 1. Decision Theory Decision theory is

More information

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Thais Paiva STA 111 - Summer 2013 Term II August 7, 2013 1 / 31 Thais Paiva STA 111 - Summer 2013 Term II Lecture 23, 08/07/2013 Lecture

More information

Ling 289 Contingency Table Statistics

Ling 289 Contingency Table Statistics Ling 289 Contingency Table Statistics Roger Levy and Christopher Manning This is a summary of the material that we ve covered on contingency tables. Contingency tables: introduction Odds ratios Counting,

More information

Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018

Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018 Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018 Sampling A trait is measured on each member of a population. f(y) = propn of individuals in the popn with measurement

More information

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Logistics CSE 446: Point Estimation Winter 2012 PS2 out shortly Dan Weld Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Last Time Random variables, distributions Marginal, joint & conditional

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

IE 303 Discrete-Event Simulation

IE 303 Discrete-Event Simulation IE 303 Discrete-Event Simulation 1 L E C T U R E 5 : P R O B A B I L I T Y R E V I E W Review of the Last Lecture Random Variables Probability Density (Mass) Functions Cumulative Density Function Discrete

More information

δ -method and M-estimation

δ -method and M-estimation Econ 2110, fall 2016, Part IVb Asymptotic Theory: δ -method and M-estimation Maximilian Kasy Department of Economics, Harvard University 1 / 40 Example Suppose we estimate the average effect of class size

More information

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs STATISTICS 4 Summary Notes. Geometric and Exponential Distributions GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs P(X = x) = ( p) x p x =,, 3,...

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Introduction to Statistical Inference Dr. Fatima Sanchez-Cabo f.sanchezcabo@tugraz.at http://www.genome.tugraz.at Institute for Genomics and Bioinformatics, Graz University of Technology, Austria Introduction

More information

Post-exam 2 practice questions 18.05, Spring 2014

Post-exam 2 practice questions 18.05, Spring 2014 Post-exam 2 practice questions 18.05, Spring 2014 Note: This is a set of practice problems for the material that came after exam 2. In preparing for the final you should use the previous review materials,

More information

Lecture 13: p-values and union intersection tests

Lecture 13: p-values and union intersection tests Lecture 13: p-values and union intersection tests p-values After a hypothesis test is done, one method of reporting the result is to report the size α of the test used to reject H 0 or accept H 0. If α

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Accouncements You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Please do not zip these files and submit (unless there are >5 files) 1 Bayesian Methods Machine Learning

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

Hypothesis Testing One Sample Tests

Hypothesis Testing One Sample Tests STATISTICS Lecture no. 13 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 12. 1. 2010 Tests on Mean of a Normal distribution Tests on Variance of a Normal

More information

Random Variable. Pr(X = a) = Pr(s)

Random Variable. Pr(X = a) = Pr(s) Random Variable Definition A random variable X on a sample space Ω is a real-valued function on Ω; that is, X : Ω R. A discrete random variable is a random variable that takes on only a finite or countably

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Hypothesis testing is a statistical problem where you must choose, on the basis of data X, between two alternatives. We formalize this as the problem of choosing between two

More information