Laser Trapping and Probing of Exotic Helium Isotopes. Peter Müller

Size: px
Start display at page:

Download "Laser Trapping and Probing of Exotic Helium Isotopes. Peter Müller"

Transcription

1 Laser Trapping and Probing of Exotic Helium Isotopes Peter Müller

2 Outline Nuclear Charge Radii of 6 He and 8 He -Neutron Halo Isotopes 6,8 He - Charge Radii and Isotope Shift - Atom Trapping of Helium - 8 He Experiment at GANIL Laser Spectroscopy of Light Isotopes (@ Mainz University) - 11 Li with Two-photon Spectroscopy ( + TRIUMF) - 11 Be with Collinear Spectroscopy ( + ISOLDE/CERN) Beyond Halo Isotopes - Neutron Rich Isotopes at CARIBU/FRIB - 6 He beta-neutrino correlation 2

3 Laser Spectroscopy of Radioactive Isotopes Nuclear charge radii + nuclear moments >30 years of effort W. Nörtershäuser 3

4 Light Nuclei & Neutron Halos I. Tanihata et al. ( 85) 1-n halo 6 He 2-n halo 4-n halo Charge Radius Measurement 4

5 Green s Function Monte Carlo 2010 Tom W. Bonner Price Pieper & Wiringa (2006) 5

6 GFMC Neutron and Proton Densities in 4,6,8 He n or p 4 He 6 He 8 He Borromean Nucleus Borromean Rings Neutron Proton 6

7 Neutron Halo Nuclei 6 He and 8 He Isotope Half-life Spin Isospin Core + Valence He ms α + 2n He ms α + 4n Borromean 3.0 I. Tanihata et al., Phys. Lett. (1985) Core-Halo Structure Interaction Radius (fm) ( 6 H e ) ( 4 H e ) = ( 6 H e ) σ σ σ I I 2 n I. Tanihata et al., Phys. Lett. (1992) 6 He Helium Mass Number A 7

8 Helium Atom fm Ionization Energy of Helium Atom Å e - Level 2 3 S 1 Calculation Experiment ± 6 MHz MHz Gordon Drake, Phys. Scripta (1999) 8

9 Atomic Energy Levels of Helium He energy level diagram He discharge 3 3 P 0,1,2 2 3 P 0,1,2 3.2 ev 389 nm 2 3 S S ev 1083 nm metastable 19.8 ev, e-collision in discharge 9

10 Field (Volume) Shift E δν FS = 2π Ze 3 r 2 Ψ(0) 2 δ r 2 AA s p V ~ - 1/r Isotope Shift, GHz Mass shift Field shift 1E Atomic number, Z 10

11 Atomic Isotope Shift Isotope Shift Mass shift: due to nucleus recoil A A' δν MS AA ' δν = δν MS + δν δν FS Field shift: due to nucleus size δν FS Ζ [Ψ(0)] 2 δ<r 2 > For 2 3 S P nm: δν = δν MS + C FS δ<r2 > 6 He - 4 He : δν 6,4 = (16) MHz (<r 2 > He4 - <r 2 > He6 ) MHz/fm 2 8 He - 4 He : δν 8,4 = (1) MHz (<r 2 > He4 - <r 2 > He8 ) MHz/fm 2 G.W.F. Drake, Univ. of Windsor, Nucl. Phys. A737c, 25 (2004) 100 khz error in IS ~ 1% error in radius 11

12 Laser Cooling and Trapping Technical challenges: Short lifetime, small samples (<10 6 atoms/s available) Low metastable population efficiency (~ one in ) Precision requirement (100 khz = Doppler 4 cm/s ) Magneto-Optical Trap (MOT) Cooling: Temperature ~ 1 mk, avoid Doppler shift / width Long observation time: 100 ms Spatial confinement: trap size < 1 mm single atom sensitivity Selectivity: no isotopic / isobaric interference 12

13 Where to find 8 He? GANIL Caen, France 13

14 GANIL 75 MeV/u, 0.4 pµa 13 C beam on 12 C target 14

15 8 GANIL Salle D2 ECR Ion Source 13 C Mass separator 6,8 He 20 kev 6,8 He 5 m thermal 1.65 MOT Laser System 15

16 Atom Trapping of 6 He & 8 He at GANIL He level scheme Atom Trap Setup 389 nm Spectroscopy 389 nm 3 3 P P 2 Trap 1083 nm 2 3 S S nm Helium Rates 6 He 8 source 5x10 7 s -1 1x10 5 s -1 Efficiency = trap 5 s hr -1 Photon countrate/ khz Single atom signal One 6 He atom Time (s) 16

17 Jan. 26 th

18 Source & Zeeman Slower 18

19 June 12 th - 20 th

20 June 14 th. Trip to Brittany? 300 km 20

21 June 15th. 6 He + 8 He Sample Spectra 6 He 8 He 100 Counts per Channel khz Counts per Channel khz Rel. Laser Frequency, MHz Rel. Laser Frequency, MHz ~ 5 6 He atoms/s 2 minutes ~ 30 8 He atoms/hr 2 hours 21

22 Experimental Uncertainties and Corrections 6 He 8 He Statistical { Photon Counting Laser Alignment 8 khz 2 khz 32 khz 12 khz Reference Laser 2 khz 24 khz Systematic { Probing Power Shift Zeeman Shift 0 khz 30 khz 15 khz 45 khz Nuclear Mass 15 khz 74 1 khz TOTAL 35 khz khz Corrections Recoil Effect Nuclear Polarization +110(0) khz -14(3) khz +165(0) khz -2(1) khz TITAN Penning TRIUMF, V. L. Ryjkov et al., PRL 101, (2008) 22

23 6 He & 8 He RMS Charge Radii R p 6 He 8 He r c Field Shift, MHz (34) (63) RMS R CH, fm 2.072(9) 1.961(16) Total Uncertainty 0.4 % 0.9 % R n - Statistical 0.1 % 0.6 % - Trap Systematics 0.3 % 0.6 % - Mass Systematics 0.1 % 0.0 % - He-4: 1.681(4) fm 0.1 % 0.1 % - δ SO - MEC P. Mueller et al., PRL 99, (2007) + V. L. Ryjkov et al., PRL 101, (2008): He-8 mass + I. Sick PRC 77, (R) (2008): He-4 Charge Radius <R P2 > = 0.766(12) fm 2 <R N2 > = (5) fm 2 23

24 6 He & 8 He RMS Point Proton and Matter Radii 4 He rms point-proton matter Experiment Theory 6 He 8 He 6 He Field Shift, MHz (34) (63) RMS R pp, fm 1.930(9) 1.843(16) Total Uncertainty 0.4 % 0.9 % - Statistical - Trap Systematics 0.1 % 0.3 % 0.6 % 0.6 % 8 He - Mass Systematics 0.2 % 0.0 % - He-4: 1.465(4) fm 0.1 % 0.1 % Nuclear Radii, fm 24

25 RMS Charge Radii : 4 He - 6 He - 8 He 1.681(4) fm 2.072(9) fm 1.961(16) fm 25

26 Resonance Ionization of Lithium Lithium atomic levels Experimental setup 5.4 ev Ion Signal CO-Laser 2 τ = 30 ns 3d 2 D 3/2,5/2 3s 2 S 1/2 735 nm 610 nm 2p 2 P 1/2,3/2 735 nm 610 nm Electrostatic Lenses PZT 735 nm 2s 2 S 1/2 6,7,8,9,11 Li Magnet Courtesy of W. Noertershaeuser, Mainz University 26

27 Nuclear Charge Radii Comparison with Theory r c (fm) r c ( 7 Li) = 2.39(3) fm Suelzle et al, PR 162,992(1967) Pachucki LBSM SVMC DCM AV18IL2 NCSM FMD SVMCFC Li Isotope R. Sánchez et al., PRL 96, (2006) Nature Physics 2, 145 (2006) M. Puchalski et al., PRL 97, (2006) Three body model: 27

28 Limitations for Light Elements The Solution ion beam E kin ~60 kev + collinear laser beam fixed frequency CONVENTIONAL SETUP ( β ) ν = ν γ 1 + c 0 Doppler-tuning Acceleration / NEW APPROACH anticollinear laser beam fixed frequency ( β ) ( β ) ν = ν γ 1 + ν c a 0 = ν γ 1 Deceleration ( ) 0 ν = a ν c = ν 0 γ 1 β ν 0 Completely independent of U! γ= γ(u,m), β = β(u,m), U/U 10-4 δν IS ( 9 Be, 11 Be) = 14 MHz Photomultiplier Impossible for Light Elements (Z<10)!! Requirements: Measure absolute frequencies Accuracy: ν/ν < 10-9 Dedicated Laser System for absolute Frequency Measurements 28

29 9 Be + l 313 nm Experimental Setup 2p 3/2 2p 1/2 F=0,1,2,3 F=1 F=2 2s 1/2 F=1 F=2 Collinear Anticollinear 29

30 Nuclear Charge Radius (fm) Beryllium: Nuclear Charge Radii Electron Scattering: r c ( 9 Be) = 2.519(12) fm, J.A. Jansen et al., Nucl.Phys.A 188, 337 (1972). Muonic Atoms: r c ( 9 Be) = 2.39(17) fm, L.A. Schaller, Nucl.Phys.A 343, 333 (1980). 2,8 2,7 2,6 2,5 2,4 2, Be Isotope W. Nörtershäuser et al., PRL 102, (2009). + References: Experiment Interaction cross section (Tanihata) Greens-Funct. Monte-Carlo Calcul. Fermonic Molecular Dynamics No-Core Shell Model Thanks to R.Torabi, Th. Neff, H. Feldmeier and P. Navratil for providing unpublished data! 30

31 Berylium Charge Radii in FMD Calculations FMD: Fermionic Molecular Dynamics M. Zakova, Th. Neff et al., J.Phys.G, in print (2010). Calculations by Thomas Neff, GSI 10 Be α-α R pp = Charge radius with respect to the center-of-charge α- α Distance. 31

32 Laser CARIBU Cf-252 source 80 mci -> 1Ci Gas catcher Laser Enclosure (~ 6 x 10 ) AC Laser Table (~ 3 x 7 ) HEPA Tape Station High-resolution mass separator δm/m > 1/20000 Ion Trap / Cryostat RF Cooler & Buncher Collinear Beamline To ATLAS 32

33 Laser CARIBU concentrate on developing new techniques extend isotopic chains to more neutron rich isotopes access to refractory elements -> techniques applicable to FRIB setup Low-energy yield, s -1 > < 1 33

34 Laser Spectroscopy of Radioactive Isotopes Charge radii + moments The next 30 years FRIB - more neutron rich - refractory elements W. Nörtershäuser 34

35 Stopped Beams Area at FRIB collinear trap / cryostats laser table ~2m x 2m floor space for traps or cryostat use mass separated beams after RF cooler/buncher charge-exchange cell Ti:Sa laser system w/ frequency doubler 4 x 8 laser table fiber coupling ok 35

36 Beta-Neutrino Correlation in the Decay of 6 He t 1/2 =0.808 sec 6 He 0 + β 100% E 0 = MeV 6 Li 1 + Correlation Coef. a T A V ( θ ) N E C C, 1 a p β + cosθ E β βν βν β Best experimental limit: a = ± T A C T 0.4% C A a(exp) - a(sm) x He n Na 21 Na S Ar 38m K Johnson et al., Phys. Rev. (1963) Fermi fraction

37 Beta-Decay Study with Laser Trapped 6 He Simple atom, nucleus, decay mode Sensitive to tensor couplings MCP Detector Beta-Detector Counts Simulated time-of-flight signal a = +1/3 a = -1/3 New Physics Standard Model 6 Li + β He atom trap Time of Flight (ns) He yields: ATLAS: s -1 with 12 C( 7 Li, 6 He) pna CENPA: ~ s -1 with 7 Li(d, 3 Ηe) 6 1 pµa Assume 6 He trapping rate of s -1, with trapping efficiency 15 minutes, coincidence events, δa = ± (δa/a = 0.1% in ~1 week) 37

38 Thank You! 8 He Collaboration K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, P.M., T. P. O'Connor, I. Sulai Physics Division, Argonne National Laboratory, USA M.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari, J.A. Alcantara-Nunez, R. Alvez-Conde, M. Dubois, C. Eleon, G. Gaubert, N. Lecesne GANIL, Caen, France G. W. F. Drake - University of Windsor, Windsor, Canada L.-B. Wang Los Alamos National Laboratory, USA Argonne Atom Trappers 38

39 GFMC What happens to the α-core? AV18 + IL2 GFMC proton-proton distributions 39

40 GFMC Binding Energy vs. Charge Radius 40

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics Helium Atom fm Å e - Ionization

More information

Charge Radii of Light Isotopes from Helium to Boron

Charge Radii of Light Isotopes from Helium to Boron Charge Radii of Light Isotopes from Helium to Boron Peter Müller Laser Spectroscopy of Radioactive Isotopes Nuclear charge radii + nuclear moments >40 years of effort http://www.gsi.de/forschung/ap/projects/laser/survey.html

More information

Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF. stephan ettenauer for the TITAN collaboration

Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF. stephan ettenauer for the TITAN collaboration Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF stephan ettenauer for the TITAN collaboration Weakly Bound Systems in Atomic and Nuclear Physics, March 2010 1 Outline Overview:

More information

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum ECT* Trento The Lead Radius Precision measurements of nuclear ground state properties for nuclear structure studies Klaus Blaum 04.08.2009 Outline Introduction, history and methods Principle of laser spectroscopy

More information

arxiv: v4 [nucl-ex] 5 Feb 2009

arxiv: v4 [nucl-ex] 5 Feb 2009 Nuclear Charge Radii of 7,9,10 Be and the one-neutron halo nucleus 11 Be arxiv:0809.2607v4 [nucl-ex] 5 Feb 2009 W. Nörtershäuser, 1,2 D. Tiedemann, 2 M. Žáková,2 Z. Andjelkovic, 2 K. Blaum, 3 M. L. Bissell,

More information

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics T + - + - He Ra EDM Spin EDM Spin β - θ ν e He Kr 6 He 6 Li + Supported by DOE, Office of Nuclear Physics Search for a Permanent Electric Dipole Moment in Ra-225 + T + P - - - + EDM Spin EDM Spin EDM Spin

More information

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d Search for a Permanent Electric Dipole Moment in Ra-225 + T + P - - - + EDM Spin EDM Spin EDM Spin Pseudo-scalar s d C. S. Wu 1912-1997 Parity (space reversal) x, y, z -x, -y, -z z y Parity z x x y Pseudo-scalar

More information

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University TAMU-TRAP facility for Weak Interaction Physics P.D. Shidling Cyclotron Institute, Texas A&M University Outline of the talk Low energy test of Standard Model T =2 Superallowed transition Facility T-REX

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Fundamental interactions experiments with polarized trapped nuclei

Fundamental interactions experiments with polarized trapped nuclei Fundamental interactions experiments with polarized trapped nuclei β + DESIR meeting Leuven, 26-28 May 2010 ν e Nathal Severijns Kath. University Leuven, Belgium 5/31/2010 N. Severijns, DESIR Workshop

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

Opportunities with collinear laser spectroscopy at DESIR:

Opportunities with collinear laser spectroscopy at DESIR: Opportunities with collinear laser spectroscopy at DESIR: the LUMIERE facility GOALS of LUMIERE experiments: Gerda Neyens, K.U. Leuven, Belgium (1) measure ground state properties of exotic isotopes: (see

More information

the role of atom and ion traps

the role of atom and ion traps Beyond Standard Model physics with nuclei V ud from mirror transitions and the role of atom and ion traps Oscar Naviliat-Cuncic LPC-Caen, ENSI CNRS/IN2P3 and Université de Caen Basse-Normandie Caen, France

More information

Status of the Search for an EDM of 225 Ra

Status of the Search for an EDM of 225 Ra Status of the Search for an EDM of 225 Ra I. Ahmad, K. Bailey, J. Guest, R. J. Holt, Z.-T. Lu, T. O Connor, D. H. Potterveld, N. D. Scielzo Roy Holt Lepton Moments 2006 Cape Cod Outline Why is an EDM interesting?

More information

Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics

Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics Winter Meeting on Nuclear Physics, Bormio, Italy 2014 Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics Klaus Blaum Jan 27, 2014 Klaus.blaum@mpi-hd.mpg.de

More information

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015 Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015 Outline WHAT are we measuring? - Nuclear/atomic masses WHY do we need/want to measure

More information

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Euroschool on Physics with Exotic Beams, Mainz 005 Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Klaus Blaum Johannes Gutenberg-University Mainz

More information

S1155 Ground State Moments of Lithium Status and Recent Results

S1155 Ground State Moments of Lithium Status and Recent Results S1155 Ground State Moments of Lithium Status and Recent Results, 2. June 2010 Lithium charge radii RMS charge radii of Li isotopes Data taken from: Sánchez et al. PRL 96, 33002 (2006) RMS charge radii

More information

Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape. Iain Moore University of Jyväskylä, Finland

Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape. Iain Moore University of Jyväskylä, Finland Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape Iain Moore University of Jyväskylä, Finland Nordic Conference on Nuclear Physics 2011 Outline Introduction to

More information

Collinear laser spectroscopy of radioactive isotopes at IGISOL 4 Liam Vormawah

Collinear laser spectroscopy of radioactive isotopes at IGISOL 4 Liam Vormawah Collinear laser spectroscopy of radioactive isotopes at IGISOL 4 Liam Vormawah University of Liverpool Introduction Collinear laser spectroscopy Nuclear properties from hyperfine structures Isotope shifts

More information

The Nuclear Many-Body problem. Lecture 3

The Nuclear Many-Body problem. Lecture 3 The Nuclear Many-Body problem Lecture 3 Emergent phenomena at the drip lines. How do properties of nuclei change as we move towards the nuclear driplines? Many-body open quantum systems. Unification of

More information

Nuclear physics: Magdalena Kowalska CERN, PH Dept.

Nuclear physics: Magdalena Kowalska CERN, PH Dept. Nuclear physics: the ISOLDE facility Magdalena Kowalska CERN, PH Dept on behalf of the CERN ISOLDE team www.cern.ch/isolde Outline Forces inside atomic nuclei Nuclei and QCD, nuclear models Nuclear landscape

More information

Measurement of Spin-Polarized Observables in the β + decay of 37 K

Measurement of Spin-Polarized Observables in the β + decay of 37 K Measurement of Spin-Polarized Observables in the β + decay of 37 K Texas A&M University Cyclotron Institute June 18, 2014 Outline Brief physics goals Outline of TRINAT s double-mot system Overview of recent

More information

LASPEC in Phase-0: Towards a Nuclear Charge Radius Measurement of 8 B

LASPEC in Phase-0: Towards a Nuclear Charge Radius Measurement of 8 B LASPEC in Phase-0: Towards a Nuclear Charge Radius Measurement of 8 B Jörg Krämer for the LaSpec and the Bor8 collaboration 30.09.2016 Jörg Krämer NUSTAR Week 2016 - York 1 Outline LaSpec at FAIR TRIGALASER,

More information

K.U.Leuven. : an Application of the MYRRHA Accelerator for Nuclear Physics. Piet Van Duppen IKS, KUL, Leuven (BE)

K.U.Leuven. : an Application of the MYRRHA Accelerator for Nuclear Physics. Piet Van Duppen IKS, KUL, Leuven (BE) ISOL@MYRRHA : an Application of the MYRRHA Accelerator for Nuclear Physics Piet Van Duppen IKS, KUL, Leuven (BE) MYRRHA ADS first step demo facility at power (50-100 MW) Flexible irradiation facility Need

More information

Results from the collinear laser spectroscopy collaboration at ISOLDE-CERN

Results from the collinear laser spectroscopy collaboration at ISOLDE-CERN Results from the collinear laser spectroscopy collaboration at ISOLDE-CERN Gerda Neyens K.U. Leuven: K. Flanagan, D. Yordanov, P. Lievens, G. Neyens, M. De Rydt, P. Himpe, N. Vermeulen. Universität Mainz:

More information

Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth

Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth Towards a test of time dilation: Spectroscopy of lithium ions at 34% of the speed of light with sub-doppler linewidth.07.008 /3 Outline Introduction: test theories for SRT Tools for modern test of time

More information

Coherent and incoherent nuclear pion photoproduction

Coherent and incoherent nuclear pion photoproduction Coherent and incoherent nuclear pion photoproduction Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Gordon Conference on photonuclear reactions, August 2008

More information

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

1. Nuclear Size. A typical atom radius is a few!10 10 m (Angstroms). The nuclear radius is a few!10 15 m (Fermi). 1. Nuclear Size We have known since Rutherford s! " scattering work at Manchester in 1907, that almost all the mass of the atom is contained in a very small volume with high electric charge. Nucleus with

More information

Nuclear and Radiation Physics

Nuclear and Radiation Physics 501503742 Nuclear and Radiation Physics Why nuclear physics? Why radiation physics? Why in Jordan? Interdisciplinary. Applied? 1 Subjects to be covered Nuclear properties. Nuclear forces. Nuclear matter.

More information

First RIA Summer School on Exotic Beam Physics, August 12-17, Michael Thoennessen, NSCL/MSU. Lecture 1: Limits of Stability 1 A = 21

First RIA Summer School on Exotic Beam Physics, August 12-17, Michael Thoennessen, NSCL/MSU. Lecture 1: Limits of Stability 1 A = 21 Limits of Stability At the moment we are limited in our view of the atomic nucleus Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit? Some Basic Nuclear Property Neutron Drip Line? RIA Will

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de EMMI Physics Days 2011, GSI Darmstadt Precision Penning Trap Experiments with Exotic Ions Klaus Blaum November 08, 2011 Outline Introduction and motivation Principle of Penning

More information

From few-body to many-body systems

From few-body to many-body systems From few-body to many-body systems Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen Few-Body Physics: Advances and Prospects in Theory and Experiment 614. WE-Heraeus-Seminar, Bad Honnef April

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de Hirschegg 2012 Precision Penning Trap Experiments with Exotic Ions Klaus Blaum January 16, 2012 Outline Introduction and motivation Principle of Penning traps Setup and measurement

More information

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES A.E. Barzakh, D.V. Fedorov, A.M. Ionan, V.S. Ivanov, F.V. Moroz, K.A. Mezilev, S.Yu. Orlov, V.N. Panteleev, Yu.M. Volkov

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

Laser spectroscopy of actinides at the IGISOL facility, JYFL. Iain Moore University of Jyväskylä, Finland

Laser spectroscopy of actinides at the IGISOL facility, JYFL. Iain Moore University of Jyväskylä, Finland Laser spectroscopy of actinides at the IGISOL facility, JYFL Iain Moore University of Jyväskylä, Finland Outline Motivation for heavy element studies Laser ionization and spectroscopy of plutonium Comparison

More information

Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei

Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei Fred SARAZIN Colorado School of Mines SORRY Overview What is low-energy nuclear physics? Stable

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

Good News Bad News..

Good News Bad News.. M. Hass 1, O. Heber 1, D. Melnik 1, M. Rappaport 1, A. Prygarin 1, S. Vaintraub 1,3, D. Schwalm 1,4, D. Zajfman 1, G. Ron 2, T. Segal 2, T. Hirsh 3, K. Blaum 4 1 Weizmann Institute of Science, Israel,

More information

Towards the Extremes of the Nuclear Landscape. Walter F. Henning - RIKEN Nishina Center

Towards the Extremes of the Nuclear Landscape. Walter F. Henning - RIKEN Nishina Center Towards the Extremes of the Nuclear Landscape Walter F. Henning - RIKEN Nishina Center Super heavies Proton drip line Unknown Territory Neutron drip line Super heavies Proton drip line Neutron drip line

More information

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes K. Tajiri, T. Shimoda, K. Kura, M. Kazato, M. Suga, A. Takashima, T. Masue, T. Hori, T. Suzuki, T. Fukuchi, A.

More information

Photopion photoproduction and neutron radii

Photopion photoproduction and neutron radii Photopion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Jefferson Lab PREX workshop, August 2008 Talk Outline Nuclear (π

More information

FAIR. Reiner Krücken for the NUSTAR collaboration

FAIR. Reiner Krücken for the NUSTAR collaboration NUSTAR @ FAIR Reiner Krücken for the NUSTAR collaboration Physik Department E12 Technische Universität München & Maier-Leibnitz-Laboratory for Nuclear and Particle Physics NUSTAR @ FAIR Nuclear Structure

More information

Sunday, October 31, Cooking With The Stars

Sunday, October 31, Cooking With The Stars Cooking With The Stars What are we made of? Veggies What are we made of? Poutine What are we made of? Liver Fava beans..and a nice Chianti Element % (no. of atoms) How they were made Hydrogen 61.6 Big

More information

Electromagentic Reactions and Structure of Light Nuclei

Electromagentic Reactions and Structure of Light Nuclei Electromagentic Reactions and Structure of Light Nuclei Sonia Bacca CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Physics with stopped beams at TRIP-TRAP Facility. P.D. Shidling Cyclotron Institute, Texas A&M University

Physics with stopped beams at TRIP-TRAP Facility. P.D. Shidling Cyclotron Institute, Texas A&M University Physics with stopped beams at TRIP-TRAP Facility P.D. Shidling Cyclotron Institute, Texas A&M University Physics with stopped beams Experiments require high purity low energy ions for studying various

More information

magneto-optically trapped, spin-polarized 37 K

magneto-optically trapped, spin-polarized 37 K Measurement of the β-asymmetry in the decay of magneto-optically trapped, spin-polarized 37 K TRIUMF Neutral Atom Trap Texas A&M University Cyclotron Institute October, 24 Acknowledgments The TRINAT Collaboration

More information

Mass measurements of n-rich nuclei with A~70-150

Mass measurements of n-rich nuclei with A~70-150 Mass measurements of n-rich nuclei with A~70-150 Juha Äystö Helsinki Institute of Physics, Helsinki, Finland in collaboration with: T. Eronen, A. Jokinen, A. Kankainen & IGISOL Coll. with theory support

More information

Introduction to REX-ISOLDE concept and overview of (future) European projects

Introduction to REX-ISOLDE concept and overview of (future) European projects Introduction to REX-ISOLDE concept and overview of (future) European projects Thanks to: Y. Blumenfeld, P. Butler, M. Huyse, M. Lindroos, K. Riisager, P. Van Duppen Energetic Radioactive Beam Facilities

More information

International Nuclear Physics Conference Adelaide, Australia September 13, 2016

International Nuclear Physics Conference Adelaide, Australia September 13, 2016 International Nuclear Physics Conference Adelaide, Australia September 13, 2016 This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-07NA27344. Lawrence

More information

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays F. Bezrukov MPI für Kernphysik, Heidelberg, Germany 11-12-2008 Kaffeepalaver Outline Outline 1 Implications for light

More information

Radioactivity at the limits of nuclear existence

Radioactivity at the limits of nuclear existence Radioactivity at the limits of nuclear existence Zenon Janas Institute of Experimental Physics University of Warsaw Chart of nuclei - stable - β + - β - - α - fission - p p and 2p radioactivty proton radioactivity

More information

The Island of of Inversion from a nuclear moments perspective

The Island of of Inversion from a nuclear moments perspective The Island of of Inversion from a nuclear moments perspective Gerda Neyens Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Belgium the LISE-NMR collaboration @ GANIL: E437 (,32,33 g-factors) E437a

More information

LEAP, Kanazawa, Japan 2016

LEAP, Kanazawa, Japan 2016 Klaus.blaum@mpi-hd.mpg.de LEAP, Kanazawa, Japan 2016 Precision atomic and nuclear masses and their importance for nuclear structure, astrophysics and fundamental studies Motivation for precision mass data

More information

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22 Quantum Mechanica Peter van der Straten Universiteit Utrecht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 1 / 22 Matrix methode Peter van der Straten (Atom Optics) Quantum Mechanica

More information

Status & Plans for the TRIUMF ISAC Facility

Status & Plans for the TRIUMF ISAC Facility Status & Plans for the TRIUMF ISAC Facility P.W. Schmor APAC 07, Jan 29-Feb 2 Indore, India TRIUMF ISAC Schematic Layout of TRIUMF/ISAC with H- Driver, ISOL Production & Post Accelerators ISAC-II High

More information

Laser spectroscopy studies of neutron-rich nuclei

Laser spectroscopy studies of neutron-rich nuclei Laser spectroscopy studies of neutron-rich nuclei Ronald Fernando Garcia Ruiz The University of Manchester Walk on the neutron-rich side ECT* Trento, April 2017 The COLLAPS Collaboration M. Bissell, K.

More information

Nuclear Spin and Stability. PHY 3101 D. Acosta

Nuclear Spin and Stability. PHY 3101 D. Acosta Nuclear Spin and Stability PHY 3101 D. Acosta Nuclear Spin neutrons and protons have s = ½ (m s = ± ½) so they are fermions and obey the Pauli- Exclusion Principle The nuclear magneton is eh m µ e eh 1

More information

Lecture 3. lecture slides are at:

Lecture 3. lecture slides are at: Lecture 3 lecture slides are at: http://www.physics.smu.edu/ryszard/5380fa16/ Proton mass m p = 938.28 MeV/c 2 Electron mass m e = 0.511 MeV/c 2 Neutron mass m n = 939.56 MeV/c 2 Helium nucleus α: 2 protons+2

More information

Isotope shift measurements of 11,9,7 Be +

Isotope shift measurements of 11,9,7 Be + Eur. Phys. J. A, 39 373 (9) DOI 1.11/epja/i9-13-5 Regular Article Experimental Physics THE EUROPEAN PHYSICAL JOURNAL A Isotope shift measurements of 11,9,7 Be + A. Takamine 1,M.Wada 1,,a,K.Okada 3, T.

More information

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c) Chapter Nuclei Q1. A radioactive sample with a half life of 1 month has the label: Activity = 2 micro curies on 1 8 1991. What would be its activity two months earlier? [1988] 1.0 micro curie 0.5 micro

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

Nuclear Charge Radii of 10,11 B

Nuclear Charge Radii of 10,11 B Nuclear Charge Radii of 0, B Bernhard Maaß,, Thomas Hüther, Jan Krause, Jörg Krämer, Kristian König, Alessandro Lovato, Peter Müller, Mariusz Puchalski, 3 Krzysztof Pachucki, 4 Robert Roth, Rodolfo Sánchez,

More information

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics.

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics. Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics. Grigory Rogachev RESOLUT: a new radioactive beam facility at FSU Solenoid 2 Magnetic Spectrograph Magnetic Spectrograph

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS Page 1 1. Within the nucleus, the charge distribution A) Is constant, but falls to zero sharply at the nuclear radius B) Increases linearly from the centre, but falls off exponentially at the surface C)

More information

On the helium-4 charge rms-radius. Ingo Sick

On the helium-4 charge rms-radius. Ingo Sick /helium/elba08q On the helium-4 charge rms-radius Ingo Sick Recent interest in Helium charge radii: measurement isotope shift 3 He 4 He (Shiner et al. ) measurement isotope shift of unstable 6 He 4 He

More information

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors.

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors. Beam Loss Monitors When energetic beam particles penetrates matter, secondary particles are emitted: this can be e, γ, protons, neutrons, excited nuclei, fragmented nuclei... Spontaneous radiation and

More information

Ion traps, atomic masses and astrophysics. Outline. Positive ray parabolas. British beginnings

Ion traps, atomic masses and astrophysics. Outline. Positive ray parabolas. British beginnings Ion traps, atomic masses and astrophysics Kumar S. Department of Physics and Astronomy University of Manitoba Outline Some history Atomic masses Ion traps rp-process nucleosysnthesis Physics Day Slide

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP

In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP ISOLTRAP experimental setup In-trap decay: principle application for mass measurements Trap-assisted decay spectroscopy: principle and purpose

More information

Proton radius of 14 Be from measurement of charge changing cross sections

Proton radius of 14 Be from measurement of charge changing cross sections Proton radius of 14 e from measurement of charge changing cross sections! S. Terashima 1, I. Tanihata 1,2, R. Kanungo 3, A. Estradé 3,4, W. Horiuchi 5, F. Ameil 4,. Atkinson 2, Y. Ayyad 6, D. Cortina-Gil

More information

Resonance scattering and α- transfer reactions for nuclear astrophysics.

Resonance scattering and α- transfer reactions for nuclear astrophysics. Resonance scattering and α- transfer reactions for nuclear astrophysics. Grigory Rogachev Outline Studying resonances using resonance scattering Studying resonances using transfer reactions Resonances

More information

Lecture 3. lecture slides are at:

Lecture 3. lecture slides are at: Lecture 3 lecture slides are at: http://www.physics.smu.edu/ryszard/5380fa17/ Proton mass m p = 938.28 MeV/c 2 Electron mass m e = 0.511 MeV/c 2 Neutron mass m n = 939.56 MeV/c 2 Helium nucleus α: 2 protons+2

More information

Shell Eects in Atomic Nuclei

Shell Eects in Atomic Nuclei L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 1/37 Shell Eects in Atomic Nuclei Laurent Gaudefroy 1 Alexandre Obertelli 2 1 CEA, DAM, DIF - France 2 CEA, Irfu - France Shell Eects in Finite Quantum

More information

Fundamental symmetries studies with electron spectroscopy at FRIB

Fundamental symmetries studies with electron spectroscopy at FRIB Fundamental symmetries studies with electron spectroscopy at FRIB 1 hirality flipping i interactions ti Axial and tensor Fermi and scalar Tools: R B spectrometer yclotron Radiation Emission Spectroscopy

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #8 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

KEK isotope separation system for β-decay spectroscopy of r-process nuclei

KEK isotope separation system for β-decay spectroscopy of r-process nuclei 2 nd Workshop on Inelastic Reaction Isotope Separator for Heavy Elements Nov. 19, 2010 KEK isotope separation system for β-decay spectroscopy of r-process nuclei Y.X. Watanabe, RNB group (KEK) 1. Outline

More information

STORAGE RINGS FOR RADIO-ISOTOPE BEAMS

STORAGE RINGS FOR RADIO-ISOTOPE BEAMS STORAGE RINGS FOR RADIO-ISOTOPE BEAMS Takeshi Katayama, Center for Nuclear Study, University of Tokyo, Wako, Japan INTRODUCTION In this decade, new era is opened in nuclear physics with use of radioactive

More information

Standard Model and ion traps: symmetries galore. Jason Clark Exotic Beam Summer School July 28 August 1, 2014

Standard Model and ion traps: symmetries galore. Jason Clark Exotic Beam Summer School July 28 August 1, 2014 Standard Model and ion traps: symmetries galore Jason Clark Exotic Beam Summer School July 8 August 1, 014 Overview of lectures Overview of the Standard Model (SM) Nature of the weak interaction and β

More information

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron mass ratio Fukuoka, August 2012 Masaki Hori Max Planck Institute of Quantum Optics A. Sótér, D. Barna, A.

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Thomas Aumann December 11 th 2013 27 th Texas Symposium on Relativistic Astrophysics Dallas, Texas Supported by the BMBF under contract

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

C NS. Direct reactions of Borromean nuclei FM50. S. Shimoura CNS, University of Tokyo

C NS. Direct reactions of Borromean nuclei FM50. S. Shimoura CNS, University of Tokyo C NS Direct reactions of Borromean nuclei S. Shimoura CNS, University of Tokyo FM50 Introduction 3N force in neutron-rich nuclei U1X IL2/4 B.E. Importance of T=3/2 3N force in the PRC 64 014001 (2001)

More information

Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser spectroscopy

Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser spectroscopy Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser scopy, W. Dexters, M.D. Seliverstov, A.N. Andreyev, S. Antalic, A.E. Barzakh, B.

More information

Determining α from Helium Fine Structure

Determining α from Helium Fine Structure Determining α from Helium Fine Structure How to Measure Helium Energy Levels REALLY Well Lepton Moments 2006 June 18, 2006 Daniel Farkas and Gerald Gabrielse Harvard University Physics Dept Funding provided

More information

In-gas cell laser spectroscopy of neutron-deficient silver isotopes

In-gas cell laser spectroscopy of neutron-deficient silver isotopes In-gas cell laser spectroscopy of neutron-deficient silver isotopes A.N. Andreyev, B. Bastin, N. Bree, J. Büscher, T.E. Cocolios, I. Darby, J. Elseviers, R. Ferrer, J. Gentens, M. Huyse, Yu. Kudryavtsev,

More information

Universal Slow RI-Beam Facility at RIKEN RIBF for Laser Spectroscopy of Short-Lived Nuclei

Universal Slow RI-Beam Facility at RIKEN RIBF for Laser Spectroscopy of Short-Lived Nuclei Universal Slow RI-Beam Facility at RIKEN RIBF for Laser Spectroscopy of Short-Lived Nuclei M. Wada* ^ A. Takamine*, K. Okada**, T. Sonoda*, P. Schury*, V. Lioubimov^*, Y. Yamazaki*-^, Y Kanai*, T.M. Kojima*,

More information

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei R.Avigo 1,2, O.Wieland 1, A.Bracco 1,2, F.Camera 1,2 on behalf of the AGATA and DALI2 collaborations 1 INFN, sezione di Milano 2 Università

More information

RFSS: Lecture 6 Gamma Decay

RFSS: Lecture 6 Gamma Decay RFSS: Lecture 6 Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities Internal Conversion Angular Correlations Moessbauer

More information

Directions toward the resolution of the proton charge radius puzzle

Directions toward the resolution of the proton charge radius puzzle Directions toward the resolution of the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw ECT workshop on the proton radius puzzle, November 1, 2012

More information

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology Pion Physics in the Meson Factory Era R. P. Redwine Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology Bates Symposium 1 Meson Factories

More information

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering stochastic cooling Exotic nuclei from Super-FRS Degrader for fast slowing down The Ring Branch TOF Detector MCPs E anode ion B CR Electron cooler NESR secondary electrons Experiments: Mass- and Lifetime

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator Svirikhin A.I. Joint Institute for Nuclear Research, Dubna, Russia Manipal University,

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius Savely Karshenboim Pulkovo Observatory (ГАО( РАН) ) (St. Petersburg) & Max-Planck Planck-Institut für Quantenoptik (Garching)

More information