Precision Penning Trap Experiments with Exotic Ions

Size: px
Start display at page:

Download "Precision Penning Trap Experiments with Exotic Ions"

Transcription

1 Hirschegg 2012 Precision Penning Trap Experiments with Exotic Ions Klaus Blaum January 16, 2012

2 Outline Introduction and motivation Principle of Penning traps Setup and measurement procedure Precision mass and g-factor measurements

3 Part I High-precision mass measurements

4 Applications of precision masses High-accuracy mass measurements allow one to determine the atomic and nuclear binding energies reflecting all forces in the atom/nucleus. = N + Z + Z binding energy M Atom = N m neutron + Z m proton + Z m electron -(B atom + B nucleus )/c 2

5 Why measuring atomic masses? Atomic and nuclear binding energies reflect all forces acting in the atom/nucleus. δm/m General physics & chemistry 10 5 Nuclear structure physics 10 6 Astrophysics separation of isobars separation of isomers 10 7 Weak interaction studies 10 8 Metrology fundamental constants 10 9 Neutrino physics CPT tests QED in highly charged ions separation of atomic states 10 11

6 Principle of Penning trap mass spectrometry B q/m Cyclotron frequency: 1 q f c = B 2π m PENNING trap Strong homogen. magnetic field Weak electric 3D quadrupole field B ν z ν + ν - Typical freq. q = e m = 100 u B = 6 T - f 1kHz + f 1MHz

7 TOF cyclotron resonance detection (3) TOF measurement MCP Detector 390 (2) Energy conversion (1) Excitation of the ion motion Mean time of flight / μs Centroid: f = 1 q B 2 π m Determine atomic mass from frequency ratio with a well-known reference mass. c f 63 Ga T 1/2 = 32.4 s Excitation frequency ν RF / Hz f rf c,ref f c = m - m e m - m ref e

8 TRIGA-SPEC: TRIGA-LASER + TRIGA-TRAP project TRIGA: 01/08 start data taking: 05/09 ECR ion source TRIGA Mainz G. Hampel K. Eberhardt N. Trautmann TRIGA-LASER W. Nörtershäuser Mass separator RFQ steady 100 kw, pulsed 250 MW, neutron flux 1.8x10 11 / cm 2 s Nucl. Instrum. Meth. A 594, 162 (2008) TRIGA-TRAP

9 Making gold in nature r-process nucleosynthesis Most nuclear data experimentally unknown Theoretical predictions needed Astrophysical site uncertain Observational data to be matched Conditions for an A=80 abundance peak with new 81 Zn mass with new 80 Zn mass situation 2007 D. Rodríguez et al., Phys. Rev. Lett. 93, (2004) X.L. Tu et al., Phys. Rev. Lett. 106, (2011) S. Baruah et al., Phys. Rev. Lett. 101, (2008) E. Haettner et al., Phys. Rev. Lett. 106, (2011)

10 Neutrino-less double EC (0ν2EC) Is the neutrino a Majorana or Dirac particle? 2ν2EC (T 1/2 >10 24 y) 0ν2EC (T 1/2 >10 30 y) 0ν2EC might be resonantly enhanced (T 1/2 ~10 25 y) Contribution of Penning traps: Search for nuclides with Δ=(Q εε B 2h -E γ ) < 1 kev by measurements of Q εε values at ~100 ev accuracy level

11 Resonance enhancement factors 2EC - transition Δ (old), kev Δ (new), kev T 1/2 m 2, yr 152 Gd 152 Sm -0.2(3.5) 0.9(0.2) Er 164 Dy 5.2(3.9) 6.81(0.12) W 180 Hf 13.7(4.5) 12.4(0.2) If m ββ = 1 ev If m ββ = 0.1 ev 30 kg for 1 capture event a year 3 tons for 1 capture event a year Gd can be used for a seach search for for 0ν2EC 152 Gd: Phys. Rev. Lett. 106, (2011) 164 Er: Phys. Rev. Lett. 107, (2011)

12 Non-destructive ion detection ion signal mass/frequency spectrum Amplitude very small signal ~fa FT-ICR Fourier-Transform- Ion Cyclotron Resonance Induced current: Signal / Noise I eff = 1/ 2 r ion / D ω q (Schottky et al....) S/N ~ 1 / T 1/2 Operation of traps and electronics at cryogenic (4 K) temperature.

13 Single ion sensitivity Superconducting helical resonator detection circuit amplifier Ctrap Rp Cp B Penning trap Ultra-low noise cryogenic amplifier Lres

14 THe-TRAP for KATRIN A high-precision Q( 3 T- 3 He)-value measurement 3 1 H 3 He 2 + e +ν Q lit = (1.2) ev We aim for: δq( 3 T 3 He) = 20 mev ΔT < 0.05 K/d at 24 C δm/m = ΔB/B < 10 ppt / h Δx 0.1 μm First 12 C 4+ / 16 O 6+ mass ratio measurement at δm/m stat = performed.

15 Part II The g factor of a free proton

16 The g-factor (anti)proton experiment electron gun analysis trap transport electrodes precision trap target The analysis trap The cryostat hω L ω L = 2μ B h = g e 2m p B g ωl = 2 ω c ω c = e mp B COMSOL simulation S. Ulmer et al., Rev. Sci. Instrum. 80, (2009)

17 Continuous Stern-Gerlach effect Larmor-frequency cannot be directly measured Microwaves are irradiated to induce a spin flip Spin direction has to be detectable Magnetic inhomogeneity produces an effective spin-dependent potential Axial frequency depends on spin-direction Small frequency difference between and : hω L g μb B2 Δν z = 240mHz 2 π m ν 4 ion z ,5 spin up COMSOL simulation axial frequency [Hz] , ,5 spin down Ferromagnetic ring produces a magnetic bottle , Time [min]

18 High-precision g factor measurement hω L ω L = 2μ B h = g e 2m p B One measurement cycle i.detection of spin-orientation in analysis trap 10min B q/m g ω c = ωl = 2 ω e mp c B ii.transport to precision trap iii.measurement of eigenfrequencies and simultaneous irradiation with microwaves 0.5min 5min iv.transport to analysis trap v.detection of spin orientation in analysis trap Spin flip in the precision trap? 0.5min 10min

19 g-factor resonance of a single proton spin flip probability (%) Compare g-factors of p and p: Test of matter-antimatter symmetry. Highly challenging experiment since one million times harder compared to e khz drive frequency (MHz) PDG: mass difference g-factor (g-2) mass planned HFS-spectroscopy (planned) 1E-21 1E-18 1E-15 1E-12 1E-9 1E-6 1E-3 relative precision g-factor charge/mass g-factor achieved Larmor resonance based on first spin flip ever observed with a nuclear magnetic moment. We aim for δg/g = S. Ulmer et al., Phys. Rev. Lett. 106, (2011) K 0 K 0 e + e - p p μ + μ e + e - p p H H

20 Summary Exciting results in high-precision experiments with stored and cooled exotic ions have been achieved! - Accurate masses have been obtained for reliable nucleosynthesis calculations. - High-precision mass measurements with strong impact on neutrino physics research. - Discovery of a suitable candidate for 0ν2EC search. - First direct observation of a spin-flip of a single proton - Development of novel and unique storage devices. - and many more!

21 Thanks Thanks a lot for the invitation and your attention! klaus.blaum@mpi-hd.mpg.de WWW: ERC Advanced Grant Agreement No

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de EMMI Physics Days 2011, GSI Darmstadt Precision Penning Trap Experiments with Exotic Ions Klaus Blaum November 08, 2011 Outline Introduction and motivation Principle of Penning

More information

Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics

Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics Winter Meeting on Nuclear Physics, Bormio, Italy 2014 Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics Klaus Blaum Jan 27, 2014 Klaus.blaum@mpi-hd.mpg.de

More information

Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions

Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions Klaus.blaum@mpi-hd.mpg.de Table-Top Experiments, Workshop at MIT 2017 Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions Precision atomic/nuclear masses

More information

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum ECT* Trento The Lead Radius Precision measurements of nuclear ground state properties for nuclear structure studies Klaus Blaum 04.08.2009 Outline Introduction, history and methods Principle of laser spectroscopy

More information

LEAP, Kanazawa, Japan 2016

LEAP, Kanazawa, Japan 2016 Klaus.blaum@mpi-hd.mpg.de LEAP, Kanazawa, Japan 2016 Precision atomic and nuclear masses and their importance for nuclear structure, astrophysics and fundamental studies Motivation for precision mass data

More information

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Euroschool on Physics with Exotic Beams, Mainz 005 Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Klaus Blaum Johannes Gutenberg-University Mainz

More information

The Proton Magnetic Moment

The Proton Magnetic Moment Georg Schneider on behalf of the BASE collaboration March 9, 2016, Kanazawa 1. Theoretical basics Who we are? Measurement principle The double Penning trap method Experimental setup Milestones 2 / 25 Who

More information

Towards TASCA

Towards TASCA TASCA Workshop 2009 Towards SHIPTRAP @ TASCA Michael Block SHIPTRAP Physics Program High-Precision Mass Measurements Trap-Assisted Nuclear Spectroscopy In-Trap Nuclear Spectroscopy Laser Spectroscopy Chemistry?

More information

Atomic Physics in Traps

Atomic Physics in Traps Atomic Physics in Traps QED Fundamental Constants CPT Invariance Wolfgang Quint GSI Darmstadt and Univ. Heidelberg Quantum mechanics, Relativity, and P.A.M. Dirac Quantum mechanics Special Relativity Dirac

More information

Mass measurements needed for neutrino physics

Mass measurements needed for neutrino physics Mass measurements needed for neutrino physics Coherent Neutrino Scattering Experiment Workshop 12 November 2015 A.A. Kwiatkowski Department of Physics & Astronomy and Cyclotron Institute Texas A&M University

More information

The Magnetic Moment of the Proton. A. Mooser for the BASE collaboration

The Magnetic Moment of the Proton. A. Mooser for the BASE collaboration The Magnetic Moment of the Proton A. Mooser for the BASE collaboration Motivation CPT-Symmetry fundamental cornerstone of Standard Model Strategy: Compare properties of matter and antimatter conjugates

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #8 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

High-precision measurements of the fundamental properties of the antiproton

High-precision measurements of the fundamental properties of the antiproton High-precision measurements of the fundamental properties of the antiproton Hiroki Nagahama on behalf of the BASE collaboration PSAS 2016, Jerusalem 26/May Goal of BASE Table of contents Principle of CPT

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015 Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015 Outline WHAT are we measuring? - Nuclear/atomic masses WHY do we need/want to measure

More information

The most stringent test of QED in strong fields: The g-factor of 28 Si 13+

The most stringent test of QED in strong fields: The g-factor of 28 Si 13+ The most stringent test of QED in strong fields: The g-factor of 28 Si 13+ Sven Sturm, Anke Wagner, Klaus Blaum March 27 th, 2012 PTB Helmholtz-Symposium Quantum ElectroDynamics (QED) QED describes the

More information

How could Penning-Trap Mass Spectrometry. be useful to. Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg

How could Penning-Trap Mass Spectrometry. be useful to. Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg How could Penning-Trap Mass Spectrometry be useful to Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg MEDEX, Prague, May 31, 2017 OUTLINE Basics of Penning-Trap Mass

More information

Progress Towards an (Anti)Proton g - Factor Measurement

Progress Towards an (Anti)Proton g - Factor Measurement Progress Towards an (Anti)Proton g - Factor Measurement Stefan Ulmer K. Blaum, H. Kracke, A. Mooser, W. Quint, C.C. Rodegheri und J. Walz Introduction Experimental techniques Measuring process Status and

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #5 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

Observing a single hydrogen-like ion in a Penning trap at T = 4K

Observing a single hydrogen-like ion in a Penning trap at T = 4K Hyperfine Interactions 115 (1998) 185 192 185 Observing a single hydrogen-like ion in a Penning trap at T = 4K M. Diederich a,h.häffner a, N. Hermanspahn a,m.immel a,h.j.kluge b,r.ley a, R. Mann b,w.quint

More information

In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP

In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP ISOLTRAP experimental setup In-trap decay: principle application for mass measurements Trap-assisted decay spectroscopy: principle and purpose

More information

Probing QED in strong fields via the magnetic moment of highly charged ions. Sven Sturm May 25 th, 2016

Probing QED in strong fields via the magnetic moment of highly charged ions. Sven Sturm May 25 th, 2016 Probing QED in strong fields via the magnetic moment of highly charged ions Sven Sturm May 25 th, 2016 Quantum ElectroDynamics (QED) Quantum Electrodynamics (QED is tested and proven in the weak field

More information

A 680-fold improved comparison of the antiproton and proton magnetic moments

A 680-fold improved comparison of the antiproton and proton magnetic moments A 680-fold improved comparison of the antiproton and proton magnetic moments Eric Tardiff Gerald Gabrielse, Jack DiSciacca, Kathryn Marable, Mason Marshall Harvard University July 21, 2014 Testing CPT

More information

Ion traps, atomic masses and astrophysics. Outline. Positive ray parabolas. British beginnings

Ion traps, atomic masses and astrophysics. Outline. Positive ray parabolas. British beginnings Ion traps, atomic masses and astrophysics Kumar S. Department of Physics and Astronomy University of Manitoba Outline Some history Atomic masses Ion traps rp-process nucleosysnthesis Physics Day Slide

More information

Erice, September, 2017,

Erice, September, 2017, Erice, September, 2017, Double beta (bb) decay neutrinoless double beta (0nbb) decay NME the specialties of 96 Zr/ 96 Nb for b and bb decay Mass measurements using the JYFLTRAP ion trap Results and the

More information

Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton

Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton W. Quint a, J. Alonso b, S. Djekić b, H.-J. Kluge a, S. Stahl b, T. Valenzuela b, J. Verdú b, M. Vogel b, and G. Werth b a Gesellschaft

More information

Mass measurements of n-rich nuclei with A~70-150

Mass measurements of n-rich nuclei with A~70-150 Mass measurements of n-rich nuclei with A~70-150 Juha Äystö Helsinki Institute of Physics, Helsinki, Finland in collaboration with: T. Eronen, A. Jokinen, A. Kankainen & IGISOL Coll. with theory support

More information

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN Fundamental physics with antihydrogen and antiprotons at the AD Michael Doser CERN What measurements are we talking about? 1) Precise spectroscopic comparison between H and H tests of fundamental symmetry

More information

Progress with the. MPIK / UW - PTMS in Heidelberg. Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer

Progress with the. MPIK / UW - PTMS in Heidelberg. Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer Progress with the MPIK / UW - PTMS in Heidelberg Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer TCP 010, Saariselkä, April 1, 010 David Pinegar, MPI-K

More information

GSI. Overview of last years activities: technical developments and investigations mass measurements. TRAPSPEC related tasks and issues

GSI. Overview of last years activities: technical developments and investigations mass measurements. TRAPSPEC related tasks and issues SHIPTRAP @ GSI Overview of last years activities: technical developments and investigations mass measurements TRAPSPEC related tasks and issues Conclusion and outlook Frank Herfurth for the SHIPTRAP collaboration

More information

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy Martin Diermaier LEAP 2016 Kanazawa Japan Martin Diermaier Stefan-Meyer-Institute March th 2016 MOTIVATION Charge

More information

Prospects for a Million-fold Improvement in the Comparison of Antiproton and Proton Magnetic Moments

Prospects for a Million-fold Improvement in the Comparison of Antiproton and Proton Magnetic Moments Prospects for a Million-fold Improvement in the Comparison of Antiproton and Proton Magnetic Moments Nicholas Guise Harvard University Cambridge, Massachusetts, USA LEPTON MOMENTS 19 July 2010 Prospects

More information

Cavity Control in a Single-Electron Quantum Cyclotron

Cavity Control in a Single-Electron Quantum Cyclotron Cavity Control in a Single-Electron Quantum Cyclotron An Improved Measurement of the Electron Magnetic Moment David Hanneke Michelson Postdoctoral Prize Lectures 13 May 2010 The Quantum Cyclotron Single

More information

Perspectives for Penning Trap Mass Measurements of Super Heavy Elements

Perspectives for Penning Trap Mass Measurements of Super Heavy Elements Perspectives for Penning Trap Mass Measurements of Super Heavy Elements Michael Block GSI Workshop on Rare Atoms Ann Arbor 2009 Introduction to Super Heavy Elements Production of SHE Mass determination

More information

Nuclear Structure Studies with Penning Traps

Nuclear Structure Studies with Penning Traps ASRC Workshop Tokai 2014 Nuclear Structure Studies with Penning Traps Michael Block Unique Combination for SHE Studies ECR/PIG + UNILAC Stable targets SHIP SHIPTRAP Beam TRIGA- Actinide targets TASCA TASISpec

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements T. Kieck 1, H. Dorrer 1, Ch. E. Düllmann 1,2, K. Eberhardt 1, L. Gamer 3, L. Gastaldo 3, C. Hassel 3, U. Köster 4, B. Marsh 5, Ch. Mokry 1, S. Rothe

More information

D. Frekers. Putting together the pieces of the puzzle in bb-decay n. TRIUMF May Gentle Touch: q tr = 0 l = 0.

D. Frekers. Putting together the pieces of the puzzle in bb-decay n. TRIUMF May Gentle Touch: q tr = 0 l = 0. D. Frekers Putting together the pieces of the puzzle in bb-decay n b TRIUMF May-2016 n b GT? Gentle Touch: q tr = 0 l = 0 dσ dσ 5 10 0 hω excitation σ n n The pieces of the puzzle Chargex-reactions ( 3

More information

Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places

Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places The 64 th Compton Lecture Series Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places http://kicp.uchicago.edu/~odom/compton.htm Lecture 5: Using the Fine Structure Constant to Push

More information

good agreement with the experiment. Thus investigations on the magnetic moment anomaly represent one of the most stringent tests of QED of a free part

good agreement with the experiment. Thus investigations on the magnetic moment anomaly represent one of the most stringent tests of QED of a free part The Magnetic Moment Anomaly of the Electron Bound in Hydrogenic Ions W. Quint Λ, T. Beier Λ, H. Häffner Λ;y1, N. Hermanspahn y2, S. Karshenboim +, H.-J. Kluge Λ, G. Marx Λ, T. Valenzuela y, J. Verdú Λ

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Paul Huffman! North Carolina State University Triangle Universities Nuclear Laboratory!!!! M.W. Ahmed!

More information

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES A.E. Barzakh, D.V. Fedorov, A.M. Ionan, V.S. Ivanov, F.V. Moroz, K.A. Mezilev, S.Yu. Orlov, V.N. Panteleev, Yu.M. Volkov

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Systematic shift caused by trap asymmetry The major systematic correction in the reported cyclotron frequency ratio comparison of an antiproton at ν c, p and a negatively charged hydrogen ion (H ) at ν

More information

350-fold improved measurement of the antiproton magnetic moment using a multi-trap method

350-fold improved measurement of the antiproton magnetic moment using a multi-trap method Hyperfine Interaction (2018) 239: 47 https://doi.org/10.1007/s10751-018-1507-1 350-fold improved measurement of the antiproton magnetic moment using a multi-trap method Christian Smorra 1 Pascal E. Blessing

More information

Direct Measurement of the Proton Magnetic Moment

Direct Measurement of the Proton Magnetic Moment Direct Measurement of the Proton Magnetic Moment J. DiSciacca 1 and G. Gabrielse 1, 1 Dept. of Physics, Harvard University, Cambridge, MA 02138 (Dated: 14 Jan. 2012 (submitted to PRL); 31 Jan. 2012 (accepted

More information

Nuclear and Radiation Physics

Nuclear and Radiation Physics 501503742 Nuclear and Radiation Physics Why nuclear physics? Why radiation physics? Why in Jordan? Interdisciplinary. Applied? 1 Subjects to be covered Nuclear properties. Nuclear forces. Nuclear matter.

More information

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University TAMU-TRAP facility for Weak Interaction Physics P.D. Shidling Cyclotron Institute, Texas A&M University Outline of the talk Low energy test of Standard Model T =2 Superallowed transition Facility T-REX

More information

Charged Particle Electric Dipole Moment Searches in Storage Rings

Charged Particle Electric Dipole Moment Searches in Storage Rings Charged Particle Electric Dipole Moment Searches in Storage Rings RWTH Aachen University, Forschungszentrum Jülich & JARA - FAME E-mail: pretz@physik.rwth-aachen.de The Electric Dipole Moment (EDM) is

More information

Observation of the 1S-2S Transition in Antihydrogen

Observation of the 1S-2S Transition in Antihydrogen Observation of the 1S-2S Transition in Antihydrogen Dirk van der Werf Swansea University CEA-Saclay ALPHA What do we want to do Check CPT conservation Baryon asymmetry Standard model extension (SME): Assume

More information

Fully Quantum Measurement of the Electron Magnetic Moment

Fully Quantum Measurement of the Electron Magnetic Moment Fully Quantum Measurement of the Electron Magnetic Moment prepared by Maren Padeffke (presented by N. Herrmann) Outline Motivation and History Experimental Methods Results Conclusion Sources Motivation

More information

Physics of and in Ion Traps

Physics of and in Ion Traps Physics of and in Ion Traps Proposed Topics: TRIUMF, Vancouver June 01 Basics of Paul- and Penning-traps (equ. of motion, trap geometries, influence of trap imperfections,) Ion detection and cooling (Buffer

More information

Sunday. Monday Thursday Friday

Sunday. Monday Thursday Friday Nuclear Structure I experimental Sunday Preliminaries Nuclear binding and masses Indicator of shell structure How to measure a mass Monday Thursday Friday Preliminaries (1) Goal: Establish physical properties

More information

Electron Capture branching ratio measurements at TITAN-TRIUMF

Electron Capture branching ratio measurements at TITAN-TRIUMF Electron Capture branching ratio measurements at TITAN-TRIUMF T. Brunner, D. Frekers, A. Lapierre, R. Krücken, I. Tanihata, and J. Dillingfor the TITAN collaboration Canada s National Laboratory for Nuclear

More information

Accelerated radioactive beams and the future of nuclear physics. David Jenkins

Accelerated radioactive beams and the future of nuclear physics. David Jenkins Accelerated radioactive beams and the future of nuclear physics David Jenkins Particle accelerators 1930s: Cockcroft and Walton 1990s: Superconducting niobium cavities Energetic Radioactive Beam Facilities

More information

The New Search for a Neutron EDM at the SNS

The New Search for a Neutron EDM at the SNS The New Search for a Neutron EDM at the SNS Jen-Chieh Peng University of Illinois at Urbana-Champaign The Third International Symposium on LEPTON MOMENTS, Cape Cod, June 19-22, 2006 Physics of neutron

More information

Precision mass measurements of radioactive nuclei at JYFLTRAP

Precision mass measurements of radioactive nuclei at JYFLTRAP EPJ manuscript No. (will be inserted by the editor) Precision mass measurements of radioactive nuclei at JYFLTRAP S. Rahaman a, V.-V. Elomaa, T. Eronen, U. Hager, J. Hakala, A. Jokinen, A. Kankainen, I.D.

More information

Standard Model and ion traps: symmetries galore. Jason Clark Exotic Beam Summer School July 28 August 1, 2014

Standard Model and ion traps: symmetries galore. Jason Clark Exotic Beam Summer School July 28 August 1, 2014 Standard Model and ion traps: symmetries galore Jason Clark Exotic Beam Summer School July 8 August 1, 014 Lecture outline Overview of the Standard Model (SM) Nature of the weak interaction and β decay

More information

Two-body weak decay of highly charged ions, a tool to study neutrino properties?

Two-body weak decay of highly charged ions, a tool to study neutrino properties? Two-body weak decay of highly charged ions, a tool to study neutrino properties? The detector: ESR Experimental Storage Ring cooling: electron-, stochastic ion detection: Schottky-noise, particle detector

More information

Development of a Rogowski coil Beam Position Monitor for Electric Dipole Moment measurements at storage rings

Development of a Rogowski coil Beam Position Monitor for Electric Dipole Moment measurements at storage rings Development of a Rogowski coil Beam Position Monitor for Electric Dipole Moment measurements at storage rings PHD defense talk Physics Institute III B Nuclear Physics Institute (IKP-II) Fabian Trinkel

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

The CERN Antiproton Physics Programme The Antiproton Decelerator (AD) & ELENA

The CERN Antiproton Physics Programme The Antiproton Decelerator (AD) & ELENA The CERN Antiproton Physics Programme The Antiproton Decelerator (AD) & ELENA Dániel Barna Wigner Research Centre for Physics, Budapest, Hungary The CERN antiproton facilities Experiments, their programmes

More information

Experiments in Ion Storage Rings: mass and lifetime measurements

Experiments in Ion Storage Rings: mass and lifetime measurements Leuven, 2-6 June 2003, FANTOM Study week on Trapping and Manipulating Atomic and Subatomic Particles Experiments in Ion Storage Rings: mass and lifetime measurements Fritz Bosch, GSI Darmstadt, Germany

More information

Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF. stephan ettenauer for the TITAN collaboration

Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF. stephan ettenauer for the TITAN collaboration Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF stephan ettenauer for the TITAN collaboration Weakly Bound Systems in Atomic and Nuclear Physics, March 2010 1 Outline Overview:

More information

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron mass ratio Fukuoka, August 2012 Masaki Hori Max Planck Institute of Quantum Optics A. Sótér, D. Barna, A.

More information

A novel four-trap mass spectrometer for high-accuracy mass measurements on highly-charged ions

A novel four-trap mass spectrometer for high-accuracy mass measurements on highly-charged ions http://www.quantum.physik.uni-mainz.de/mats/ A novel four-trap mass spetrometer for high-auray mass measurements on highly-harged ions Sz. Nagy, K. Blaum, S. George, F. Herfurt, J. Ketelaer, W. Quint,

More information

DOUBLE BETA DECAY TO THE EXCITED STATES: REVIEW A.S. BARABASH ITEP, MOSCOW

DOUBLE BETA DECAY TO THE EXCITED STATES: REVIEW A.S. BARABASH ITEP, MOSCOW DOUBLE BETA DECAY TO THE EXCITED STATES: REVIEW A.S. BARABASH ITEP, MOSCOW MEDEX'17, Prague, Czech Republic, May 29- June 02, 2017 OUTLINE Introduction 2 - (2) -decay to the excited ststates 2 - (0) decay

More information

measurement and reduc,on of low- level radon background in the KATRIN experiment Florian M. Fränkle for the KATRIN Collabora9on

measurement and reduc,on of low- level radon background in the KATRIN experiment Florian M. Fränkle for the KATRIN Collabora9on measurement and reduc,on of low- level radon background in the KATRIN experiment Florian M. Fränkle for the KATRIN Collabora9on outline the KATRIN experiment pre-spectrometer background measurement radon

More information

Axion Detection With NMR

Axion Detection With NMR PRD 84 (2011) arxiv:1101.2691 + to appear Axion Detection With NMR Peter Graham Stanford with Dmitry Budker Micah Ledbetter Surjeet Rajendran Alex Sushkov Dark Matter Motivation two of the best candidates:

More information

Kirchhoff-Institut für Physik. ECHo Experiment. ECHo. Loredana Gastaldo for the ECHo collaboration. Heidelberg University

Kirchhoff-Institut für Physik. ECHo Experiment. ECHo. Loredana Gastaldo for the ECHo collaboration. Heidelberg University Kirchhoff-Institut für Physik ECHo Experiment ECHo Loredana Gastaldo for the ECHo collaboration Heidelberg University Contents Electron capture process: The case of 163 Ho Metallic Magnetic Calorimeters

More information

arxiv: v1 [nucl-ex] 29 May 2008

arxiv: v1 [nucl-ex] 29 May 2008 arxiv:0805.4475v1 [nucl-ex] 29 May 2008 TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz Abstract J. Ketelaer a,, J. Krämer b, D. Beck c, K. Blaum a,c,d,

More information

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays F. Bezrukov MPI für Kernphysik, Heidelberg, Germany 11-12-2008 Kaffeepalaver Outline Outline 1 Implications for light

More information

International Nuclear Physics Conference Adelaide, Australia September 13, 2016

International Nuclear Physics Conference Adelaide, Australia September 13, 2016 International Nuclear Physics Conference Adelaide, Australia September 13, 2016 This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-07NA27344. Lawrence

More information

TRIUMF The TITAN EBIT: Status & Research Plans

TRIUMF The TITAN EBIT: Status & Research Plans The TITAN EBIT: Status & Research Plans A. Lapierre, T. Brunner, C. Champagne, P. Delheij, and J. Dilling for the TITAN collaboration Canada s National Laboratory for Nuclear and Particle Physics, Vancouver,

More information

Antiprotonic Helium: Measuring the Antiproton Mass and Magnetic Moment

Antiprotonic Helium: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth Antiprotonic Helium 10-14 September 2012, Stara Lesna, Slovakia p. 1/37 Antiprotonic Helium: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth on behalf of the ASACUSA Collaboration

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information

Production of HCI with an electron beam ion trap

Production of HCI with an electron beam ion trap Production of HCI with an electron beam ion trap I=450 ma E= 5 kev axially: electrodes radially: electron beam space charge total trap potential U trap 200 V (U trap ion charge) 10000 ev 15000 A/cm 2 n

More information

GBAR Project Gravitational Behavior of Antihydrogen at Rest

GBAR Project Gravitational Behavior of Antihydrogen at Rest GBAR Project Gravitational Behavior of Antihydrogen at Rest Pierre Dupré CEA Saclay, FRANCE 1 Contents Motivation Scheme Schedule 2 Motivation A direct test of the Equivalence Principle with antimatter

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature1306 Statistical measurement uncertainty The statistical uncertainty of the experimentally determined ratio of Larmor- and cyclotron frequencies, which we denote

More information

Types of Analyzers: Quadrupole: mass filter -part1

Types of Analyzers: Quadrupole: mass filter -part1 16 Types of Analyzers: Sector or double focusing: magnetic and electric Time-of-flight (TOF) Quadrupole (mass filter) Linear ion trap Quadrupole Ion Trap (3D trap) FTICR fourier transform ion cyclotron

More information

Opportunities with collinear laser spectroscopy at DESIR:

Opportunities with collinear laser spectroscopy at DESIR: Opportunities with collinear laser spectroscopy at DESIR: the LUMIERE facility GOALS of LUMIERE experiments: Gerda Neyens, K.U. Leuven, Belgium (1) measure ground state properties of exotic isotopes: (see

More information

Precision Measurement in Atomic Physics

Precision Measurement in Atomic Physics NTHU Physics Colloquim 11/4/009 Precision Measurement in Atomic Physics Li-Bang Wang, 王立邦 National Tsing Hua University Thompson, D'Arcy Wentworth On Growth and Form, 1917 numerical precision is the very

More information

Electromagnetic modulation of monochromatic neutrino beams

Electromagnetic modulation of monochromatic neutrino beams Journal of Physics: Conference Series PAPER OPEN ACCESS Electromagnetic modulation of monochromatic neutrino beams To cite this article: A L Barabanov and O A Titov 2016 J. Phys.: Conf. Ser. 675 012009

More information

Atomic Mass Evaluation

Atomic Mass Evaluation Atomic Mass Evaluation Wenjia HUANG Centre de Sciences Nucléaires et de Sciences de la Matière huang@csnsm.in2p3.fr May 10, 2016 Outline 1 Introduction Atomic Mass Mass Measurements 2 Evaluation technique

More information

Nuclear astrophysics of the s- and r-process

Nuclear astrophysics of the s- and r-process Nuclear astrophysics of the s- and r-process René Reifarth Goethe University Frankfurt Ecole Joliot Curie School on Neutrons and Nuclei Frejus, France, Sep-28 Oct-3 2014 Nucleosynthesis tales from the

More information

Ion traps. Daniel Rodríguez Departamento de Física Aplicada Universidad de Huelva. March 2007 Santiago de Compostela, Spain

Ion traps. Daniel Rodríguez Departamento de Física Aplicada Universidad de Huelva. March 2007 Santiago de Compostela, Spain Ion traps Daniel Rodríguez Departamento de Física Aplicada Universidad de Huelva March 2007 Santiago de Compostela, Spain Outline Fundamentals of ion traps. Ion traps at Radioactive Ion Beam facilities.

More information

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN ATHENA / AD-1 First production and detection of cold antihydrogen atoms ATHENA Collaboration Rolf Landua CERN 1 LONG TERM PHYSICS GOALS Antihydrogen = Hydrogen? CPT Gravity But... 2 FIRST GOAL PRODUCTION

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape. Iain Moore University of Jyväskylä, Finland

Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape. Iain Moore University of Jyväskylä, Finland Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape Iain Moore University of Jyväskylä, Finland Nordic Conference on Nuclear Physics 2011 Outline Introduction to

More information

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab) Electron Beam Polarimetry: Status and Prospects DIS 2005, Madison, April 2005 E. Chudakov (JLab) Motivation: what accuracy is required for various experiments Methods in use: Optical methods Mott scattering

More information

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy Thomas Niedermayr, I. D. Hau, S. Terracol, T. Miyazaki, S. E. Labov and S. Friedrich Former colleagues: M. F. Cunningham, J. N.

More information

Direct Neutrino Mass Measurement with KATRIN. Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration

Direct Neutrino Mass Measurement with KATRIN. Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration Direct Neutrino Mass Measurement with KATRIN Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration DBD16, Osaka, Japan, 8 Nov 2016 Neutrino Mass Measurement with Single Beta Decay 2

More information

Magnetic Resonance Spectroscopy EPR and NMR

Magnetic Resonance Spectroscopy EPR and NMR Magnetic Resonance Spectroscopy EPR and NMR A brief review of the relevant bits of quantum mechanics 1. Electrons have spin, - rotation of the charge about its axis generates a magnetic field at each electron.

More information

LIST - Development at Mainz for ISOLDE

LIST - Development at Mainz for ISOLDE LIST - Development at Mainz for ISOLDE K. Wendt, T. Gottwald, Ch. Mattolat, C. Ohlert, F. Schwellnus, K. Wies & K. Blaum, Universität Mainz V. Fedoseyev, F. Österdahl, M. Menna, ISOLDE, CERN, Geneva Ch.

More information

Andree Welker ENSAR2 Town Meeting Groningen

Andree Welker ENSAR2 Town Meeting Groningen Exploration of the nuclear mass surface one proton above the potentially doubly-magic nuclide 78 Ni and the commissioning of the Phase-Imaging Ion-Cyclotron-Resonance technique at ISOLTRAP Andree Welker

More information

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth ASACUSA 9 October 2013, St. Petersburg, Russia p. 1/41 ASACUSA: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth on behalf of the ASACUSA Collaboration horvath.dezso@wigner.mta.hu

More information

Direct identification of the elusive 229m. Th isomer: Milestone towards a Nuclear Clock

Direct identification of the elusive 229m. Th isomer: Milestone towards a Nuclear Clock Direct identification of the elusive 229m Th isomer: Milestone towards a Nuclear Clock P.G. Thirolf, LMU München 229m Th properties and prospects Experimental approach & setup Measurements on 229m Th:

More information

Characterization of a carbon aerosol generator in a helium gas-jet for the extraction of fission products from the research reactor TRIGA Mainz

Characterization of a carbon aerosol generator in a helium gas-jet for the extraction of fission products from the research reactor TRIGA Mainz Characterization of a carbon aerosol generator in a helium gas-jet for the extraction of fission products from the research reactor TRIGA Mainz Martin Eibach Diplomarbeit von Martin Eibach Institut für

More information

Fundamental Physics with Antiprotons and Antihydrogen at Lowest Energies

Fundamental Physics with Antiprotons and Antihydrogen at Lowest Energies Fundamental Physics with Antiprotons and Antihydrogen at Lowest Energies Jochen Walz Univ. Mainz antimatter spectroscopy magnetic moments antimatter gravity Why antihydrogen spectroscopy? CPT symmetry

More information

arxiv: v1 [physics.ins-det] 29 May 2008

arxiv: v1 [physics.ins-det] 29 May 2008 Electric and magnetic field optimization procedure for Penning trap mass arxiv:0805.4549v1 [physics.ins-det] 29 May 2008 spectrometers D. Beck a, K. Blaum a,b, G. Bollen c, P. Delahaye d, S. George a,

More information