Progress Towards an (Anti)Proton g - Factor Measurement

Size: px
Start display at page:

Download "Progress Towards an (Anti)Proton g - Factor Measurement"

Transcription

1 Progress Towards an (Anti)Proton g - Factor Measurement Stefan Ulmer K. Blaum, H. Kracke, A. Mooser, W. Quint, C.C. Rodegheri und J. Walz Introduction Experimental techniques Measuring process Status and outlook e µ = g S m p

2 Motivation: Test of CPT-Symmetry CPT TESTS: 1 E E E E E e e : g- + - µ µ : g- LEPTONS + - e e : charge e+e- : mass MESONS K0 K0 pp: q/m BARYONS pp: q and m pp: g H-Atom: 1ss ATOMS 1 E E - 0 H-Atom: HFS - MASER 1 E E E -5 1 Relative Precision No figure of merit for CPT violation observe simple systems with high precision! This experiment aims at a relative precision of 10-9

3 Main-Tool: The Penning Trap modified cyclotron motion radial confinement B = Bez ω ω+ = c+ axial confinement ω ωc z magnetron motion r Φ (r, z ) = U 0 c z + ω ω ω ω = c c z axial motion ωz= B Ucorr U0 Ucorr q cu 0 mp B = 1.89 T This experiment: - Cylindrical Penning trap stack ν + 9 MHz ν z 690 khz ν 8.5 khz

4 Measuring Principle determination of the g-factor measurement of two frequencies of the proton in the trap: cyclotron frequency Larmor frequency ωl= g ω e B m p ωc= ωl νl g= = ωc νc L Excitation of the particle with a radio frequency field at ωl detection of the spin direction (continuous Stern-Gerlach effect) ω ' z ( ) ω ' z ( ) = δ ω!!! CRITICAL!!! z Non-destructive measurement of frequencies e B mp B e m Brown-Gabrielse invariance theorem ωc= ω+ +ω +ω z Measurement of image-current technique eigenfrequencies

5 Feedback Free Single Particle Frequency Measurement - Cryogenic detection systems detection circuit - Ultra low noise amplifiers - Superconducting tank circuits amplifier Ctrap Rp Cp Lres typical values U ind = IR p = IQω r L B I 1 fa R p 30 MΩ U ind 300 nv Penning trap 9,5 T = 4K Q = 5600 /(4000) L = 1.45 mh R p = 35 MΩ ν = 690 khz en = 1.3 nv Hz Work continued by ANDI MOOSER 9,0 8,5 Signal (a.u.) Axial Detector 8,0 7,5 7,0 6,5 6,0 5, Frequency (Hz) S. Ulmer et al.: Rev. Sci. Instrum. 80, 1330

6 Dip Detection detection circuit - Particle acts as a series LC circuit amplifier Ctrap Rp Cp Lres B Penning trap - Shorts detector noise - Resulting in a dip in the FFT spectrum of the detector N Rp q N ν = = π m D π τ Frequency measurement in thermal equilibrium with the detector 4K - small particle amplitudes - negligible energy dependence of frequency - measurement of the REAL magnetic moment

7 Larmor Frequency Measurement magnetic bottle leads to a coupling of m of a particle with its axial frequency ωz in a Penning trap ( Φ = µ B ) Φ mag z ρ = µ z B0 + B z axial frequency shift 1 µ z B ν z π mν z µ me = mp µ e p It s several times harder compared to e- B,sim = 300 kt/m νz,sim= 180 mhz

8 Phase Sensitive Detection Problem: - Frequency-shift of 00mHz requires for measuring time of at least 60s - Requires for voltage stability of 500nV/minute. PHASE SENSITIVE DETECTION METHOD Basic Idea: - Measure proton frequency relative to a phase locked sine. - Measure relative phase. Φ = (ν up ν 1 down ) T = 7 s T reduces measuring time by a factor of 60 to 100! Currently: 00mHz resolution in 1 second

9 Measuring Process Double Penning Trap electron gun analysis trap transport electrodes precision trap target 60 - Spin flip detection in the magnetic bottle field of the analysis trap 50 Spin Flip Probability (%) - High precision frequency measurement in the homogeneous precision trap 40 SIM 30 0 ULA 10 T IO N 0-0,1 5-0,1 0-0,0 5 0,0 0 0,0 5 0,1 0 0,1 5 Irradiated Larmorfrequency (Hz)

10 Status and Details

11 Experimental Setup Cryogenic operation SC-low noise detection long storage times (months) superconducting magnet cryo-cooler electronic flanges heat shields bellow adjustment table axial detector KEVLAR support trap can cyclotron detector conduction rods GFK - tube insulation vacuum rails 000 mm

12 Loading and Cleaning 1.) Load particles with EBIS.) Clean trap from contaminants -84 after loading after SWIFT CLEANING: 1.) Tune Particles to notch-filter.) Axial SWIFT-signal Signal (dbm) N + 1 C PROTONS C + H PURE PROTON CLOUD Ring Voltage (V)

13 Single Particle Preparation 4 Line-width (Hz) - Cloud excitation - Lowering of trapping potentials - FWHM of particle dip indicates proton number 1 N Rp q N ν = = π m D π τ Number of Particles Cyclotron Signal of a Single Proton Axial Signal of a Single Proton FFT Signal (dbvpk) FFT Signal (dbvpk) Frequency (Hz) ,9465 8,9470 8,9475 8,9480 8,9485 Frequency (MHz) Currently achieved relative precision: 10-8

14 Challenge: The Analysis Trap Proton in a Bottle electron gun analysis trap transport electrodes precision trap target First success after one year of sweat and tears! - Diameter of trap tower reduces between precisionand analysis-trap. Resonances, redesign of transport tube. - First trap design not practical for experimental operation, new trap-design. - Small diameter of analysis trap potential very sensitive on patch effects special surface treatment. new trap design Cricia C. Rodhegeri - Due to coulomb coupling trap has to be optimized with single particle non-harmonic parametric resonance optimization.

15 First Charged Particle Stored in Such a Strong Magnetic Bottle Amplitude(-dBVpk) Frequency (Hz) Next Step Bottle characterization and systematic investigation

16 Measurement of the Magnetic Bottle Application of cyclotron excitation to particle stored in magnetic bottle 1 ν z = 4π m pν z B E+ B Axial Frequency (Hz) Measure modified cyclotron frequency for different particle positions ,80 17,8 17,84 17,86 17,88 17,90 17,9 Excitation Frequency (MHz) 1,174 Magnetic Field (T) 1,173 1,17 1,171 1,170 1,169 1,168 B = 385 (5) kt/m 1, Axial frequency jump due to spin flip: 50 mhz Axial frequency as function of the radial energy: 1Hz/µeV Bottle well suited for systematic studies Position (µ m)

17 Temperature Measurements ν z ( Er ) = 1 E der exp r ν z + 4π mν kt - Vary feedback amplitude - Magnetron side band coupling to resonator - Detect axial frequency Measure convolution of Boltzmann distribution and drifts 0,50 T3 < T < T1 Fraction of Total Counts 0,45 0,40 0,35 0,30 0,5 0,0 0,15 0,10 0,05 0, Axial Frequency Deviation (Hz) z B Er B0 10 Minimum axial feedback temperature: 1.9K Cyclotron temperature can be measured in a very similar way. Variation between 6 K and K possible. See also N. Guise, G. Gabrielse PRL 010 (in press)

18 Problems: Axial Frequency Stability First measurements: Peak-to-peak long-term stability (h): 100 Hz Short-term stability (RMS 30s): 4 Hz 6 weeks optimization: Trap-tuning particle cooling ground loops 8th order filtering temperature stabilization Axial Frequency (Hz) Time (h) Peak-to-peak long-term stability (h): 10 Hz Short-term stability (RMS 30s): 350 mhz 700 mhz Sorting frequencies in low rms-jitter areas we can observe proton cyclotron frequency jumps Axial Frequency (Hz) , , , , , , Time (min)

19 Cyclotron Quantum Jumps ν z = 1 4π m pν z B E+ B0 n8 = n7+1 n+ = 85 mhz Axial Frequency (Hz) ,0 n7 = n6+1 E+ = 75 nev n6 = n5+1 n5 = n4+1 n4 = n3+1 n3 = n+1 n = n ,5 n1 = n0+1 n0 Cyclotron Energy Ladder (B=385 kt/m ) Number (#)

20 Conclusion and outlook Present measurement of the free cyclotron frequency of a single isolated proton with a relative precision detection of proton signals in magnetic bottle of 385 kt/mm². phase-sensitive detection established. Observed cyclotron quantum jumps Future improve axial frequency stability observation of spin-flips g-factor measurement.

21 Thanks to: AG-Walz at the institute of physics - Mainz Abteilung für gespeicherte und gekühlte Ionen at MPI-K GSI-Darmstadt VH-NG-037 Thanks for your attention!

22 The (Anti)Proton g Factor Team Andreas Mooser Holger Kracke Cricia Rodhegeri Stefan Ulmer

23 Spare Slides

24 Phase Sensitive Detection (Simulated in PT) Frequency Standard SR-٧٨٠ - FFT Analyzer Timing Unit FFT Trigger Free Particle Evolution Splitter Frequency Mixer Switch Particle Excitation Frequency Mixer Phase Shifter Switch Switch Trigger ٠ ٢٠٠ ٤٠٠ ٣٠٠K Amplifier ٦٠٠ ٨٠٠ ١٠٠٠ Trap Time (ms) Rp Cp Attenuator L Splitter Detection LC Cryogenic Amplifier Definite spin flip resolution in 1 s For maximum phase resolution (15 rms) optimize - Excitation time and amplitude - Active feedback damping "Spin up" "Spin down" ٤ Counts (#) - Trap compensation ٥ ٣ ٢ ١ - Measuring time ٠-١٦٠ -١٢٠-٨٠ -٤٠ ٠ ٤٠ ٨٠ Relative Phase ( ) ١٢٠ ١٦٠

25 Future Prospects improvement of detection systems Idea: toroidal coil based independent superconducting detectors for every trap. Higher inductances, higher RP, faster measuring cycles T = 4K P = 5.5 mw en = 0.9 nv in < 5 fa Qloaded = ν z = 600 khz L =.5 mh R p = 130MΩ Hz SNR > 5dB Hz ν z = 600 khz Current status: Detector improvement by a factor of 4 Andreas Mooser s workout

26 Frequency Measurement via Sideband Coupling - Irradiate coupling field: E p = E0 exp(iω k t )( xez + zex ) ENERGY EXCHANGE Ω Ω t Ω t z (t ) = k R0 sin k + Z 0 cos k exp(iω z t ) Ω k FFT signal (dbv) - Resonant with sideband frequencies: Principle also suitable for mode cooling Frequency (Hz) δ δ νr=νz + Frequency (Hz) νl=νz Ωk Ωk δ = (ν z + ν ) ν k δ + = ν k (ν + ν z ) One double dip includes two unknown frequencies Coupling Frequency (Hz) TRIPLE DIP METHOD

27 Motivation and History O. Stern: Molecular hydrogen beam in a SternGerlach apparatus (1933) 10 1 mp =.5 mk mp =.785 mk F. Bloch: NMR method in water (1946). 0,1 Relative Precision I. Rabi: Molecular hydrogen beam in a Rabi apparatus (1939) Stern Gerlach mp =.79 mk 0,01 Rabi 1E-3 Jeffries - Collington 1E-4 1E-5 1E-6 Aim of this Experiment Ap p aratu s 1E-7 Winkler - Kleppner 1E-8 1E-9 W all Limitation 1E W. Jeffries: Combination of NMR and direct cyclotron measurement (1951). In the evaluation the magnetic field cancels mp =.7976 mk D. Kleppner: Measurement of the electron and proton magnetic moment ratio via frequency measurement in a hydrogen maser in magnetic field (197). mp = mk M ag n etic Field Bloch Year ωl= g e B m p g= ωl ωc Single particle in a cryogenic double Penning trap

28 Triple Dip Two Frequencies Simultaneously Signal (a.u.) Modulate coupling signal with FFT matched TTL Frequenz(Hz) toothed measurement of two eigenfrequencies

29 Tests of CPT symmetry Tests of particle/antiparticle symmetry (PDG) planned Prof. W. Oelert: No figure of merit for CPT violation observe simple systems with high precision! Prof. Th. Schäfer: What about comparison of proton antiproton magnetic moment? ro m E. Experiment aims at a relative precision of 10-9 Wi d m a n n 9

30 Feedback Cooling and Trap Control Detection method using feedback 1.) Increase of signal to noise by a factor of 30 to 50.) Tremendous decrease in measurement time 3.) Particle still cold 1.) Rabi Oscillations Efficient Cooling Complete mode energy can be cooled within 00 ms compared to 10 s with SWIFT-cooling technique

31 Comparison Axial Detector Harvard Frequenz (khz) Güte Induktivität (mh) RP (Ohm) , ,5 Bottle / Spinflip Harvard B0 (T) B (mt/mm²) D\nu_z (mhz) 5, Axial Detector Mainz Frequenz (khz) Güte Induktivität (mh) RP (Ohm) , Bottle / Spinflip Mainz B0 (T) B (mt/mm²) D\nu_z (mhz) 1,

32 Type II: Model for CPTV: standard model extention SME CPT & Lo re ntz v io la tio n Mo d i f i e d Di r a c e q. i n S ME Lo re ntz v io la tio n Spontaneous Lorentz symmetry breaking by (exotic) string vacua Note: there is a preferred frame, sidereal variation due to earth rotation may be detectable fro m E. Wi d m a n n 3 3

33 Instability of the axial motion Instability due to DC-voltage drifts Instability due to potential couplings sextupolar perturbation: Φ z + ω z TRAP ρ ρ + C3 z z = C z ρ z = K (C 3 / C ) z ρ + ω ρ ρ + ω 1 + f ( Az ) Γ (C 3 / C )ω ω ρ z ρ ρ = K (C 3 / C )[ z ρ ] cos( ω z t ) ρ = 0 Parametrically pumped radial oscillator ACTION TRANSFER Magnetic bottle coupling: ν z = 1 π mν z B E ρ = 1MHz / ev B0 AMPLITUDE REDUCTION BY ELECTRONIC FEEDBACK

The Proton Magnetic Moment

The Proton Magnetic Moment Georg Schneider on behalf of the BASE collaboration March 9, 2016, Kanazawa 1. Theoretical basics Who we are? Measurement principle The double Penning trap method Experimental setup Milestones 2 / 25 Who

More information

Atomic Physics in Traps

Atomic Physics in Traps Atomic Physics in Traps QED Fundamental Constants CPT Invariance Wolfgang Quint GSI Darmstadt and Univ. Heidelberg Quantum mechanics, Relativity, and P.A.M. Dirac Quantum mechanics Special Relativity Dirac

More information

High-precision measurements of the fundamental properties of the antiproton

High-precision measurements of the fundamental properties of the antiproton High-precision measurements of the fundamental properties of the antiproton Hiroki Nagahama on behalf of the BASE collaboration PSAS 2016, Jerusalem 26/May Goal of BASE Table of contents Principle of CPT

More information

The most stringent test of QED in strong fields: The g-factor of 28 Si 13+

The most stringent test of QED in strong fields: The g-factor of 28 Si 13+ The most stringent test of QED in strong fields: The g-factor of 28 Si 13+ Sven Sturm, Anke Wagner, Klaus Blaum March 27 th, 2012 PTB Helmholtz-Symposium Quantum ElectroDynamics (QED) QED describes the

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de Hirschegg 2012 Precision Penning Trap Experiments with Exotic Ions Klaus Blaum January 16, 2012 Outline Introduction and motivation Principle of Penning traps Setup and measurement

More information

The Magnetic Moment of the Proton. A. Mooser for the BASE collaboration

The Magnetic Moment of the Proton. A. Mooser for the BASE collaboration The Magnetic Moment of the Proton A. Mooser for the BASE collaboration Motivation CPT-Symmetry fundamental cornerstone of Standard Model Strategy: Compare properties of matter and antimatter conjugates

More information

Observing a single hydrogen-like ion in a Penning trap at T = 4K

Observing a single hydrogen-like ion in a Penning trap at T = 4K Hyperfine Interactions 115 (1998) 185 192 185 Observing a single hydrogen-like ion in a Penning trap at T = 4K M. Diederich a,h.häffner a, N. Hermanspahn a,m.immel a,h.j.kluge b,r.ley a, R. Mann b,w.quint

More information

Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton

Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton W. Quint a, J. Alonso b, S. Djekić b, H.-J. Kluge a, S. Stahl b, T. Valenzuela b, J. Verdú b, M. Vogel b, and G. Werth b a Gesellschaft

More information

Probing QED in strong fields via the magnetic moment of highly charged ions. Sven Sturm May 25 th, 2016

Probing QED in strong fields via the magnetic moment of highly charged ions. Sven Sturm May 25 th, 2016 Probing QED in strong fields via the magnetic moment of highly charged ions Sven Sturm May 25 th, 2016 Quantum ElectroDynamics (QED) Quantum Electrodynamics (QED is tested and proven in the weak field

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de EMMI Physics Days 2011, GSI Darmstadt Precision Penning Trap Experiments with Exotic Ions Klaus Blaum November 08, 2011 Outline Introduction and motivation Principle of Penning

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Systematic shift caused by trap asymmetry The major systematic correction in the reported cyclotron frequency ratio comparison of an antiproton at ν c, p and a negatively charged hydrogen ion (H ) at ν

More information

A 680-fold improved comparison of the antiproton and proton magnetic moments

A 680-fold improved comparison of the antiproton and proton magnetic moments A 680-fold improved comparison of the antiproton and proton magnetic moments Eric Tardiff Gerald Gabrielse, Jack DiSciacca, Kathryn Marable, Mason Marshall Harvard University July 21, 2014 Testing CPT

More information

Prospects for a Million-fold Improvement in the Comparison of Antiproton and Proton Magnetic Moments

Prospects for a Million-fold Improvement in the Comparison of Antiproton and Proton Magnetic Moments Prospects for a Million-fold Improvement in the Comparison of Antiproton and Proton Magnetic Moments Nicholas Guise Harvard University Cambridge, Massachusetts, USA LEPTON MOMENTS 19 July 2010 Prospects

More information

Direct Measurement of the Proton Magnetic Moment

Direct Measurement of the Proton Magnetic Moment Direct Measurement of the Proton Magnetic Moment J. DiSciacca 1 and G. Gabrielse 1, 1 Dept. of Physics, Harvard University, Cambridge, MA 02138 (Dated: 14 Jan. 2012 (submitted to PRL); 31 Jan. 2012 (accepted

More information

Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions

Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions Klaus.blaum@mpi-hd.mpg.de Table-Top Experiments, Workshop at MIT 2017 Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions Precision atomic/nuclear masses

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #5 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Progress with the. MPIK / UW - PTMS in Heidelberg. Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer

Progress with the. MPIK / UW - PTMS in Heidelberg. Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer Progress with the MPIK / UW - PTMS in Heidelberg Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer TCP 010, Saariselkä, April 1, 010 David Pinegar, MPI-K

More information

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy Martin Diermaier LEAP 2016 Kanazawa Japan Martin Diermaier Stefan-Meyer-Institute March th 2016 MOTIVATION Charge

More information

arxiv: v1 [physics.atom-ph] 15 Jul 2015

arxiv: v1 [physics.atom-ph] 15 Jul 2015 A reservoir trap for antiprotons C. Smorra a,b,, A. Mooser a, K. Franke a,c, H. Nagahama a,d, G. Schneider a,e, T. Higuchi a,d, S.V. Gorp f, K. Blaum c, Y. Matsuda d, W. Quint g, J. Walz e,h, Y. Yamazaki

More information

350-fold improved measurement of the antiproton magnetic moment using a multi-trap method

350-fold improved measurement of the antiproton magnetic moment using a multi-trap method Hyperfine Interaction (2018) 239: 47 https://doi.org/10.1007/s10751-018-1507-1 350-fold improved measurement of the antiproton magnetic moment using a multi-trap method Christian Smorra 1 Pascal E. Blessing

More information

Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places

Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places The 64 th Compton Lecture Series Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places http://kicp.uchicago.edu/~odom/compton.htm Lecture 5: Using the Fine Structure Constant to Push

More information

Spin Feedback System at COSY

Spin Feedback System at COSY Spin Feedback System at COSY 21.7.2016 Nils Hempelmann Outline Electric Dipole Moments Spin Manipulation Feedback System Validation Using Vertical Spin Build-Up Wien Filter Method 21.7.2016 Nils Hempelmann

More information

Fundamental Physics with Antiprotons and Antihydrogen at Lowest Energies

Fundamental Physics with Antiprotons and Antihydrogen at Lowest Energies Fundamental Physics with Antiprotons and Antihydrogen at Lowest Energies Jochen Walz Univ. Mainz antimatter spectroscopy magnetic moments antimatter gravity Why antihydrogen spectroscopy? CPT symmetry

More information

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University Atomic magnetometers: new twists to the old story Michael Romalis Princeton University Outline K magnetometer Elimination of spin-exchange relaxation Experimental setup Magnetometer performance Theoretical

More information

Implementation of new techniques for high precision g factor measurements

Implementation of new techniques for high precision g factor measurements Implementation of new techniques for high precision g factor measurements Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften" am Fachbereich Physik der Johannes Gutenberg Universität

More information

good agreement with the experiment. Thus investigations on the magnetic moment anomaly represent one of the most stringent tests of QED of a free part

good agreement with the experiment. Thus investigations on the magnetic moment anomaly represent one of the most stringent tests of QED of a free part The Magnetic Moment Anomaly of the Electron Bound in Hydrogenic Ions W. Quint Λ, T. Beier Λ, H. Häffner Λ;y1, N. Hermanspahn y2, S. Karshenboim +, H.-J. Kluge Λ, G. Marx Λ, T. Valenzuela y, J. Verdú Λ

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #8 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Spin-Flip Resolution Achieved with a One-Proton Self-Excited Oscillator

Spin-Flip Resolution Achieved with a One-Proton Self-Excited Oscillator Spin-Flip Resolution Achieved with a One-Proton Self-Excited Oscillator A thesis presented by Nicholas Damien Sun-Wo Guise to The Department of Physics in partial fulfillment of the requirements for the

More information

Fully Quantum Measurement of the Electron Magnetic Moment

Fully Quantum Measurement of the Electron Magnetic Moment Fully Quantum Measurement of the Electron Magnetic Moment prepared by Maren Padeffke (presented by N. Herrmann) Outline Motivation and History Experimental Methods Results Conclusion Sources Motivation

More information

Cavity Control in a Single-Electron Quantum Cyclotron

Cavity Control in a Single-Electron Quantum Cyclotron Cavity Control in a Single-Electron Quantum Cyclotron An Improved Measurement of the Electron Magnetic Moment David Hanneke Michelson Postdoctoral Prize Lectures 13 May 2010 The Quantum Cyclotron Single

More information

The New Search for a Neutron EDM at the SNS

The New Search for a Neutron EDM at the SNS The New Search for a Neutron EDM at the SNS Jen-Chieh Peng University of Illinois at Urbana-Champaign The Third International Symposium on LEPTON MOMENTS, Cape Cod, June 19-22, 2006 Physics of neutron

More information

Probing a Single Isolated Electron: New Measurements of the Electron Magnetic Moment and the Fine Structure Constant

Probing a Single Isolated Electron: New Measurements of the Electron Magnetic Moment and the Fine Structure Constant Séminaire Poincaré XI (27) 19 146 Séminaire Poincaré Probing a Single Isolated Electron: New Measurements of the Electron Magnetic Moment and the Fine Structure Constant Gerald Gabrielse Leverett Professor

More information

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN Fundamental physics with antihydrogen and antiprotons at the AD Michael Doser CERN What measurements are we talking about? 1) Precise spectroscopic comparison between H and H tests of fundamental symmetry

More information

Observation of the 1S-2S Transition in Antihydrogen

Observation of the 1S-2S Transition in Antihydrogen Observation of the 1S-2S Transition in Antihydrogen Dirk van der Werf Swansea University CEA-Saclay ALPHA What do we want to do Check CPT conservation Baryon asymmetry Standard model extension (SME): Assume

More information

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Euroschool on Physics with Exotic Beams, Mainz 005 Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Klaus Blaum Johannes Gutenberg-University Mainz

More information

F.G. Major. The Quantum Beat. The Physical Principles of Atomic Clocks. With 230 Illustrations. Springer

F.G. Major. The Quantum Beat. The Physical Principles of Atomic Clocks. With 230 Illustrations. Springer F.G. Major The Quantum Beat The Physical Principles of Atomic Clocks With 230 Illustrations Springer Contents Preface Chapter 1. Celestial and Mechanical Clocks 1 1.1 Cyclic Events in Nature 1 1.2 The

More information

Spin Filtering at COSY - First Results

Spin Filtering at COSY - First Results Mitglied der Helmholtz-Gemeinschaft Spin Filtering at COSY - First Results Dieter Oellers University of Ferrara, INFN Ferrara STORI11, Frascati PAX-Collaboration Goal: Produce a beam of polarized antiprotons

More information

Development of a Rogowski coil Beam Position Monitor for Electric Dipole Moment measurements at storage rings

Development of a Rogowski coil Beam Position Monitor for Electric Dipole Moment measurements at storage rings Development of a Rogowski coil Beam Position Monitor for Electric Dipole Moment measurements at storage rings PHD defense talk Physics Institute III B Nuclear Physics Institute (IKP-II) Fabian Trinkel

More information

Chapter 1 Precise Matter and Antimatter Tests of the Standard Model with e, e +, p, pandh

Chapter 1 Precise Matter and Antimatter Tests of the Standard Model with e, e +, p, pandh Chapter 1 Precise Matter and Antimatter Tests of the Standard Model with e, e +, p, pandh G. Gabrielse, S. Fogwell Hoogerheide, J. Dorr and E. Novitski Abstract Extremely precise tests of the Standard

More information

Physics of and in Ion Traps

Physics of and in Ion Traps Physics of and in Ion Traps Proposed Topics: TRIUMF, Vancouver June 01 Basics of Paul- and Penning-traps (equ. of motion, trap geometries, influence of trap imperfections,) Ion detection and cooling (Buffer

More information

LIST - Development at Mainz for ISOLDE

LIST - Development at Mainz for ISOLDE LIST - Development at Mainz for ISOLDE K. Wendt, T. Gottwald, Ch. Mattolat, C. Ohlert, F. Schwellnus, K. Wies & K. Blaum, Universität Mainz V. Fedoseyev, F. Österdahl, M. Menna, ISOLDE, CERN, Geneva Ch.

More information

Polarized solid deuteron targets EU-SpinMap Dubrovnik

Polarized solid deuteron targets EU-SpinMap Dubrovnik Experimentalphysik I Arbeitsgruppe Physik der Hadronen und Kerne Prof. Dr. W. Meyer G. Reicherz, Chr. Heß, A. Berlin, J. Herick Polarized solid deuteron targets EU-SpinMap 11.10.2010 Dubrovnik Polarized

More information

Xe nuclear spin maser and search for atomic EDM

Xe nuclear spin maser and search for atomic EDM Xe nuclear spin maser and search for atomic EDM T. Inoue, A. Yoshimi *, M. Uchida, T. Furukawa, N. Hatakeyama, M. Tsuchiya, H. Hayashi, and K. Asahi Department of Physics, Tokyo Institute of Technology

More information

Clock based on nuclear spin precession spin-clock

Clock based on nuclear spin precession spin-clock Clock based on nuclear spin precession spin-clock signal (a.u.) detector t exp - T (G. D. Cates, et al., Phys. Rev. A 37, 877) T T T, field T, field 4 4R 75D B, z B, y B, x R 4 p B (ms ) T 00h Long T :

More information

New Measurement of the Electron Magnetic Moment and the Fine Structure Constant

New Measurement of the Electron Magnetic Moment and the Fine Structure Constant New Measurement of the Electron Magnetic Moment and the Fine Structure Constant Gerald Leverett Professor of Physics Harvard University Almost finished student: David Hanneke Earlier contributions: Brian

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT MARIA ŻUREK FOR THE JEDI COLLABORATION

POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT MARIA ŻUREK FOR THE JEDI COLLABORATION POLARIMETRY FOR A STORAGE-RING ELECTRIC-DIPOLE-MOMENT MEASUREMENT 8 JUNE 2018 MARIA ŻUREK FOR THE JEDI COLLABORATION MOTIVATION Barion Asymmetry Problem Barion Asymmetry Observation Standard Cosmological

More information

Penning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping.

Penning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping. Penning Traps Contents Introduction Clasical picture Radiation Damping Number density B and E fields used to increase time that an electron remains within a discharge: Penning, 936. Can now trap a particle

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

First Single Particle Measurements of the Proton and Antiproton Magnetic Moments

First Single Particle Measurements of the Proton and Antiproton Magnetic Moments First Single Particle Measurements of the Proton and Antiproton Magnetic Moments The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron mass ratio Fukuoka, August 2012 Masaki Hori Max Planck Institute of Quantum Optics A. Sótér, D. Barna, A.

More information

Op#mized Planar Penning Traps for Quantum Informa#on Studies

Op#mized Planar Penning Traps for Quantum Informa#on Studies Op#mized Planar Penning Traps for Quantum Informa#on Studies Joshua Goldman Harvard University, Dept. of Physics Gabrielse Laboratory TCP2010, Saariselkä, Finland 12 April 2010 Outline I. Introduc#on:

More information

Axion Like Particle Dark Matter Search using Microwave Cavities

Axion Like Particle Dark Matter Search using Microwave Cavities Axion Like Particle Dark Matter Search using Microwave Cavities Yale Microwave Cavity Experiment (YMCE) Ana Malagon Mar 25, 2014 / WIDG Seminar Weakly Interacting Sub-eV Particles Axion-Like Particles

More information

Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron

Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron Taikan Suehara K. Owada, A. Miyazaki, T. Yamazaki, T. Namba, S. Asai, T. Kobayashi, T. Sakai* International Center for Elementary

More information

arxiv: v3 [physics.atom-ph] 15 Mar 2010

arxiv: v3 [physics.atom-ph] 15 Mar 2010 Optimized Planar Penning Traps for Quantum Information Studies J. Goldman and G. Gabrielse Department of Physics, Harvard University, Cambridge, MA 138 (Dated: Version : March 16, 1) arxiv:1.899v3 [physics.atom-ph]

More information

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN ATHENA / AD-1 First production and detection of cold antihydrogen atoms ATHENA Collaboration Rolf Landua CERN 1 LONG TERM PHYSICS GOALS Antihydrogen = Hydrogen? CPT Gravity But... 2 FIRST GOAL PRODUCTION

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Development of Closed Orbit Diagnostics toward EDM Measurements at COSY in Jülich

Development of Closed Orbit Diagnostics toward EDM Measurements at COSY in Jülich Development of Closed Orbit Diagnostics toward EDM Measurements at COSY in Jülich March 17, 2016 Fabian Hinder 1, 2 for the JEDI collaboration DPG Frühjahrstagung Darmstadt 1 Institut für Kernphysik IV,

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

Development of a compact Yb optical lattice clock

Development of a compact Yb optical lattice clock Development of a compact Yb optical lattice clock A. A. Görlitz, C. Abou-Jaoudeh, C. Bruni, B. I. Ernsting, A. Nevsky, S. Schiller C. ESA Workshop on Optical Atomic Clocks D. Frascati, 14 th 16 th of October

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing

Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing Eur. Phys. J. D 50, 97 102 (2008) DOI: 10.1140/epjd/e2008-00186-y THE EUROPEAN PHYSICAL JOURNAL D Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing P. Bushev

More information

On the Possibility of Non-Neutral Antiproton Plasmas and Antiproton-Positron Plasmas

On the Possibility of Non-Neutral Antiproton Plasmas and Antiproton-Positron Plasmas On the Possibility of Non-Neutral Antiproton Plasmas and Antiproton-Positron Plasmas H. Higaki Plasma Research Center, University of Tsukuba 1-1-1, Tennoudai, Tsukuba, Ibaraki, Japan 305-8577 Abstract.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature1306 Statistical measurement uncertainty The statistical uncertainty of the experimentally determined ratio of Larmor- and cyclotron frequencies, which we denote

More information

NMR Instrumentation BCMB/CHEM Biomolecular NMR

NMR Instrumentation BCMB/CHEM Biomolecular NMR NMR Instrumentation BCMB/CHEM 8190 Biomolecular NMR Instrumental Considerations - Block Diagram of an NMR Spectrometer Magnet Sample B 0 Lock Probe Receiver Computer Transmit Superconducting Magnet systems

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22 Quantum Mechanica Peter van der Straten Universiteit Utrecht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 1 / 22 Matrix methode Peter van der Straten (Atom Optics) Quantum Mechanica

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015 Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015 Outline WHAT are we measuring? - Nuclear/atomic masses WHY do we need/want to measure

More information

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS)

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) The first steps along the way to FT- ICR-MS date back to the 1930s, when Ernest Lawrence, at the University of California - Berkeley,

More information

Direct Neutrino Mass Measurement with KATRIN. Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration

Direct Neutrino Mass Measurement with KATRIN. Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration Direct Neutrino Mass Measurement with KATRIN Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration DBD16, Osaka, Japan, 8 Nov 2016 Neutrino Mass Measurement with Single Beta Decay 2

More information

Optical Pumping in 85 Rb and 87 Rb

Optical Pumping in 85 Rb and 87 Rb Optical Pumping in 85 Rb and 87 Rb John Prior III*, Quinn Pratt, Brennan Campbell, Kjell Hiniker University of San Diego, Department of Physics (Dated: December 14, 2015) Our experiment aimed to determine

More information

Setup of a carbon-cluster laser ion source and the application of the invariance theorem at ISOLTRAP

Setup of a carbon-cluster laser ion source and the application of the invariance theorem at ISOLTRAP Setup of a carbon-cluster laser ion source and the application of the invariance theorem at ISOLTRAP Diplomarbeit von Christine Böhm Institut für Physik Johannes Gutenberg-Universität Mainz CERN Setup

More information

LEAP, Kanazawa, Japan 2016

LEAP, Kanazawa, Japan 2016 Klaus.blaum@mpi-hd.mpg.de LEAP, Kanazawa, Japan 2016 Precision atomic and nuclear masses and their importance for nuclear structure, astrophysics and fundamental studies Motivation for precision mass data

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University TAMU-TRAP facility for Weak Interaction Physics P.D. Shidling Cyclotron Institute, Texas A&M University Outline of the talk Low energy test of Standard Model T =2 Superallowed transition Facility T-REX

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Compendium of concepts you should know to understand the Optical Pumping experiment. \ CFP Feb. 11, 2009, rev. Ap. 5, 2012, Jan. 1, 2013, Dec.28,2013.

Compendium of concepts you should know to understand the Optical Pumping experiment. \ CFP Feb. 11, 2009, rev. Ap. 5, 2012, Jan. 1, 2013, Dec.28,2013. Compendium of concepts you should know to understand the Optical Pumping experiment. \ CFP Feb. 11, 2009, rev. Ap. 5, 2012, Jan. 1, 2013, Dec.28,2013. What follows is specialized to the alkali atoms, of

More information

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum ECT* Trento The Lead Radius Precision measurements of nuclear ground state properties for nuclear structure studies Klaus Blaum 04.08.2009 Outline Introduction, history and methods Principle of laser spectroscopy

More information

Production of HCI with an electron beam ion trap

Production of HCI with an electron beam ion trap Production of HCI with an electron beam ion trap I=450 ma E= 5 kev axially: electrodes radially: electron beam space charge total trap potential U trap 200 V (U trap ion charge) 10000 ev 15000 A/cm 2 n

More information

PENeLOPE. a UCN storage experiment with superconducting magnets for measuring the neutron lifetime

PENeLOPE. a UCN storage experiment with superconducting magnets for measuring the neutron lifetime PENeLOPE a UCN storage experiment with superconducting magnets for measuring the neutron lifetime by Stefan Materne, I. Altarev, B. Franke, E. Gutsmiedl, F.J. Hartmann A. Mann, A.R. Müller, J. Nitschke,

More information

Fully Quantum Measurement of the Electron Magnetic Moment

Fully Quantum Measurement of the Electron Magnetic Moment Fully Quantum Measurement of the Electron Magnetic Moment A thesis presented by Brian Carl Odom to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Møller Polarimetry on Atomic Hydrogen

Møller Polarimetry on Atomic Hydrogen E.Chudakov June 21, 2011 Møller Polarimetry on Atomic Hydrogen 1 Møller Polarimetry on Atomic Hydrogen E.Chudakov 1 1 JLab Meeting at UVA Outline E.Chudakov June 21, 2011 Møller Polarimetry on Atomic Hydrogen

More information

Storage Ring Based EDM Search Achievements and Goals

Storage Ring Based EDM Search Achievements and Goals Mitglied der Helmholtz-Gemeinschaft Storage Ring Based EDM Search Achievements and Goals October 20, 2014 Andreas Lehrach RWTH Aachen University & Forschungszentrum Jülich on behalf of the JEDI collaboration

More information

n-n" oscillations beyond the quasi-free limit or n-n" oscillations in the presence of magnetic field

n-n oscillations beyond the quasi-free limit or n-n oscillations in the presence of magnetic field n-n" oscillations beyond the quasi-free limit or n-n" oscillations in the presence of magnetic field E.D. Davis North Carolina State University Based on: Phys. Rev. D 95, 036004 (with A.R. Young) INT workshop

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses P. Spiller, K. Blasche, B. Franczak, J. Stadlmann, and C. Omet GSI Darmstadt, D-64291 Darmstadt, Germany Abstract:

More information

The cryogenic neutron EDM experiment at ILL

The cryogenic neutron EDM experiment at ILL The cryogenic neutron EDM experiment at ILL and the result of the room temperature experiment James Karamath University of Sussex In this talk (n)edm motivation & principles Room-temperature nedm experiment

More information

Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer. (+ other application) Michael Romalis Princeton University

Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer. (+ other application) Michael Romalis Princeton University Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer (+ other application) Michael Romalis Princeton University Tests of Fundamental Symmetries Parity violation weak interactions CP violation

More information

Challenges in optics requirement and control of Storage Rings for Precision Measurement of EDM

Challenges in optics requirement and control of Storage Rings for Precision Measurement of EDM Mitglied der Helmholtz-Gemeinschaft Challenges in optics requirement and control of Storage Rings for Precision Measurement of EDM February 6, 2015 Andreas Lehrach RWTH Aachen University & Forschungszentrum

More information

Electron EDM Searches

Electron EDM Searches Electron EDM Searches Paul Hamilton Yale University INT Workshop Seattle, October 2008 Outline Theoretical Motivation General detection method Past and current eedm searches Molecular eedm searches and

More information

A MODERN MICHELSON-MORLEY EXPERIMENT USING ACTIVELY ROTATED OPTICAL RESONATORS

A MODERN MICHELSON-MORLEY EXPERIMENT USING ACTIVELY ROTATED OPTICAL RESONATORS A MODERN MICHELSON-MORLEY EXPERIMENT USING ACTIVELY ROTATED OPTICAL RESONATORS S. HERRMANN, A. SENGER, K. MÖHLE, E. V. KOVALCHUK, A. PETERS Institut für Physik, Humboldt-Universität zu Berlin Hausvogteiplatz

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information