Light generation and control in SOI Photonic crystals

Size: px
Start display at page:

Download "Light generation and control in SOI Photonic crystals"

Transcription

1 TF Krauss, WavePro No.1/32 Light generation and control in SOI Photonic crystals Thomas F Krauss University of, School of Physics and Astronomy,, UK Liam O'Faolain, Abdul Shakoor, Karl Welna Christelle Monat, Bill Corcoran, Ben Eggleton, CUDOS Matteo Galli, Dario Gerace, Simone Portalupi, Lucio Claudio Andreani, Pavia Francesco Priolo, Giorgia Franzo, Catania

2 TF Krauss, WavePro No.2/32 How grey silicon can help you generate new colours

3 1. SOI Photonic crystals TF Krauss, WavePro No.3/ nm Si waveguide, airbridge or oxide clad

4 Mechanism! TF Krauss, WavePro No.4/32 a! In the slow light regime, one can imagine the mode taking a longer route - that s why it takes more time, and why there is more light inside the structure.! Cavities can be understood as waveguides with their ends plugged up.!

5 Nonlinear wavelength conversion TF Krauss, WavePro No.5/32

6 Third harmonic generation TF Krauss, WavePro No.6/32 I " = P " A # n g n eff C. Monat et al., Nature Photonics, April 2009

7 Signal/Noise Monitoring - Concept TF Krauss, WavePro No.7/32 B. Corcoran et al., Optical signal processing on a silicon chip at 640Gb/s using slow-light, Optics Express 18, 7770 (2010)

8 Bandwidth TF Krauss, WavePro No.8/ Gbit/s -> 500fs pulses B. Corcoran et al., Optical signal processing on a silicon chip at 640Gb/s using slow-light, Optics Express 18, 7770 (2010)

9 TF Krauss, WavePro No.9/32 2. New colours from cavities

10 High Q cavity TF Krauss, WavePro No.10/32 Real space Q!45 k Fourier space Light cone High Q (low loss) comes from lack of radiation within escape cone/ light cone. S. Noda et al., Nature 425, p.944 (2003)

11 Farfield TF Krauss, WavePro No.11/32 High Q (low loss) comes from lack of radiation within the light cone. But where does the cavity emission actually go? 0 k

12 Solution: Secondary grating TF Krauss, WavePro No.12/32

13 Solution: Secondary grating TF Krauss, WavePro No.13/32 S. L. Portalupi et al., Optics Express July 2010

14 Solution: Secondary grating TF Krauss, WavePro No.14/32 a 2a "!/a!!/a!!/a! k 2!/a! 2!/2a!

15 TF Krauss, WavePro No.15/32 S. L. Portalupi et al., Optics Express July 2010

16 Harmonic Generation TF Krauss, WavePro No.16/32 Nonlinear effects (here: Second and third harmonic generation) observed due to high intensity buildup and far-field engineering M Galli et al. Optics Express, December 2010

17 SHG surface effect TF Krauss, WavePro No.17/32 E x Nearfield Experiment Farfield Model Farfield

18 THG bulk effect TF Krauss, WavePro No.18/32 E y Nearfield Experiment Farfield Model Farfield

19 THG and SHG in Si cavities TF Krauss, WavePro No.19/32 M Galli et al. Optics Express, December 2010

20 Output power TF Krauss, WavePro No.20/32 Output power is absolutely useless for photonics (Referee NPhot) M Galli et al. Optics Express, December 2010

21 TF Krauss, WavePro No.21/32

22 THG emission vs. Nanolaser TF Krauss, WavePro No.22/32! 100 "W

23 TF Krauss, WavePro No.23/32

24 TF Krauss, WavePro No.24/32 3. Silicon (linear) light emission?

25 Defect emission from A Centres TF Krauss, WavePro No.25/32 Nature Materials 2005 Bandedge A-Centre A-Centre A-type trapping centres.attributed to silicon vacancies (10K)

26 Defect emission from Hydrogen implants TF Krauss, WavePro No.26/32 Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities R. Lo Savio et al., accepted for publication in Appl. Phys. Lett.

27 TF Krauss, WavePro No.27/32 E. M. Purcell, Phys. Rev. 69, 37 (1946). Nature News & Views, 1997 f = 3"3 Q P 4# 2 V! rad = " nonrad " rad +" nonrad

28 TF Krauss, WavePro No.28/32! rad = " nonrad " rad +" nonrad The Purcell-factor makes defect emission Roomtemperatureable

29 Further improvements? TF Krauss, WavePro No.29/32 Surface defects (Plasma process) Bulk defects (SOITEC process)

30 TF Krauss, WavePro No.30/32

31 TF Krauss, WavePro No.31/32 1 pw 3000 x SOI!

32 Conclusion TF Krauss, WavePro No.32/32

Ultrafast nonlinear optical processing in photonics integrated circuits: Slow light enhanced

Ultrafast nonlinear optical processing in photonics integrated circuits: Slow light enhanced Ultrafast nonlinear optical processing in photonics integrated circuits: Slow light enhanced Benjamin Eggleton ARC Laureate Fellow Director, CUDOS - Australian Centre of Excellence Centre for Ultrahigh-bandwidth

More information

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Andreas W. Schell, 1, a) Johannes Kaschke, 2 Joachim Fischer,

More information

arxiv: v3 [physics.optics] 19 Jul 2012

arxiv: v3 [physics.optics] 19 Jul 2012 First-principles method for high-q photonic crystal cavity mode calculations arxiv:1204.2855v3 [physics.optics] 19 Jul 2012 Sahand Mahmoodian,1, J.E. Sipe 2, Christopher G. Poulton 3, Kokou B. Dossou 3,

More information

Nanostrutture con funzionalità avanzate

Nanostrutture con funzionalità avanzate Unità di Ricerca 4 Nanostrutture con funzionalità avanzate Progettazione, simulazione e test di componenti planari per optoelettronica, compatibili con la tecnologia CMOS (cristalli fotonici, guide d onda,

More information

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes The International Journal Of Engineering And Science (Ijes) Volume 2 Issue 2 Pages 146-150 2013 Issn: 2319 1813 Isbn: 2319 1805 Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal

More information

Theory of Photonic Crystal Slabs by the Guided-Mode Expansion Method

Theory of Photonic Crystal Slabs by the Guided-Mode Expansion Method Theory of Photonic Crystal Slabs by the Guided-Mode Expansion Method Dario Gerace* Lucio Claudio Andreani Dipartimento di Fisica Alessandro Volta, Università degli Studi di Pavia, Pavia (Italy) *Quantum

More information

Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOScompatible

Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOScompatible Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOScompatible process Mizuki Shinkawa, 1,2 Norihiro Ishikura, 1,2 Yosuke Hama, 1 Keijiro Suzuki 1,2 and Toshihiko Baba

More information

Fabrication-tolerant high quality factor photonic crystal microcavities

Fabrication-tolerant high quality factor photonic crystal microcavities Fabrication-tolerant high quality factor photonic crystal microcavities Kartik Srinivasan, Paul E. Barclay, and Oskar Painter Department of Applied Physics, California Institute of Technology, Pasadena,

More information

Fabrication and optical measurements of silicon on insulator photonic nanostructures

Fabrication and optical measurements of silicon on insulator photonic nanostructures Microelectronic Engineering 61 62 (2002) 529 536 www.elsevier.com/ locate/ mee Fabrication and optical measurements of silicon on insulator photonic nanostructures * M. Agio, L.C. Andreani, E. Silberstein,

More information

Advanced techniques Local probes, SNOM

Advanced techniques Local probes, SNOM Advanced techniques Local probes, SNOM Principle Probe the near field electromagnetic field with a local probe near field probe propagating field evanescent Advanced techniques Local probes, SNOM Principle

More information

Hybrid indium phosphide-on-silicon nanolaser diode

Hybrid indium phosphide-on-silicon nanolaser diode In the format provided by the authors and unedited. DOI: 10.1038/NPHOTON.2017.56 Hybrid indium phosphide-on-silicon nanolaser diode Guillaume Crosnier 1,2, Dorian Sanchez 2, Sophie Bouchoule 2, Paul Monnier

More information

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX Understanding process-dependent oxygen vacancies in thin HfO 2 /SiO 2 stacked-films on Si (100) via competing electron-hole injection dynamic contributions to second harmonic generation. J. Price, 1,2

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

arxiv: v1 [physics.optics] 3 Nov 2015

arxiv: v1 [physics.optics] 3 Nov 2015 On-chip spectroscopy with thermally-tuned high-q photonic crystal cavities Andreas C. Liapis,, a) Boshen Gao, Mahmudur R. Siddiqui, Zhimin Shi, and Robert W. Boyd, 3 ) The Institute of Optics, University

More information

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) (invited) TBC Session 3: Metamaterials Theory (16:45 17:00, Huxley LT308) Light trapping states in media with longitudinal electric waves D McArthur,

More information

Loss engineered slow light waveguides

Loss engineered slow light waveguides Loss engineered slow light waveguides L. O Faolain, 1 S. A. Schulz, 1 D. M. Beggs, 1 T. P.White, 1 M. Spasenović, 2 L. Kuipers, 2 F. Morichetti, 3 A. Melloni, 3 S. Mazoyer, 4 J. P. Hugonin, 4 P. Lalanne,

More information

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators Chapter 6 Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors

More information

A Novel Flat Band Slow Light in Photonic Crystal Waveguide with Elliptical Air Holes.

A Novel Flat Band Slow Light in Photonic Crystal Waveguide with Elliptical Air Holes. A Novel Flat Band Slow Light in Photonic Crystal Waveguide with Elliptical Air Holes Vali Varmazyari 1, Hassan Ghafoorifard 1, and Hamidreza Habibiyan 1 1 Photonics Engineering Group, Amirkabir University

More information

SHG Spectroscopy. Clean surfaces Oxidation SOI wafer

SHG Spectroscopy. Clean surfaces Oxidation SOI wafer SHG Spectroscopy Clean surfaces Oxidation SOI wafer Scan regions Idler: 730-1050 nm 1000-1400 nm Signal: 680-550 nm Ti:Sapphire: 700-1000 nm 600-500 nm SHG set-up Bergfeld, Daum, PRL 90, 2915 SHG from

More information

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Content Introduction to XEOL Application of XEOL Development and Application of XEOL in STXM

More information

Grating-assisted superresolution of slow waves in Fourier space

Grating-assisted superresolution of slow waves in Fourier space Grating-assisted superresolution of slow waves in Fourier space N. Le Thomas and R. Houdré Institut de Photonique et d Electronique Quantique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3,

More information

SUPPLEMENTAL MATERIAL I: SEM IMAGE OF PHOTONIC CRYSTAL RESONATOR

SUPPLEMENTAL MATERIAL I: SEM IMAGE OF PHOTONIC CRYSTAL RESONATOR 1 SUPPLEMENTAL MATERIAL I: SEM IMAGE OF PHOTONIC CRYSTAL RESONATOR Figure S1 below is a scanning electronic microscopy image of a typical evanescently coupled photonic crystal resonator used in these experiments.

More information

Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance

Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance Seok Ho Song, Hanyang University, http://optics.anyang.ac.kr/~shsong silver grating Key notes 1. How does the surface

More information

Model for quantum efficiency of guided mode

Model for quantum efficiency of guided mode Model for quantum efficiency of guided mode plasmonic enhanced silicon Schottky detectors Ilya Goykhman 1, Boris Desiatov 1, Joseph Shappir 1, Jacob B. Khurgin 2 and Uriel Levy *1 1 Department of Applied

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

Simulation and design of photonic crystal with nonlinear components

Simulation and design of photonic crystal with nonlinear components Middle East Journal of Applied Sciences Volume : 08 Issue :02 April-June 2018 Pages: 690-704 Simulation and design of photonic crystal with nonlinear components Hanan A. Mueid AL-Zahrani Department of

More information

Air-holes radius change effects and structure transitions in the linear photonic crystal nanocavities

Air-holes radius change effects and structure transitions in the linear photonic crystal nanocavities American Journal of Optics and Photonics 2013; 1(3): 11-16 Published online June 20, 2013 (http://www.sciencepublishinggroup.com/j/ajop) doi: 10.11648/j.ajop.20130103.11 Air-holes radius change effects

More information

Band structure of honeycomb photonic crystal slabs

Band structure of honeycomb photonic crystal slabs JOURNAL OF APPLIED PHYSICS 99, 093102 2006 Band structure of honeycomb photonic crystal slabs Tai-I Weng and G. Y. Guo a Department of Physics, National Taiwan University, Taipei, Taiwan 106, Republic

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 08 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Outline: Photonic crystals 2 1. Photonic crystals vs electronic

More information

Two-dimensional porous silicon photonic crystal light emitters

Two-dimensional porous silicon photonic crystal light emitters Two-dimensional porous silicon photonic crystal light emitters Maria Makarova, Jelena Vuckovic, Hiroyuki Sanda, Yoshio Nishi Department of Electrical Engineering, Stanford University, Stanford, CA 94305-4088

More information

Photonics Beyond Diffraction Limit:

Photonics Beyond Diffraction Limit: Photonics Beyond Diffraction Limit: Plasmon Cavity, Waveguide and Lasers Xiang Zhang University of California, Berkeley Light-Matter Interaction: Electrons and Photons Photons Visible / IR ~ 1 m Electrons

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance

Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance (Fifth Lecture) Techno Forum on Micro-optics and Nano-optics Technologies Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance 송석호, 한양대학교물리학과, http://optics.anyang.ac.kr/~shsong

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 21: Nonlinear Optics in Glass-Applications Denise Krol Department of Applied Science University of California,

More information

Propagation of Photons Through Localized Coupled Cavity Modes in Photonic Band Gap Structures:

Propagation of Photons Through Localized Coupled Cavity Modes in Photonic Band Gap Structures: CLEO, May 7-12, 7 2000, San Francisco Propagation of Photons Through Localized Coupled Cavity Modes in Photonic Band Gap Structures: A New Type of Waveguiding Mechanism Mehmet Bayındır Burak Temelkuran

More information

Photon Pair Production using non-linear waveguides

Photon Pair Production using non-linear waveguides Photon Pair Production using non-linear waveguides Alexander Ling J. Chen, J. Fan, A. Pearlmann, A. Migdall Joint Quantum Institute NIST and University of Maryland, College Park Motivation Correlated photon-pairs

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Multi-photon absorption limits to heralded single photon sources

Multi-photon absorption limits to heralded single photon sources Multi-photon absorption limits to heralded single photon sources Chad Husko, Alex S. Clark, Matthew J. Collins, Chunle Xiong, and Benjamin J. Eggleton Centre for Ultrahigh-bandwidth Devices for Optical

More information

Second-Harmonic Generation Studies of Silicon Interfaces

Second-Harmonic Generation Studies of Silicon Interfaces Second-Harmonic Generation Studies of Silicon Interfaces Z. Marka 1, Y. D. Glinka 1, Y. Shirokaya 1, M. Barry 1, S. N. Rashkeev 1, W. Wang 1, R. D. Schrimpf 2,D. M. Fleetwood 2 and N. H. Tolk 1 1 Department

More information

Phase independent nonlinear amplification regime in one-dimensional photonic bandgaps

Phase independent nonlinear amplification regime in one-dimensional photonic bandgaps INSTITUT OF PHYSICS PUBLISHING JOURNAL OF OPTICS A: PUR AND APPLID OPTICS J. Opt. A: Pure Appl. Opt. 3 (1) S19 S PII: S1-5(1)5515-9 Phase independent nonlinear amplification regime in one-dimensional photonic

More information

High Power Diode Lasers

High Power Diode Lasers Lecture 10/1 High Power Diode Lasers Low Power Lasers (below tenth of mw) - Laser as a telecom transmitter; - Laser as a spectroscopic sensor; - Laser as a medical diagnostic tool; - Laser as a write-read

More information

Crystalline silicon (c-si) is the most important semiconductor

Crystalline silicon (c-si) is the most important semiconductor REVIEW ARTICLE PUBLISHED ONLINE: 6 JANUARY 2014 DOI: 10.1038/NNANO.2014.271 licon nanostructures for photonics and photovoltaics Francesco Priolo 1,2,3 *, Tom Gregorkiewicz 4, Matteo Galli 5 and Thomas

More information

PHYSICAL REVIEW B 80,

PHYSICAL REVIEW B 80, Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law M. Patterson and S. Hughes* Department of

More information

High temperature plasmonics: Narrowband, tunable, nearfield. thermal sources

High temperature plasmonics: Narrowband, tunable, nearfield. thermal sources High temperature plasmonics: Narrowband, tunable, nearfield thermal sources Yu Guo, S. Molesky, C. Cortes and Zubin Jacob * Department of Electrical and Computer Engineering, University of Alberta, Edmonton,

More information

Photonic crystal waveguides with semi-slow light and tailored dispersion properties

Photonic crystal waveguides with semi-slow light and tailored dispersion properties Photonic crystal waveguides with semi-slow light and tailored dispersion properties Lars H. Frandsen, Andrei V. Lavrinenko, Jacob Fage-Pedersen, and Peter I. Borel COM DTU, Department of Communications,

More information

Polarization control of defect modes in threedimensional woodpile photonic crystals

Polarization control of defect modes in threedimensional woodpile photonic crystals Polarization control of defect modes in threedimensional woodpile photonic crystals Michael James Ventura and Min Gu* Centre for Micro-Photonics and Centre for Ultrahigh-bandwidth Devices for Optical Systems,

More information

Confinement of band-edge modes in a photonic crystal slab

Confinement of band-edge modes in a photonic crystal slab Confinement of band-edge modes in a photonic crystal slab Frédéric Bordas, 1 M. J. Steel,,3 Christian Seassal, 1 Adel Rahmani 4 1 Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR570, CNRS,

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion VG04-123 Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion Douglas J. Bamford, David J. Cook, and Scott J. Sharpe Physical Sciences Inc. Jeffrey Korn and Peter

More information

Size Scaling of Photonic Crystal Surface Emitting Lasers on Silicon Substrates

Size Scaling of Photonic Crystal Surface Emitting Lasers on Silicon Substrates Size Scaling of Photonic Crystal Surface Emitting Lasers on Silicon Substrates Volume 10, Number 3, June 2018 Open Access Shih-Chia Liu Deyin Zhao Xiaochen Ge Carl Reuterskiöld-Hedlund Mattias Hammar Shanhui

More information

Insertion Devices Lecture 2 Wigglers and Undulators. Jim Clarke ASTeC Daresbury Laboratory

Insertion Devices Lecture 2 Wigglers and Undulators. Jim Clarke ASTeC Daresbury Laboratory Insertion Devices Lecture 2 Wigglers and Undulators Jim Clarke ASTeC Daresbury Laboratory Summary from Lecture #1 Synchrotron Radiation is emitted by accelerated charged particles The combination of Lorentz

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

Computational Optoelectronics Group, Integrated Systems Laboratory, ETH Zurich 2. Institute of Photonics and Quantum Electronics, EPF Lausanne

Computational Optoelectronics Group, Integrated Systems Laboratory, ETH Zurich 2. Institute of Photonics and Quantum Electronics, EPF Lausanne Modelling the Purcell Effect in Photonic Crystal Cavities with a 3D Finite Element Maxwell Solver Friedhard Römer 1, Andrea Fiore 2, Laurent Balet 2, and Bernd Witzigmann 1 1 Computational Optoelectronics

More information

Effect of nonlinearity on wave scattering and localization. Yuri S. Kivshar

Effect of nonlinearity on wave scattering and localization. Yuri S. Kivshar Effect of nonlinearity on wave scattering and localization Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia St. Petersburg University of Information Technologies,

More information

Quantum Nanoplasmonics and the Spaser

Quantum Nanoplasmonics and the Spaser Photo Credit: I. Tsukerman, Seefeld, Austria, January, Department 2009 of Physics and Astronomy US Israel Binational Science Foundation Quantum Nanoplasmonics and the Spaser Mark I. Stockman Department

More information

Eric R. Colby* SLAC National Accelerator Laboratory

Eric R. Colby* SLAC National Accelerator Laboratory Eric R. Colby* SLAC National Accelerator Laboratory *ecolby@slac.stanford.edu Work supported by DOE contracts DE AC03 76SF00515 and DE FG03 97ER41043 III. Overview of the Technology Likely Performance

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 due today April 11 th class will be at 2PM instead of

More information

Quantum theory of spontaneous emission in multilayer dielectric structures

Quantum theory of spontaneous emission in multilayer dielectric structures PHYSICAL REVIEW A 78, 685 8 Quantum theory of spontaneous emission in multilayer dielectric structures Celestino Creatore Department of Physics, Politecnico di Torino, Corso Duca degli Abruzzi, 9 Torino,

More information

Electromagnetic Metamaterials

Electromagnetic Metamaterials Photonic Bandgap and Electromagnetic Metamaterials Andrew Kirk andrew.kirk@mcgill.ca ca Department of Electrical and Computer Engineering McGill Institute for Advanced Materials A Kirk 11/24/2008 Photonic

More information

Photonic Crystals: Periodic Surprises in Electromagnetism. You can leave home without them. Complete Band Gaps: Steven G.

Photonic Crystals: Periodic Surprises in Electromagnetism. You can leave home without them. Complete Band Gaps: Steven G. Photonic Crystals: Periodic Surprises in lectromagnetism Steven G. ohnson MIT Complete Band Gaps: You can leave home without them. How else can we confine light? Total Internal Reflection n o n i > n o

More information

Sharp bends in photonic crystal waveguides as nonlinear Fano resonators

Sharp bends in photonic crystal waveguides as nonlinear Fano resonators Sharp bends in photonic crystal waveguides as nonlinear Fano resonators Andrey E. Miroshnichenko and Yuri S. Kivshar Nonlinear Physics Centre and Centre for Ultra-high bandwidth Devices for Optical Systems

More information

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering Chip-Based Optical Frequency Combs Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering KISS Frequency Comb Workshop Cal Tech, Nov. 2-5,

More information

Spectral properties of photonic crystal double heterostructure resonant cavities

Spectral properties of photonic crystal double heterostructure resonant cavities Spectral properties of photonic crystal double heterostructure resonant cavities Adam Mock, Ling Lu and J. D. O Brien Department of Electrical Engineering-Electrophysics, University of Southern California

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland  Chapter 4b: χ (2) -nonlinearities with ultrashort pulses. Ultrafast Laser Physics Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 4b: χ (2) -nonlinearities with ultrashort pulses Ultrafast Laser Physics ETH Zurich Contents Second

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

Color Center Production by Femtosecond-Pulse Laser Irradiation in Fluoride Crystals

Color Center Production by Femtosecond-Pulse Laser Irradiation in Fluoride Crystals ISSN 154-66X, Laser Physics, 26, Vol. 16, No. 2, pp. 331 335. MAIK Nauka /Interperiodica (Russia), 26. Original Text Astro, Ltd., 26. NONLINEAR OPTICS AND SPECTROSCOPY Color Center Production by Femtosecond-Pulse

More information

Nonlinear optical effects and carbon nanotubes. Abstract

Nonlinear optical effects and carbon nanotubes. Abstract Nonlinear optical effects and carbon nanotubes Chiyat Ben Yau Department of Physics, University of Cincinnati, OH 45221, USA (December 3, 2001) Abstract Materials with large second or third order optical

More information

Introduction to Nonlinear Optics

Introduction to Nonlinear Optics Introduction to Nonlinear Optics Prof. Cleber R. Mendonca http://www.fotonica.ifsc.usp.br Outline Linear optics Introduction to nonlinear optics Second order nonlinearities Third order nonlinearities Two-photon

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Step-induced electronic resonance at vicinal Si(001) observed by spectroscopic SHG and RAS

Step-induced electronic resonance at vicinal Si(001) observed by spectroscopic SHG and RAS Step-induced electronic resonance at vicinal Si(001) observed by spectroscopic SHG and RAS Robert Ehlert, Jinhee Kwon and Michael C. Downer Department of Physics, The University of Texas at Austin, Austin

More information

Three-Dimensional Silicon Photonic Crystals

Three-Dimensional Silicon Photonic Crystals Three-Dimensional Silicon Photonic Crystals Shawn-Yu Lin'*, J. G. Fleming', D.L. Hetherington', B.K. Smith', W. Zubrzycki', R. Biswas2, M.M. Sigalas2, and K.M. Ho2. 'Sandia National Laboratories, P.O.

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter. 2359-3 Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter 13-24 August 2012 Electrically active defects in semiconductors induced by radiation

More information

Micro-patterned porous silicon using proton beam writing

Micro-patterned porous silicon using proton beam writing Micro-patterned porous silicon using proton beam writing M. B. H. Breese, D. Mangaiyarkarasi, E. J. Teo*, A. A. Bettiol and D. Blackwood* Centre for Ion Beam Applications, Department of Physics, National

More information

Factors Affecting Higher Order Solitons in Soliton Transmission

Factors Affecting Higher Order Solitons in Soliton Transmission Factors Affecting Higher Order Solitons in Soliton Transmission SUBI S, Lakshmy G B P.G. Scholar, Optoelectronics and Communication Systems Dept. of ECE TKM Institute of Technology, Kollam. India. Subi.sulaiman@gmail.com

More information

Semiconductor Lasers for Optical Communication

Semiconductor Lasers for Optical Communication Semiconductor Lasers for Optical Communication Claudio Coriasso Manager claudio.coriasso@avagotech.com Turin Technology Centre 10Gb/s DFB Laser MQW 1 Outline 1) Background and Motivation Communication

More information

Novel All-Optical Logic Gates Based on Photonic Crystal Structure

Novel All-Optical Logic Gates Based on Photonic Crystal Structure Journal of Physics: Conference Series Novel All-Optical Logic Gates Based on Photonic Crystal Structure To cite this article: Mortaza Noshad et al 2012 J. Phys.: Conf. Ser. 350 012007 View the article

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University 微纳光电子材料与器件工艺原理 Doping 掺杂 Xing Sheng 盛兴 Department of Electronic Engineering Tsinghua University xingsheng@tsinghua.edu.cn 1 Semiconductor PN Junctions Xing Sheng, EE@Tsinghua LEDs lasers detectors solar

More information

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Heedeuk Shin 1, Wenjun Qiu 2, Robert Jarecki 1, Jonathan A. Cox 1, Roy H. Olsson III 1, Andrew Starbuck 1, Zheng Wang 3, and

More information

The International Year of Light and Light based Technologies

The International Year of Light and Light based Technologies Photonic circuits for the new information age: Faster, smaller, smarter and greener Professor Benjamin J. Eggleton ARC Laureate Fellow Director, CUDOS - Australian Centre of Excellence Centre for Ultrahigh

More information

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 59 DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN

More information

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Jahan M. Dawlaty, Farhan Rana and William J. Schaff Department of Electrical and Computer

More information

Temperature effect on lyoluminescence of potassium halide microcrystals in luminol solution

Temperature effect on lyoluminescence of potassium halide microcrystals in luminol solution Indian Journal of Pure & Applied Physics Vol. 44, July 2006, pp. 519-523 Temperature effect on lyoluminescence of potassium halide microcrystals in luminol solution R S Chandok*, R Kaur**, G K Chandok

More information

Physics 222, Modern Physics, Exam 1 NAME

Physics 222, Modern Physics, Exam 1 NAME Physics 222, Modern Physics, Exam 1 NAME You are graded on your work, with partial credit where it is deserved. Please be clear and well-organized in all your steps. 1. Gold has a work function of 4.83

More information

2D Periodic Surface Lattice Cherenkov maser experiment

2D Periodic Surface Lattice Cherenkov maser experiment 2D Periodic Surface Lattice Cherenkov maser experiment Alan R. Phipps Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Email: alan.phipps@strath.ac.uk ABP Atoms, Beams & Plasmas

More information

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation.

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Optics of Surfaces & Interfaces - VIII September 10 th, 2009 Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Jimmy Price and Michael C. Downer Physics

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca Femtosecond laser microfabrication in polymers Prof. Dr. Cleber R. Mendonca laser microfabrication focus laser beam on material s surface laser microfabrication laser microfabrication laser microfabrication

More information

Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser

Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser Elena G. Turitsyna*, Sergei K. Turitsyn, and Vladimir K. Mezentsev Photonics Research Group, Aston University,

More information

Title Analysis of high-q photonic crystal L3 ation of the leaky components Author(s) Maeno, Kenichi; Takahashi, Yasushi; Na hi; Noda, Susumu Editor(s) Citation Optics Express. 2017, 25 (1), p.367-37 Issue

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

Optical Absorption. Istvan Balasa, Peter Jürgens, Lars Jensen, Marco Jupé, Detlev Ristau. Symposium OCLA Buchs,

Optical Absorption. Istvan Balasa, Peter Jürgens, Lars Jensen, Marco Jupé, Detlev Ristau. Symposium OCLA Buchs, Optical Absorption Istvan Balasa, Peter Jürgens, Lars Jensen, Marco Jupé, Detlev Ristau Symposium OCLA 2017 Buchs, 12.04.2017 WHAT IS CRITICAL ABOUT ABSORPTION? Laser-induced Damage Thermal Lensing / Focal

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

EPSILON-NEAR-ZERO (ENZ) AND MU-NEAR-ZERO (MNZ) MATERIALS

EPSILON-NEAR-ZERO (ENZ) AND MU-NEAR-ZERO (MNZ) MATERIALS EPSILON-NEAR-ZERO (ENZ) AND MU-NEAR-ZERO (MNZ) MATERIALS SARAH NAHAR CHOWDHURY PURDUE UNIVERSITY 1 Basics Design ENZ Materials Lumped circuit elements Basics Decoupling Direction emission Tunneling Basics

More information