Fourier Integral. Dr Mansoor Alshehri. King Saud University. MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 22

Size: px
Start display at page:

Download "Fourier Integral. Dr Mansoor Alshehri. King Saud University. MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 22"

Transcription

1 Dr Mansoor Alshehri King Saud University MATH4-Differential Equations Center of Excellence in Learning and Teaching /

2 Fourier Cosine and Sine Series Integrals The Complex Form of Fourier Integral MATH4-Differential Equations Center of Excellence in Learning and Teaching /

3 Formula of Fourier Integral The Fourier Integral of f(x) defined on the interval (, ) is given by f(x) = π where and A() cos(x) d + π A() = B() = Formula () can be written as f(x) = π f(t) cos(t) dt, f(t) sin(t) dt. B() sin(x) d, () f(t) cos (t x) dtd. () MATH4-Differential Equations Center of Excellence in Learning and Teaching 3 /

4 Theorem If f is absolutely integrable ( ) f(x) dx <, and f, f are piecewise continuous on every finite intreval, then Fourier integral of f converges to f(x) at a point of continuity and converges to at a point of discontinuity. f(x + ) + f(x ) MATH4-Differential Equations Center of Excellence in Learning and Teaching 4 /

5 Example () Express the function f(x) = as a Fourier integral. Hence evaluate value of Solution Since sin d. f(x) = π = π {, x, x >, sin cos x d and deduce the f(t) cos (t x)dtd cos (t x)dtd MATH4-Differential Equations Center of Excellence in Learning and Teaching 5 /

6 Hence = π = π = π = π Fourier Integral sin (t x) d sin ( x) sin ( x) d sin ( + x) + sin ( x) d sin cos x d. { sin cos x π d =, x <, x >, At x = ±, f(x) is discontinuous and the integral has the value ( π + ) = π 4. Now by setting x =, we have sin d = π. MATH4-Differential Equations Center of Excellence in Learning and Teaching 6 /

7 Example () Compute the Fourier integral of the function, < x < π, π < x < f(x) =, < x < π, π < x <. MATH4-Differential Equations Center of Excellence in Learning and Teaching 7 /

8 Solution We have f(x) = π = π = π + π = cos (t x)dtd + π π sin (t x) d + π π sin x + sin (π + x) d sin (π x) + sin x d ( cos π) sin(x)d. π sin (t x) cos (t x)dtd π d MATH4-Differential Equations Center of Excellence in Learning and Teaching 8 /

9 This Fourier integral converges at the discontinuities points π,, π respectively to f(( π) + ) + f(( π) ) f( + ) + f( ) f(π + ) + f(π ) =, =. =, MATH4-Differential Equations Center of Excellence in Learning and Teaching 9 /

10 Example (3) Consider the function, x < f(x) = x, x <, x. Sketch the graph of f, find the Fourier integral and deduce the value of sin d. Solution y (, ) x MATH4-Differential Equations Center of Excellence in Learning and Teaching /

11 () A() = = = f(t) cos(t)dt ( t) cos(t)dt }{{} by parts [ ] sin(t) ( t) = [ ] cos(t) sin( ) cos() cos( ) = sin() MATH4-Differential Equations Center of Excellence in Learning and Teaching /

12 () B() = = = = f(t) sin(t)dt ( t) sin(t)dt }{{} by parts [ cos(t) ] ( t) cos( ) sin() sin( ) [ ] sin(t) = cos() sin() MATH4-Differential Equations Center of Excellence in Learning and Teaching /

13 Thus, = π = π f(x + ) + f(x ) At x =, we have A() cos(x)d + B() sin(x)d π [ ( sin cos(x) cos + sin ) sin(x) ] d, hence, f( + ) + f( ) = + π = = = π sin d sin d, MATH4-Differential Equations Center of Excellence in Learning and Teaching 3 /

14 Exercises Find the Fourier integral for the following functions 3 f(x) = {, x < e x, x >., < x <, < x < f(x) =, < x <, x >. f(x) = { C, x, x >, where C is a constant such that C. Deduce the value of the sin α integral α dα. MATH4-Differential Equations Center of Excellence in Learning and Teaching 4 /

15 Fourier Cosine and Sine Series Integrals Fourier Cosine and Sine Series Integrals The Fourier sine integral is given by f(x) = π where C() = The Fourier cosine integral is given by f(x) = π where D() = C() sin(x)d, f(t) sin(t)dt. D() cos(x)d, (3) f(t) cos(t)dt. MATH4-Differential Equations Center of Excellence in Learning and Teaching 5 /

16 Fourier Cosine and Sine Series Integrals Example Compute the Fourier integral of the function { sin x, x π f(x) =, x π, and deduce that cos π + cos ( π ) d = π. Solution We observe that the function f is even on the interval (, ). So It has a Fourier cosine integral given by (3), that is f(x) = π D() cos(x)d, MATH4-Differential Equations Center of Excellence in Learning and Teaching 6 /

17 where Thus D() = = = = f(x) = π π Fourier Integral f(t) cos(t)dt = Fourier Cosine and Sine Series Integrals π sin t cos(t)dt sin t( ) + sin t( + ) dt cos t( ) π cos t( + ) ( ) ( + ) [cos π + ]. [cos π + ] cos(x)d. (4) Since f is continuous on the whole interval (, ), the above integral converges to the given function f(x). Setting x = π/ in (4), we get ( ) π [cos π + ] cos d = π. MATH4-Differential Equations Center of Excellence in Learning and Teaching 7 / π

18 Fourier Cosine and Sine Series Integrals Exercises Find the Fourier sine and Fourier cosine integral for the following functions f(x) = { x, < x, x >, x, x f(x) = x +, < x <, x. MATH4-Differential Equations Center of Excellence in Learning and Teaching 8 /

19 The Complex Form of Fourier Integral The Complex Form of Fourier Integral The complex form of Fourier integral is given by f(x) = π β()e ix d, where β() = f(t)e it dt MATH4-Differential Equations Center of Excellence in Learning and Teaching 9 /

20 The Complex Form of Fourier Integral Example Find the complex form of the Fourier integral for the function { e f(x) = x, x, x > Solution We have Hence β() = f(t)e it dt = e (i+)t dt = (i + ) e(i+)t = (e (i+) e (i+)) (i + ) = i [ + e (i+) e (i+)]. f(x) = i [ π + e (i+) e (i+)] e ix d. MATH4-Differential Equations Center of Excellence in Learning and Teaching /

21 The Complex Form of Fourier Integral Exercise Find the complex form of the Fourier integral for the function {, x < f(x) = e x, x >. MATH4-Differential Equations Center of Excellence in Learning and Teaching /

22 The Complex Form of Fourier Integral Acknowledgment This project was supported by King Saud University, Center of Excellence in Learning and Teaching. MATH4-Differential Equations Center of Excellence in Learning and Teaching /

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Power Series and Analytic Function

Power Series and Analytic Function Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 21 Some Reviews of Power Series Differentiation and Integration of a Power Series

More information

Section 5.8. Taylor Series

Section 5.8. Taylor Series Difference Equations to Differential Equations Section 5.8 Taylor Series In this section we will put together much of the work of Sections 5.-5.7 in the context of a discussion of Taylor series. We begin

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have.

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have. For 2 weeks course only Mathematical Methods and its Applications (Solution of assignment-2 Solution From the definition of Fourier transforms, we have F e at2 e at2 e it dt e at2 +(it/a dt ( setting (

More information

23.4. Convergence. Introduction. Prerequisites. Learning Outcomes

23.4. Convergence. Introduction. Prerequisites. Learning Outcomes Convergence 3.4 Introduction In this Section we examine, briefly, the convergence characteristics of a Fourier series. We have seen that a Fourier series can be found for functions which are not necessarily

More information

S56 (5.1) Integration.notebook March 09, 2017

S56 (5.1) Integration.notebook March 09, 2017 Today we will be learning about integration (indefinite integrals) Integration What would you get if you undo the differentiation? Integration is the reverse process of differentiation. It is sometimes

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS. MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS. M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the summation formulas to rewrite the

More information

Math 54: Mock Final. December 11, y y 2y = cos(x) sin(2x). The auxiliary equation for the corresponding homogeneous problem is

Math 54: Mock Final. December 11, y y 2y = cos(x) sin(2x). The auxiliary equation for the corresponding homogeneous problem is Name: Solutions Math 54: Mock Final December, 25 Find the general solution of y y 2y = cos(x) sin(2x) The auxiliary equation for the corresponding homogeneous problem is r 2 r 2 = (r 2)(r + ) = r = 2,

More information

Spring 2017 Midterm 1 04/26/2017

Spring 2017 Midterm 1 04/26/2017 Math 2B Spring 2017 Midterm 1 04/26/2017 Time Limit: 50 Minutes Name (Print): Student ID This exam contains 10 pages (including this cover page) and 5 problems. Check to see if any pages are missing. Enter

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

Math 12 Final Exam Review 1

Math 12 Final Exam Review 1 Math 12 Final Exam Review 1 Part One Calculators are NOT PERMITTED for this part of the exam. 1. a) The sine of angle θ is 1 What are the 2 possible values of θ in the domain 0 θ 2π? 2 b) Draw these angles

More information

Final Problem Set. 2. Use the information in #1 to show a solution to the differential equation ), where k and L are constants and e c L be

Final Problem Set. 2. Use the information in #1 to show a solution to the differential equation ), where k and L are constants and e c L be Final Problem Set Name A. Show the steps for each of the following problems. 1. Show 1 1 1 y y L y y(1 ) L.. Use the information in #1 to show a solution to the differential equation dy y ky(1 ), where

More information

MATH 124B: HOMEWORK 2

MATH 124B: HOMEWORK 2 MATH 24B: HOMEWORK 2 Suggested due date: August 5th, 26 () Consider the geometric series ( ) n x 2n. (a) Does it converge pointwise in the interval < x

More information

MAC 2311 Exam 1 Review Fall Private-Appointment, one-on-one tutoring at Broward Hall

MAC 2311 Exam 1 Review Fall Private-Appointment, one-on-one tutoring at Broward Hall Fall 2016 This review, produced by the CLAS Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources made available by the

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

Applications of First Order Differential Equation

Applications of First Order Differential Equation Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 39 Orthogonal Trajectories How to Find Orthogonal Trajectories Growth and Decay

More information

WebAssign Lesson 6-3 Taylor Series (Homework)

WebAssign Lesson 6-3 Taylor Series (Homework) WebAssign Lesson 6-3 Taylor Series (Homework) Current Score : / 56 Due : Tuesday, August 5 204 0:59 AM MDT Jaimos Skriletz Math 75, section 3, Summer 2 204 Instructor: Jaimos Skriletz. /4 points Consider

More information

Math 2025, Quiz #2. Name: 1) Find the average value of the numbers 1, 3, 1, 2. Answere:

Math 2025, Quiz #2. Name: 1) Find the average value of the numbers 1, 3, 1, 2. Answere: Math 5, Quiz # Name: ) Find the average value of the numbers, 3,,. Answere: ) Find the Haar wavelet transform of the initial data s (3,,, 6). Answere: 3) Assume that the Haar wavelet transform of the initial

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Section 6: Summary Section 7

Section 6: Summary Section 7 Section 6: Summary Section 7 a n = 2 ( 2πnx cos b n = 2 ( 2πnx sin d = f(x dx f(x = d + n= [ a n cos f(x dx f(x dx ( ( ] 2πnx 2πnx + b n sin You can sometimes combine multiple integrals using symmetry

More information

Exam 3 Solutions. Multiple Choice Questions

Exam 3 Solutions. Multiple Choice Questions MA 4 Exam 3 Solutions Fall 26 Exam 3 Solutions Multiple Choice Questions. The average value of the function f (x) = x + sin(x) on the interval [, 2π] is: A. 2π 2 2π B. π 2π 2 + 2π 4π 2 2π 4π 2 + 2π 2.

More information

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line.

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line. PreCalculus Review Review Questions 1 The following transformations are applied in the given order) to the graph of y = x I Vertical Stretch by a factor of II Horizontal shift to the right by units III

More information

MATH 1271 Monday, 21 November 2018

MATH 1271 Monday, 21 November 2018 MATH 1271 Monday, 21 November 218 Today: Section 5.4 - Indefinite Integrals and the Theorem Homework: 5-17 odd, 21-45 odd, 51-63 odd, 67, 71 1/13 Def Total displacement is the integral of the velocity

More information

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions.

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions. 8. EXERCISES Unit 3. Integration 3A. Differentials, indefinite integration 3A- Compute the differentials df(x) of the following functions. a) d(x 7 + sin ) b) d x c) d(x 8x + 6) d) d(e 3x sin x) e) Express

More information

MATH 5640: Fourier Series

MATH 5640: Fourier Series MATH 564: Fourier Series Hung Phan, UMass Lowell September, 8 Power Series A power series in the variable x is a series of the form a + a x + a x + = where the coefficients a, a,... are real or complex

More information

University of Leeds, School of Mathematics MATH 3181 Inner product and metric spaces, Solutions 1

University of Leeds, School of Mathematics MATH 3181 Inner product and metric spaces, Solutions 1 University of Leeds, School of Mathematics MATH 38 Inner product and metric spaces, Solutions. (i) No. If x = (, ), then x,x =, but x is not the zero vector. So the positive definiteness property fails

More information

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Section 5.6 Integration By Parts MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Integration By Parts Manipulating the Product Rule d dx (f (x) g(x)) = f (x) g (x) + f (x) g(x)

More information

Fourier and Partial Differential Equations

Fourier and Partial Differential Equations Chapter 5 Fourier and Partial Differential Equations 5.1 Fourier MATH 294 SPRING 1982 FINAL # 5 5.1.1 Consider the function 2x, 0 x 1. a) Sketch the odd extension of this function on 1 x 1. b) Expand the

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1 Names Date Math 00 Worksheet. Consider the function f(x) = x 6x + 8 (a) Complete the square and write the function in the form f(x) = (x a) + b. f(x) = x 6x + 8 ( ) ( ) 6 6 = x 6x + + 8 = (x 6x + 9) 9

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

Math 112 (Calculus I) Final Exam

Math 112 (Calculus I) Final Exam Name: Student ID: Section: Instructor: Math 112 (Calculus I) Final Exam Dec 18, 7:00 p.m. Instructions: Work on scratch paper will not be graded. For questions 11 to 19, show all your work in the space

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Derivatives of Trig and Inverse Trig Functions

Derivatives of Trig and Inverse Trig Functions Derivatives of Trig and Inverse Trig Functions Math 102 Section 102 Mingfeng Qiu Nov. 28, 2018 Office hours I m planning to have additional office hours next week. Next Monday (Dec 3), which time works

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

Solutions. MATH 1060 Exam 3 Fall (10 points) For 2 sin(3x π) + 1 give the. amplitude. period. phase shift. vertical shift.

Solutions. MATH 1060 Exam 3 Fall (10 points) For 2 sin(3x π) + 1 give the. amplitude. period. phase shift. vertical shift. MATH 060 Exam Fall 008 Solutions. (0 points) For sin(x π) + give the amplitude period phase shift vertical shift amplitude= period= π phase shift= π vertical shift=. (5 points) Consider a sine curve with

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section: MATH 251 Final Examination December 19, 2012 FORM A Name: Student Number: Section: This exam has 17 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all

More information

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0 Some Math 35 review problems With answers 2/6/2005 The following problems are based heavily on problems written by Professor Stephen Greenfield for his Math 35 class in spring 2005. His willingness to

More information

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm D: Page of 2 Indefinite Integrals. 9 marks Each part is worth marks. Please

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

Three Interpretations of the Fourier Trasform The Fourier transform plays an important role in engineering and science. At one time or another,

Three Interpretations of the Fourier Trasform The Fourier transform plays an important role in engineering and science. At one time or another, hree Interpretations of the Fourier rasform he Fourier transform plays an important role in engineering and science. At one time or another, all electrical engineering students use the transform. However,

More information

Chapter 17. Fourier series

Chapter 17. Fourier series Chapter 17. Fourier series We have already met the simple periodic functions, of the form cos(ωt θ). In this chapter we shall look at periodic functions of more complicated nature. 1. The basic results

More information

MAT 132 Midterm 1 Spring 2017

MAT 132 Midterm 1 Spring 2017 MAT Midterm Spring 7 Name: ID: Problem 5 6 7 8 Total ( pts) ( pts) ( pts) ( pts) ( pts) ( pts) (5 pts) (5 pts) ( pts) Score Instructions: () Fill in your name and Stony Brook ID number at the top of this

More information

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0.

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0. Chapter 7 Challenge problems Example. (a) Find the equation of the tangent line for ln(x + ) at x = 0. (b) Find the equation of the parabola that is tangent to ln(x + ) at x = 0 (i.e. the parabola has

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator Math Test - Review Use differentials to approximate the following. Compare your answer to that of a calculator.. 99.. 8. 6. Consider the graph of the equation f(x) = x x a. Find f (x) and f (x). b. Find

More information

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives Objectives 1. Find the Exact Value of an Inverse Sine, Cosine, or Tangent Function. 2. Find an Approximate Value of an Inverse Sine Function. 3. Use Properties of Inverse Functions to Find Exact Values

More information

Math 3150 HW 3 Solutions

Math 3150 HW 3 Solutions Math 315 HW 3 Solutions June 5, 18 3.8, 3.9, 3.1, 3.13, 3.16, 3.1 1. 3.8 Make graphs of the periodic extensions on the region x [ 3, 3] of the following functions f defined on x [, ]. Be sure to indicate

More information

SCORE. Exam 3. MA 114 Exam 3 Fall 2016

SCORE. Exam 3. MA 114 Exam 3 Fall 2016 Exam 3 Name: Section and/or TA: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing

More information

What will you learn?

What will you learn? Section 2.2 Basic Differentiation Rules & Rates of Change Calc What will you learn? Find the derivative using the Constant Rule Find the derivative using the Power Rule Find the derivative using the Constant

More information

MATH 307: Problem Set #7

MATH 307: Problem Set #7 MATH 307: Problem Set #7 Due on: Feb 11, 2016 Problem 1 First-order Variation of Parameters The method of variation of parameters uses the homogeneous solutions of a linear ordinary differential equation

More information

Warm up: Unit circle Fill in the exact values for quadrant 1 reference angles.

Warm up: Unit circle Fill in the exact values for quadrant 1 reference angles. Name: 4-1 Unit Circle and Exact Values Learning Goals: 1) How can we use the unit circle to find the value of sine, cosine, and tangent? 2) Given a point on a circle and the radius of the circle, how can

More information

Mathematical methods and its applications Dr. S. K. Gupta Department of Mathematics Indian Institute of Technology, Roorkee

Mathematical methods and its applications Dr. S. K. Gupta Department of Mathematics Indian Institute of Technology, Roorkee Mathematical methods and its applications Dr. S. K. Gupta Department of Mathematics Indian Institute of Technology, Roorkee Lecture - 56 Fourier sine and cosine transforms Welcome to lecture series on

More information

Calculus I Announcements

Calculus I Announcements Slide 1 Calculus I Announcements Read sections 4.2,4.3,4.4,4.1 and 5.3 Do the homework from sections 4.2,4.3,4.4,4.1 and 5.3 Exam 3 is Thursday, November 12th See inside for a possible exam question. Slide

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

Math 251, Spring 2005: Exam #2 Preview Problems

Math 251, Spring 2005: Exam #2 Preview Problems Math 5, Spring 005: Exam # Preview Problems. Using the definition of derivative find the derivative of the following functions: a) fx) = e x e h. Use the following lim =, e x+h = e x e h.) h b) fx) = x

More information

The Fourier series for a 2π-periodic function

The Fourier series for a 2π-periodic function The Fourier series for a 2π-periodic function Let f : ( π, π] R be a bounded piecewise continuous function which we continue to be a 2π-periodic function defined on R, i.e. f (x + 2π) = f (x), x R. The

More information

SOLUTIONS TO PROBLEMS FROM ASSIGNMENT 5. Problems 3.1:6bd

SOLUTIONS TO PROBLEMS FROM ASSIGNMENT 5. Problems 3.1:6bd SOLUTIONS TO PROBLEMS FROM ASSIGNMENT 5 Statement. Solve the problem Problems 3.1:6bd u t = u xx, (t ), with the initial condition u(x, ) = f(x), where the functions u(x, t) and f(x) are assumed to be

More information

FOURIER SERIES. Chapter Introduction

FOURIER SERIES. Chapter Introduction Chapter 1 FOURIER SERIES 1.1 Introduction Fourier series introduced by a French physicist Joseph Fourier (1768-1830), is a mathematical tool that converts some specific periodic signals into everlasting

More information

Practice Exercises on Differential Equations

Practice Exercises on Differential Equations Practice Exercises on Differential Equations What follows are some exerices to help with your studying for the part of the final exam on differential equations. In this regard, keep in mind that the exercises

More information

CODE: GR17A1003 GR 17 SET - 1

CODE: GR17A1003 GR 17 SET - 1 SET - 1 I B. Tech II Semester Regular Examinations, May 18 Transform Calculus and Fourier Series (Common to all branches) Time: 3 hours Max Marks: 7 PART A Answer ALL questions. All questions carry equal

More information

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section: MATH 2 Final Examination December 6, 204 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 0 points. In order to obtain full credit for partial credit problems, all work must

More information

Math 113 HW #10 Solutions

Math 113 HW #10 Solutions Math HW #0 Solutions 4.5 4. Use the guidelines of this section to sketch the curve Answer: Using the quotient rule, y = x x + 9. y = (x + 9)(x) x (x) (x + 9) = 8x (x + 9). Since the denominator is always

More information

Math 241 Final Exam, Spring 2013

Math 241 Final Exam, Spring 2013 Math 241 Final Exam, Spring 2013 Name: Section number: Instructor: Read all of the following information before starting the exam. Question Points Score 1 5 2 5 3 12 4 10 5 17 6 15 7 6 8 12 9 12 10 14

More information

MATH 150 TOPIC 16 TRIGONOMETRIC EQUATIONS

MATH 150 TOPIC 16 TRIGONOMETRIC EQUATIONS Math 150 T16-Trigonometric Equations Page 1 MATH 150 TOPIC 16 TRIGONOMETRIC EQUATIONS In calculus, you will often have to find the zeros or x-intercepts of a function. That is, you will have to determine

More information

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2 CHEE 39 Tutorial 3 Solutions. Using partial fraction expansions, find the causal function f whose Laplace transform is given by: F (s) 0 f(t)e st dt (.) F (s) = s(s+) ; Solution: Note that the polynomial

More information

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin.

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin. 7.1 Solving Trigonometric Equations with Identities In this section, we explore the techniques needed to solve more complex trig equations: By Factoring Using the Quadratic Formula Utilizing Trig Identities

More information

S56 (5.3) Further Calculus.notebook March 24, 2016

S56 (5.3) Further Calculus.notebook March 24, 2016 Daily Practice 16.3.2016 Today we will be learning how to differentiate using the Chain Rule. Homework Solutions Video online - please mark 2009 P2 Polynomials HW Online due 22.3.16 We use the Chain Rule

More information

Math 216 Second Midterm 19 March, 2018

Math 216 Second Midterm 19 March, 2018 Math 26 Second Midterm 9 March, 28 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Graphs of Antiderivatives, Substitution Integrals

Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation. The substitution

More information

Limits of Exponential, Logarithmic, and Trigonometric Functions

Limits of Exponential, Logarithmic, and Trigonometric Functions Limits of Exponential, Logarithmic, and Trigonometric Functions by CHED on January 02, 2018 lesson duration of 3 minutes under Basic Calculus generated on January 02, 2018 at 01:54 am Tags: Limits and

More information

3.1 Day 1: The Derivative of a Function

3.1 Day 1: The Derivative of a Function A P Calculus 3.1 Day 1: The Derivative of a Function I CAN DEFINE A DERIVATIVE AND UNDERSTAND ITS NOTATION. Last chapter we learned to find the slope of a tangent line to a point on a graph by using a

More information

( x) Solutions 9(c) 1. Complete solutions to Exercise 9(c) 1. We first make a sketch of y = sin x ( ): Area A= Area B. By (9.6) = cos cos 0 = 2 = 2

( x) Solutions 9(c) 1. Complete solutions to Exercise 9(c) 1. We first make a sketch of y = sin x ( ): Area A= Area B. By (9.6) = cos cos 0 = 2 = 2 Solutions 9(c) Complete solutions to Exercise 9(c). We first make a sketch of y = sin x : y Area A y =sin(x).5 4 5 6 x -.5 Area B By (9.6) Similarly Thus - Area A= sin x dx ( x) ( ) [ ] = cos = cos cos

More information

Math 216 Final Exam 14 December, 2017

Math 216 Final Exam 14 December, 2017 Math 216 Final Exam 14 December, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

MAT137 Calculus! Lecture 5

MAT137 Calculus! Lecture 5 MAT137 Calculus! Lecture 5 Today: 2.5 The Pinching Theorem; 2.5 Trigonometric Limits. 2.6 Two Basic Theorems. 3.1 The Derivative Next: 3.2-3.6 DIfferentiation Rules Deadline to notify us if you have a

More information

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations. UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language

More information

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals Graphs of Antiderivatives - Unit #0 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation.

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 3 FALL 0 FINAL EXAM - PRACTICE EXAM SOLUTIONS () You cut a slice from a circular pizza (centered at the origin) with radius 6 along radii at angles 4 and 3 with the positive horizontal axis. (a) (3

More information

Monday, 6 th October 2008

Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns 1/19 Class test next week... MA211 Lecture 9: 2nd order differential eqns 2/19 This morning

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

SCORE. Exam 3. MA 114 Exam 3 Fall 2016

SCORE. Exam 3. MA 114 Exam 3 Fall 2016 Exam 3 Name: Section and/or TA: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information

Introduction to Limits

Introduction to Limits MATH 136 Introduction to Limits Given a function y = f (x), we wish to describe the behavior of the function as the variable x approaches a particular value a. We should be as specific as possible in describing

More information

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section: MATH 5 Final Examination May 3, 07 FORM A Name: Student Number: Section: This exam has 6 questions for a total of 50 points. In order to obtain full credit for partial credit problems, all work must be

More information

Increasing and decreasing intervals *

Increasing and decreasing intervals * OpenStax-CNX module: m15474 1 Increasing and decreasing intervals * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 A function is

More information

CALCULUS AB SUMMER ASSIGNMENT

CALCULUS AB SUMMER ASSIGNMENT CALCULUS AB SUMMER ASSIGNMENT Dear Prospective Calculus Students, Welcome to AP Calculus. This is a rigorous, yet rewarding, math course. Most of the students who have taken Calculus in the past are amazed

More information

I can complete a table of values using a calculator.

I can complete a table of values using a calculator. Starter 1) True or false? cos (x) = 1 + sin (x) Why? 2 2 2) Solve 1 + 4sin(x) = 3 for 0 < x < 360 Today we are learning... Sketching Trigonometric Graphs How to sketch a variety of trigonometric graphs.

More information

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Prove this Result How Can a Derivative Not Exist? Remember that the derivative at a point (or slope of a tangent line) is a LIMIT, so it doesn t exist whenever

More information

More on Fourier Series

More on Fourier Series More on Fourier Series R. C. Trinity University Partial Differential Equations Lecture 6.1 New Fourier series from old Recall: Given a function f (x, we can dilate/translate its graph via multiplication/addition,

More information

Practice Exam I. Summer Term I Kostadinov. MA124 Calculus II Boston University

Practice Exam I. Summer Term I Kostadinov. MA124 Calculus II Boston University student: Practice Exam I Problem 1: Find the derivative of the functions T 1 (x), T 2 (x), T 3 (x). State the reason of your answers. a) T 1 (x) = x 2t dt 2 b) T 2 (x) = e x ln(t2 )dt c) T 3 (x) = x 2

More information

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class.

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class. Math 18 Written Homework Assignment #1 Due Tuesday, December 2nd at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 18 students, but

More information