MODELS FOR VARIABLE RECRUITMENT (continued)

Size: px
Start display at page:

Download "MODELS FOR VARIABLE RECRUITMENT (continued)"

Transcription

1 ODL FOR VARIABL RCRUITNT (ontinue) The other moel ommonly use to relate reruitment strength with the size of the parental spawning population is a moel evelope by Beverton an Holt (957, etion 6), whih is on the Reommene Reaing list. The Beverton & Holt pawner-reruit oel We will use the same notation as before. k is the total number of eggs, whih then beome larvae, then juveniles, an then aults. are the number of spawning aults, the parents of. is the average number of eggs lai per spawning ault. is the total number of eggs lai. k The Beverton an Holt stok-reruit moel omes from the solution to the following simple ifferential equation. t where is the ensity-epenent rate of natural mortality. is the ensity-inepenent rate of natural mortality. Here the ensity epenent term is proportional to the ohort abunane, not to the parental abunane (as in the Riker moel). This form of mortality oul arise from proesses suh as ompetition for foo or other sare resoures. This ifferential equation is muh more ompliate to solve than the one that le to the Riker moel. t ( ) As before, we start by separating the variables. ( ) t But, now what o we o? We an solve this equation by separating the left han sie, whih is the prout of two frations, into an equivalent sum of two frations. This is sometimes esribe as the metho of partial frations. The following example illustrates the general metho. ( X a) ( X b) A X a B X b We an integrate the sum on the right. The integral of a sum is the sun of the integrals. We nee to fin values for A an B that satisfy the above equation. To o so, multiply together the two terms on the right han sie an then einate the enominator. ( X a) ( X b) A( X b) B( X a) ( X a) ( X b) A ( X b) B( X a) A X B X Ab The left han sie of this equation ontains no terms in X, whih implies that B a FW43/53 Copyright 2008 by Davi B. ampson Reruitment2 - Page 82

2 0 A X B X an A b > B A an A b Aa A( a b) Ba > A a b an B b a Given values for a, b, an, we an use these equations to solve for A an B. For our problem we want to expan the fration ( ) > ( 0) We have a -/, b 0, an /. If we substitute these into the equations for A an B, we get A an B > ( ) o, we an write the ifferential equation as t Fator out / an multiply the first term by /. t Integrate. t X / ( ab X ) (/b) ln( ab X ) ln ln ln t C t C ln(x) - ln(y) ln( X / Y ) FW43/53 Copyright 2008 by Davi B. ampson Reruitment2 - Page 83

3 exp( t) exp( C) The general solution. For initial onitions, speify that at t0. exp( 0) exp( C) exp( C) exp( t) The partiular solution. This is the solution to the ifferential equation, but we want it in the form f(t). To put it in this form we nee to solve for. ( ) 0 exp( t) To simplify the notation let Ι an substitute into the equation to get Ιexp( t) Ιexp( t) Ιexp( t) Ιexp( t) Collet terms with on the left. Ιexp( t) Ιexp( t) Ι Ι exp( t) exp( t) Ι exp t Put in the full expression for Ι. ultiply the numerator an enominator by exp( t) 0 an ivie the numerator an enominator by. exp t exp( t) exp( t) exp( t) ( exp( t) ) FW43/53 Copyright 2008 by Davi B. ampson Reruitment2 - Page 84

4 Now set t t, the age at spawning, an assume that all spawners ie after spawning. The "eggs" that survive to beome spawners are the reruits. ( t ) R exp( t ) ( exp ( t ) ) Finally, set k... k R Divie numerator an exp( t ) ( exp ( t enominator by k. ) ) k R k exp t exp t ( )... an let k exp ( t ) ( ) exp t We en up with the Beverton an Holt stok-reruit moel R. The quantity / represents the total number of eggs that woul survive if the only soure of mortality was. The ratio / is the fration surviving the ensity inepenent mortality. kexp t Numerial xample of Beverton an Holt's R oel i R i Reruits pawners FW43/53 Copyright 2008 by Davi B. ampson Reruitment2 - Page 85

5 If R, then the spawning population will just replae itself with new reruits an the population will be at equilibrium from one generation to the next. Algebraially this means that R > > Parameter is imensionless an has units [/fish]. olving for we get the population size at equilibrium eq. For our example we have eq What is the behavior of R() when is large? R We nee to use L'Hôpital's rule to evaluate this inefinite form. R ( ) The graph of R() has a horizontal asymptote at R/. For our numerial example The slope of R() is R ( ) 2 Y U V - Y U V -2 ( -V ) U V - R ( ) 2 ( ) 2 ( ) 2 etting to zero gives the slope of R() at the origin, ( 0) 2. This is the ratio of reruits to spawners when there is no ensity epenene. Also, notie that the slope of R() is never equal to zero, exept in the it as approahes infinity. This means that the graph of R() has no istint point at whih R() is either a maximum or a minimum. xplore the effets of parameters an on eq, on the slope of R() at the origin, an on the horizontal asymptote using the xel emonstration. FW43/53 Copyright 2008 by Davi B. ampson Reruitment2 - Page 86

6 A athematial Digression The Beverton an Holt stok-reruit moel has a form that is very similar to the equation for a ath proess with hanling, whih we enountere previously. Both equations are retangular hyperbolas. Both are of the form X Y onstant If we start with the graph of Y X -, whih has the X axis as a horizontal asymptote an the Y axis as a vertial asymptote, we an obtain the graph orresponing to the Beverton an Holt moel (or the ath proess moel) by shifting the loation of the origin. When measure on the original axes (X,Y), the point (Xa,Y-b) orrespons to the origin of the axes (X',Y'). Retangular Hyperbola, Y -/X. 0 a 2 3 X a Y b X Y X' 0 Y' 0 a 0 X' b 0 Y' X X' a Y Y' b 2 3 b Also, the point (Xa,Y-b) must satisfy the relationship Y -/X. b > ab a The relationship X Y - orrespons to the new relationship ( X' a) ( Y' b) ab whih has a vertial asymptote at X' -a, an a horizontal asymptote at Y' b. In terms of the Beverton an Holt stok-reruit moel we have a The vertial asymptote an b The horizontal asymptote > R whih is equivalent to R R 2 > 2 R FW43/53 Copyright 2008 by Davi B. ampson Reruitment2 - Page 87

7 > R Dynami Behavior of the Beverton an Holt R oel What happens to the number of spawners from one generation to the next? The reruits proue by one generation of spawners beomes the next generation of spawners. R t t t t tart with 0 parents. 0 They proue R 0 reruits, equivalent to parents. The parents proue R reruits, equivalent to 2 parents, an so on. Reruits Unlike the Riker moel, for the Beverton an Holt stok-reruit moel the equilibrium point eq is always stable. pawners xplore the effets of hanging 0 an an on the system's ynami behavior using the xel emonstration.. FW43/53 Copyright 2008 by Davi B. ampson Reruitment2 - Page 88

Some facts you should know that would be convenient when evaluating a limit:

Some facts you should know that would be convenient when evaluating a limit: Some fats you should know that would be onvenient when evaluating a it: When evaluating a it of fration of two funtions, f(x) x a g(x) If f and g are both ontinuous inside an open interval that ontains

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

TOTAL EQUILIBRIUM YIELD

TOTAL EQUILIBRIUM YIELD TOTAL EQUILIBIUM YIELD ecall that the yield-per-recruit model enabled us to examine the problem of growth overfishing but, because we assumed that recruitment was constant, the model did not tell us whether

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 6 First Orer Linear Differential Equations A linear first orer orinary ifferential equation is a ifferential equation of the form ( a(xy + b(xy = c(x. Here y represents the unknown function, y

More information

The numbers inside a matrix are called the elements or entries of the matrix.

The numbers inside a matrix are called the elements or entries of the matrix. Chapter Review of Matries. Definitions A matrix is a retangular array of numers of the form a a a 3 a n a a a 3 a n a 3 a 3 a 33 a 3n..... a m a m a m3 a mn We usually use apital letters (for example,

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

Chapter 9. There are 7 out of 50 measurements that are greater than or equal to 5.1; therefore, the fraction of the

Chapter 9. There are 7 out of 50 measurements that are greater than or equal to 5.1; therefore, the fraction of the Pratie questions 6 1 a y i = 6 µ = = 1 i = 1 y i µ i = 1 ( ) = 95 = s n 95 555. x i f i 1 1+ + 5+ n + 5 5 + n µ = = = f 11+ n 11+ n i 7 + n = 5 + n = 6n n = a Time (minutes) 1.6.1.6.1.6.1.6 5.1 5.6 6.1

More information

Chapter 2: One-dimensional Steady State Conduction

Chapter 2: One-dimensional Steady State Conduction 1 Chapter : One-imensional Steay State Conution.1 Eamples of One-imensional Conution Eample.1: Plate with Energy Generation an Variable Conutivity Sine k is variable it must remain insie the ifferentiation

More information

To work algebraically with exponential functions, we need to use the laws of exponents. You should

To work algebraically with exponential functions, we need to use the laws of exponents. You should Prealulus: Exponential and Logisti Funtions Conepts: Exponential Funtions, the base e, logisti funtions, properties. Laws of Exponents memorize these laws. To work algebraially with exponential funtions,

More information

2 ODEs Integrating Factors and Homogeneous Equations

2 ODEs Integrating Factors and Homogeneous Equations 2 ODEs Integrating Factors an Homogeneous Equations We begin with a slightly ifferent type of equation: 2.1 Exact Equations These are ODEs whose general solution can be obtaine by simply integrating both

More information

Intercepts To find the y-intercept (b, fixed value or starting value), set x = 0 and solve for y. To find the x-intercept, set y = 0 and solve for x.

Intercepts To find the y-intercept (b, fixed value or starting value), set x = 0 and solve for y. To find the x-intercept, set y = 0 and solve for x. Units 4 an 5: Linear Relations partial variation iret variation Points on a Coorinate Gri (x-oorinate, y-oorinate) origin is (0, 0) "run, then jump" Interepts To fin the y-interept (, fixe value or starting

More information

1. Description of Finite Heat Release Function

1. Description of Finite Heat Release Function ME 40 Day 27 Desription of Finite Heat elease Funtion - SI Engines Differential Equations to Moel Cyle Software Implementation in EES Questions that an be answere. Desription of Finite Heat elease Funtion

More information

Determination the Invert Level of a Stilling Basin to Control Hydraulic Jump

Determination the Invert Level of a Stilling Basin to Control Hydraulic Jump Global Avane Researh Journal of Agriultural Siene Vol. (4) pp. 074-079, June, 0 Available online http://garj.org/garjas/inex.htm Copyright 0 Global Avane Researh Journals Full Length Researh Paper Determination

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1 We consier ifferential equations of the form y + a()y = b(), (1) y( 0 ) = y 0, where a() an b() are functions. Observe that this class of equations inclues equations

More information

1 - a 1 - b 1 - c a) 1 b) 2 c) -1 d) The projection of OP on a unit vector OQ equals thrice the area of parallelogram OPRQ.

1 - a 1 - b 1 - c a) 1 b) 2 c) -1 d) The projection of OP on a unit vector OQ equals thrice the area of parallelogram OPRQ. Regter Number MODEL EXAMINATION PART III - MATHEMATICS [ENGLISH VERSION] Time : Hrs. Ma. Marks : 00 SECTION - A 0 = 0 Note :- (i) All questions are ompulsory. (ii) Eah question arries one mark. (iii) Choose

More information

A MATLAB Method of Lines Template for Evolution Equations

A MATLAB Method of Lines Template for Evolution Equations A MATLAB Metho of Lines Template for Evolution Equations H.S. Lee a, C.J. Matthews a, R.D. Braok a, G.C. Saner b an F. Ganola a a Faulty of Environmental Sienes, Griffith University, Nathan, QLD, 4111

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

WJEC Core 2 Integration. Section 1: Introduction to integration

WJEC Core 2 Integration. Section 1: Introduction to integration WJEC Core Integration Section : Introuction to integration Notes an Eamples These notes contain subsections on: Reversing ifferentiation The rule for integrating n Fining the arbitrary constant Reversing

More information

Relative Maxima and Minima sections 4.3

Relative Maxima and Minima sections 4.3 Relative Maxima and Minima setions 4.3 Definition. By a ritial point of a funtion f we mean a point x 0 in the domain at whih either the derivative is zero or it does not exists. So, geometrially, one

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

In this assignment you will build a simulation of the presynaptic terminal.

In this assignment you will build a simulation of the presynaptic terminal. 9.16 Problem Set #2 In this assignment you will buil a simulation of the presynapti terminal. The simulation an be broken own into three parts: simulation of the arriving ation potential (base on the Hogkin-Huxley

More information

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form)

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form) INTRO TO CALCULUS REVIEW FINAL EXAM NAME: DATE: A. Equations of Lines (Review Chapter) y = m + b (Slope-Intercept Form) A + By = C (Stanar Form) y y = m( ) (Point-Slope Form). Fin the equation of a line

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

Math 151 Introduction to Eigenvectors

Math 151 Introduction to Eigenvectors Math 151 Introdution to Eigenvetors The motivating example we used to desrie matrixes was landsape hange and vegetation suession. We hose the simple example of Bare Soil (B), eing replaed y Grasses (G)

More information

An Integer Solution of Fractional Programming Problem

An Integer Solution of Fractional Programming Problem Gen. Math. Notes, Vol. 4, No., June 0, pp. -9 ISSN 9-784; Copyright ICSRS Publiation, 0 www.i-srs.org Available free online at http://www.geman.in An Integer Solution of Frational Programming Problem S.C.

More information

General Equilibrium. What happens to cause a reaction to come to equilibrium?

General Equilibrium. What happens to cause a reaction to come to equilibrium? General Equilibrium Chemial Equilibrium Most hemial reations that are enountered are reversible. In other words, they go fairly easily in either the forward or reverse diretions. The thing to remember

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION CALCULUS 3 INU0115/515 (MATHS 2) Dr Arian Jannetta MIMA CMath FRAS Implicit Differentiation 1/ 11 Arian Jannetta Explicit an implicit functions Explicit functions An explicit function

More information

McCreight s Suffix Tree Construction Algorithm. Milko Izamski B.Sc. Informatics Instructor: Barbara König

McCreight s Suffix Tree Construction Algorithm. Milko Izamski B.Sc. Informatics Instructor: Barbara König 1. Introution MCreight s Suffix Tree Constrution Algorithm Milko Izamski B.S. Informatis Instrutor: Barbara König The main goal of MCreight s algorithm is to buil a suffix tree in linear time. This is

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

The influence of upstream weir slope on live-bed scour at submerged weir

The influence of upstream weir slope on live-bed scour at submerged weir The influene of upstream weir slope on live-be sour at submerge weir L. Wang, B.W. Melville & H. Frierih Department of Civil an Environmental Engineering, University of Auklan, New Zealan ABSTRACT: Shape

More information

STRUCTURE AND ELECTRICAL PROPERTIES OF ELECTRON IRRADIATED CdSe THIN FILMS

STRUCTURE AND ELECTRICAL PROPERTIES OF ELECTRON IRRADIATED CdSe THIN FILMS Journal of Optoeletronis an Avane Materials ol. 6, o. 1, Marh 24, p. 113-119 STRUCTURE AD ELECTRICAL PROPERTIES OF ELECTRO IRRADIATED C THI FILMS L. Ion a*, S. Antohe a, M. Popesu b, F. Sarlat, F. Sava

More information

Math 225B: Differential Geometry, Homework 6

Math 225B: Differential Geometry, Homework 6 ath 225B: Differential Geometry, Homework 6 Ian Coley February 13, 214 Problem 8.7. Let ω be a 1-form on a manifol. Suppose that ω = for every lose urve in. Show that ω is exat. We laim that this onition

More information

GLOBAL EDITION. Calculus. Briggs Cochran Gillett SECOND EDITION. William Briggs Lyle Cochran Bernard Gillett

GLOBAL EDITION. Calculus. Briggs Cochran Gillett SECOND EDITION. William Briggs Lyle Cochran Bernard Gillett GOBA EDITION Briggs Cohran Gillett Calulus SECOND EDITION William Briggs le Cohran Bernar Gillett ( (, ) (, ) (, Q ), Q ) (, ) ( Q, ) / 5 /4 5 5 /6 7 /6 ( Q, 5 5 /4 ) 4 4 / 7 / (, ) 9 / (, ) 6 / 5 / (Q,

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

2. The Energy Principle in Open Channel Flows

2. The Energy Principle in Open Channel Flows . The Energy Priniple in Open Channel Flows. Basi Energy Equation In the one-dimensional analysis of steady open-hannel flow, the energy equation in the form of Bernoulli equation is used. Aording to this

More information

4.4 Solving Systems of Equations by Matrices

4.4 Solving Systems of Equations by Matrices Setion 4.4 Solving Systems of Equations by Matries 1. A first number is 8 less than a seond number. Twie the first number is 11 more than the seond number. Find the numbers.. The sum of the measures of

More information

Average Rate Speed Scaling

Average Rate Speed Scaling Average Rate Speed Saling Nikhil Bansal David P. Bunde Ho-Leung Chan Kirk Pruhs May 2, 2008 Abstrat Speed saling is a power management tehnique that involves dynamially hanging the speed of a proessor.

More information

Table of Contents Derivatives of Logarithms

Table of Contents Derivatives of Logarithms Derivatives of Logarithms- Table of Contents Derivatives of Logarithms Arithmetic Properties of Logarithms Derivatives of Logarithms Example Example 2 Example 3 Example 4 Logarithmic Differentiation Example

More information

Mathematics 116 HWK 25a Solutions 8.6 p610

Mathematics 116 HWK 25a Solutions 8.6 p610 Mathematics 6 HWK 5a Solutions 8.6 p6 Problem, 8.6, p6 Fin a power series representation for the function f() = etermine the interval of convergence. an Solution. Begin with the geometric series = + +

More information

Approximate Molecular Orbital Calculations for H 2. George M. Shalhoub

Approximate Molecular Orbital Calculations for H 2. George M. Shalhoub Approximate Molecular Orbital Calculations for H + LA SALLE UNIVESITY 9 West Olney Ave. Philaelphia, PA 94 shalhoub@lasalle.eu Copyright. All rights reserve. You are welcome to use this ocument in your

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information

Force Reconstruction for Nonlinear Structures in Time Domain

Force Reconstruction for Nonlinear Structures in Time Domain Fore Reonstrution for Nonlinear Strutures in ime Domain Jie Liu 1, Bing Li 2, Meng Li 3, an Huihui Miao 4 1,2,3,4 State Key Laboratory for Manufaturing Systems Engineering, Xi an Jiaotong niversity, Xi

More information

P(x) = 1 + x n. (20.11) n n φ n(x) = exp(x) = lim φ (x) (20.8) Our first task for the chain rule is to find the derivative of the exponential

P(x) = 1 + x n. (20.11) n n φ n(x) = exp(x) = lim φ (x) (20.8) Our first task for the chain rule is to find the derivative of the exponential 20. Derivatives of compositions: the chain rule At the en of the last lecture we iscovere a nee for the erivative of a composition. In this lecture we show how to calculate it. Accoringly, let P have omain

More information

CHEG Special Topics in Mixing. Lecture 7 Liquid-Liquid Mixing. Copyright 2000, A.W. Etchells, R.K.Grenville & R.D. LaRoche All rights reserved.

CHEG Special Topics in Mixing. Lecture 7 Liquid-Liquid Mixing. Copyright 2000, A.W. Etchells, R.K.Grenville & R.D. LaRoche All rights reserved. CHEG 615 - Speial Topis in Mixing Leture 7 Liqui-Liqui Mixing Copyright 000, A.W. Ethells, R.K.Grenville & R.. LaRohe All rights reserve. Uses for Liqui-Liqui Mixing Uses Contating for Mass Transfer Single

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Applications of the Wronskian to ordinary linear differential equations

Applications of the Wronskian to ordinary linear differential equations Physics 116C Fall 2011 Applications of the Wronskian to orinary linear ifferential equations Consier a of n continuous functions y i (x) [i = 1,2,3,...,n], each of which is ifferentiable at least n times.

More information

18.05 Problem Set 6, Spring 2014 Solutions

18.05 Problem Set 6, Spring 2014 Solutions 8.5 Problem Set 6, Spring 4 Solutions Problem. pts.) a) Throughout this problem we will let x be the data of 4 heads out of 5 tosses. We have 4/5 =.56. Computing the likelihoods: 5 5 px H )=.5) 5 px H

More information

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4 CHAPTER SEVEN 7. SOLUTIONS 6 Solutions for Section 7.. 5.. 4. 5 t t + t 5 5. 5. 6. t 8 8 + t4 4. 7. 6( 4 4 ) + 4 = 4 + 4. 5q 8.. 9. We break the antierivative into two terms. Since y is an antierivative

More information

Fall 2016: Calculus I Final

Fall 2016: Calculus I Final Answer the questions in the spaces provie on the question sheets. If you run out of room for an answer, continue on the back of the page. NO calculators or other electronic evices, books or notes are allowe

More information

Strauss PDEs 2e: Section Exercise 6 Page 1 of 5

Strauss PDEs 2e: Section Exercise 6 Page 1 of 5 Strauss PDEs 2e: Section 4.3 - Exercise 6 Page 1 of 5 Exercise 6 If a 0 = a l = a in the Robin problem, show that: (a) There are no negative eigenvalues if a 0, there is one if 2/l < a < 0, an there are

More information

In this case it might be instructive to present all three components of the current density:

In this case it might be instructive to present all three components of the current density: Momentum, on the other hand, presents us with a me ompliated ase sine we have to deal with a vetial quantity. The problem is simplified if we treat eah of the omponents of the vet independently. s you

More information

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % (

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % ( 16.50 Leture 0 Subjet: Introdution to Component Mathing and Off-Design Operation At this point it is well to reflet on whih of the many parameters we have introdued (like M, τ, τ t, ϑ t, f, et.) are free

More information

Chapter 6. Compression Reinforcement - Flexural Members

Chapter 6. Compression Reinforcement - Flexural Members Chapter 6. Compression Reinforement - Flexural Members If a beam ross setion is limite beause of arhitetural or other onsierations, it may happen that the onrete annot evelop the ompression fore require

More information

10.2 The Occurrence of Critical Flow; Controls

10.2 The Occurrence of Critical Flow; Controls 10. The Ourrene of Critial Flow; Controls In addition to the type of problem in whih both q and E are initially presribed; there is a problem whih is of pratial interest: Given a value of q, what fators

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

PLANNING OF INSPECTION PROGRAM OF FATIGUE-PRONE AIRFRAME

PLANNING OF INSPECTION PROGRAM OF FATIGUE-PRONE AIRFRAME Yu. aramonov, A. Kuznetsov ANING OF INSECTION ROGRAM OF FATIGUE RONE AIRFRAME (Vol. 2008, Deember ANNING OF INSECTION ROGRAM OF FATIGUE-RONE AIRFRAME Yu. aramonov, A. Kuznetsov Aviation Institute, Riga

More information

Problem set 6 for the course Theoretical Optics Sample Solutions

Problem set 6 for the course Theoretical Optics Sample Solutions Karlsruher Institut für Tehnologie KIT) Institut für theoretishe Festkörperphysik SS01 Prof. Dr. G. Shön, Dr. R. Frank 15.06.01 http://www.tfp.kit.eu/stuium-lehre.php Tutorial: Group 1, Name: Group, Group

More information

016A Homework 10 Solution

016A Homework 10 Solution 016A Homework 10 Solution Jae-young Park November 2, 2008 4.1 #14 Write each expression in the form of 2 kx or 3 kx, for a suitable constant k; (3 x 3 x/5 ) 5, (16 1/4 16 3/4 ) 3x Solution (3 x 3 x/5 )

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

Math Test #2 Info and Review Exercises

Math Test #2 Info and Review Exercises Math 180 - Test #2 Info an Review Exercises Spring 2019, Prof. Beyler Test Info Date: Will cover packets #7 through #16. You ll have the entire class to finish the test. This will be a 2-part test. Part

More information

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE?

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? The stars are spheres of hot gas. Most of them shine beause they are fusing hydrogen into helium in their entral parts. In this problem we use onepts of

More information

Determination of the reaction order

Determination of the reaction order 5/7/07 A quote of the wee (or amel of the wee): Apply yourself. Get all the eduation you an, but then... do something. Don't just stand there, mae it happen. Lee Iaoa Physial Chemistry GTM/5 reation order

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 8 First Orer Linear Differential Equations We now turn our attention to the problem of constructing analytic solutions of ifferential equations; that is to say,solutions that can be epresse in

More information

Lesson 23: The Defining Equation of a Line

Lesson 23: The Defining Equation of a Line Student Outomes Students know that two equations in the form of ax + y = and a x + y = graph as the same line when a = = and at least one of a or is nonzero. a Students know that the graph of a linear

More information

On the sustainability of collusion in Bertrand supergames with discrete pricing and nonlinear demand

On the sustainability of collusion in Bertrand supergames with discrete pricing and nonlinear demand PRA unih Personal RePE Arhive On the sustainability of ollusion in Bertran supergames with isrete priing an nonlinear eman Paul R. Zimmerman US Feeral Trae Commission 25. January 2010 Online at http://mpra.ub.uni-muenhen.e/20249/

More information

FINITE WORD LENGTH EFFECTS IN DSP

FINITE WORD LENGTH EFFECTS IN DSP FINITE WORD LENGTH EFFECTS IN DSP PREPARED BY GUIDED BY Snehal Gor Dr. Srianth T. ABSTRACT We now that omputers store numbers not with infinite preision but rather in some approximation that an be paed

More information

He s Semi-Inverse Method and Ansatz Approach to look for Topological and Non-Topological Solutions Generalized Nonlinear Schrödinger Equation

He s Semi-Inverse Method and Ansatz Approach to look for Topological and Non-Topological Solutions Generalized Nonlinear Schrödinger Equation Quant. Phys. Lett. 3, No. 2, 23-27 2014) 23 Quantum Physis Letters An International Journal http://x.oi.org/10.12785/qpl/030202 He s Semi-Inverse Metho an Ansatz Approah to look for Topologial an Non-Topologial

More information

Linear Capacity Scaling in Wireless Networks: Beyond Physical Limits?

Linear Capacity Scaling in Wireless Networks: Beyond Physical Limits? Linear Capaity Saling in Wireless Networks: Beyon Physial Limits? Ayfer Özgür, Olivier Lévêque EPFL, Switzerlan {ayfer.ozgur, olivier.leveque}@epfl.h Davi Tse University of California at Berkeley tse@ees.berkeley.eu

More information

Math 2163, Practice Exam II, Solution

Math 2163, Practice Exam II, Solution Math 63, Practice Exam II, Solution. (a) f =< f s, f t >=< s e t, s e t >, an v v = , so D v f(, ) =< ()e, e > =< 4, 4 > = 4. (b) f =< xy 3, 3x y 4y 3 > an v =< cos π, sin π >=, so

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Fall 2018 Practice Final Exam 2018-12-12 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be

More information

Sampler-B. Secondary Mathematics Assessment. Sampler 521-B

Sampler-B. Secondary Mathematics Assessment. Sampler 521-B Sampler-B Seonary Mathematis Assessment Sampler 51-B Instrutions for Stuents Desription This sample test inlues 15 Selete Response an 5 Construte Response questions. Eah Selete Response has a value of

More information

Reteach Multiplying and Dividing Rational Expressions

Reteach Multiplying and Dividing Rational Expressions 8-2 Multiplying and Dividing Rational Expressions Examples of rational expressions: 3 x, x 1, and x 3 x 2 2 x 2 Undefined at x 0 Undefined at x 0 Undefined at x 2 When simplifying a rational expression:

More information

CSIR-UGC NET/JRF JUNE - 6 PHYSICAL SCIENCES OOKLET - [A] PART. The raius of onvergene of the Taylor series epansion of the funtion (). The value of the ontour integral the anti-lokwise iretion, is 4z e

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

2 One-dimensional models in discrete time

2 One-dimensional models in discrete time 2 One-dimensional models in discrete time So far, we have assumed that demographic events happen continuously over time and can thus be written as rates. For many biological species with overlapping generations

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Asymptotic behavior of solutions to wave equations with a memory condition at the boundary

Asymptotic behavior of solutions to wave equations with a memory condition at the boundary Eletroni Journal of Differential Equations, Vol. 2(2), No. 73, pp.. ISSN: 72-669. URL: http://eje.math.swt.eu or http://eje.math.unt.eu ftp eje.math.swt.eu (login: ftp) Asymptoti behavior of solutions

More information

The Laws of Acceleration

The Laws of Acceleration The Laws of Aeleration The Relationships between Time, Veloity, and Rate of Aeleration Copyright 2001 Joseph A. Rybzyk Abstrat Presented is a theory in fundamental theoretial physis that establishes the

More information

2.5 SOME APPLICATIONS OF THE CHAIN RULE

2.5 SOME APPLICATIONS OF THE CHAIN RULE 2.5 SOME APPLICATIONS OF THE CHAIN RULE The Chain Rule will help us etermine the erivatives of logarithms an exponential functions a x. We will also use it to answer some applie questions an to fin slopes

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Introduction to Differential Equations Math 286 X1 Fall 2009 Homework 2 Solutions

Introduction to Differential Equations Math 286 X1 Fall 2009 Homework 2 Solutions Introuction to Differential Equations Math 286 X1 Fall 2009 Homewk 2 Solutions 1. Solve each of the following ifferential equations: (a) y + 3xy = 0 (b) y + 3y = 3x (c) y t = cos(t)y () x 2 y x y = 3 Solution:

More information

UPPER-TRUNCATED POWER LAW DISTRIBUTIONS

UPPER-TRUNCATED POWER LAW DISTRIBUTIONS Fratals, Vol. 9, No. (00) 09 World Sientifi Publishing Company UPPER-TRUNCATED POWER LAW DISTRIBUTIONS STEPHEN M. BURROUGHS and SARAH F. TEBBENS College of Marine Siene, University of South Florida, St.

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Ordinary Differential Equations

Ordinary Differential Equations Orinary Differential Equations Example: Harmonic Oscillator For a perfect Hooke s-law spring,force as a function of isplacement is F = kx Combine with Newton s Secon Law: F = ma with v = a = v = 2 x 2

More information

Implicit Differentiation. Lecture 16.

Implicit Differentiation. Lecture 16. Implicit Differentiation. Lecture 16. We are use to working only with functions that are efine explicitly. That is, ones like f(x) = 5x 3 + 7x x 2 + 1 or s(t) = e t5 3, in which the function is escribe

More information

Sensitivity Analysis of Resonant Circuits

Sensitivity Analysis of Resonant Circuits 1 Sensitivity Analysis of Resonant Ciruits Olivier Buu Abstrat We use first-orer perturbation theory to provie a loal linear relation between the iruit parameters an the poles of an RLC network. The sensitivity

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

Designing Against Size Effect on Shear Strength of Reinforced Concrete Beams Without Stirrups

Designing Against Size Effect on Shear Strength of Reinforced Concrete Beams Without Stirrups Designing Against Size Effet on Shear Strength of Reinfore Conrete Beams Without Stirrups By Zeněk P. Bažant an Qiang Yu Abstrat: The shear failure of reinfore onrete beams is a very omplex frature phenomenon

More information

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 This is a set of practice test problems for Chapter 4. This is in no way an inclusive set of problems there can be other types of problems

More information

Simultaneous and Sequential Auctions of Oligopoly Licenses

Simultaneous and Sequential Auctions of Oligopoly Licenses Simultaneous an Sequential Autions of Oligopoly Lienses Georgios Katsenos Institut für Mikroökonomik, Leibniz Universität Hannover September 1, 2007 Abstrat This paper ompares two proeures for alloating

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

EFFECTIVE STRESS LAW FOR THE PERMEABILITY OF CLAY-RICH SANDSTONES

EFFECTIVE STRESS LAW FOR THE PERMEABILITY OF CLAY-RICH SANDSTONES SCA22-5 1/6 EFFECTIVE STRESS LAW FOR THE PERMEABILITY OF CLAY-RICH SANDSTONES Widad Al-Wardy and Robert W. Zimmerman Department of Earth Siene and Engineering Imperial College of Siene, Tehnology and Mediine

More information

6.4 Dividing Polynomials: Long Division and Synthetic Division

6.4 Dividing Polynomials: Long Division and Synthetic Division 6 CHAPTER 6 Rational Epressions 6. Whih of the following are equivalent to? y a., b. # y. y, y 6. Whih of the following are equivalent to 5? a a. 5, b. a 5, 5. # a a 6. In your own words, eplain one method

More information