Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10

Size: px
Start display at page:

Download "Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10"

Transcription

1 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 This is a set of practice test problems for Chapter 4. This is in no way an inclusive set of problems there can be other types of problems on the actual test. I will post the solutions on my web site. The solutions are what I woul accept on a test, but you may want to a more etail, an explain your steps with wors remember, you can get part marks for talking about a problem! There will be five problems on the test. Most will involve more than one part. You will have 100 minutes to complete the test. You may not use Mathematica or calculators on this test. 1. Fin the absolute maximum an absolute minimum values of f on the given interval. 2. Given f(x) = x x, [1 2, 2] f(x) = xe x, f (x) = (1 x)e x f (x) = (x 2)e x (a) fin the intervals of increase or ecrease (b) fin any local maximum or minimum values (c) fin the intervals of concavity an any inflection points () fin any vertical an horizontal asymptotes (e) sketch the graph of f(x) 3. Use L Hospital s Rule to fin x x2 e x 4. Use logarithms an L Hospital s Rule to fin ( ) x x 5. Use L Hospital s Rule to show that f(x + h) 2f(x) + f(x h) h 0 h 2 = f (x). 6. A farmer with 750 ft of fencing wants to enclose a rectangular area with one sie of the rectangle against her barn. She then wants to ivie this rectangle into four pens with fencing parallel to one sie of the rectangle, where each pen is accessible from the barn. What is the largest possible total area of the four pens? 7. A rectangular poster is to have an area of 180 in 2 with one inch margins at the bottom an sies an a 2 inch margin at the top. What imensions will give the largest printe area? 8. A box with an open top is to be constructe from a square piece of carboar, 3 ft wie, by cutting out a square from each of the four corners an bening up the sies. Fin the largest volume that such a box can have. 9. Newton s Metho approximates roots x r of f(x r ) = 0 by iterating the equation x n+1 = x n f(x n) f (x n ). Describe in etail (with iagrams an wors) three ways that the metho can fail. 10. A particle is moving with the given ata. Fin the position of the particle. a(t) = 10 + cos t + t, s(0) = 0, s(π) = Fin f(x) given that f (x) = 3e x + 5 sin x, f(0) = 1, f (π/2) = 2.

2 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 2 of 10 Solutions Problem 1. f(x) is continuous on the interval, an the interval is close. We can fin extrema by looking at f(x) at the enpoints an at any critical numbers in the interval (asie: the name for this is the Close Interval Metho). Critical numbers are when f (x) = 0 or oes not exist. f (x) = [ x ] x x = 2x 2 x 2 f (x) oes not exist when x = 0, so x = 0 is a critical number. However, x = 0 is not in the interval [1/2, 2], so we will not consier it. Solve f (x) = 0 for x: f (x) = 0 2x 2 x 2 = 0 2x 3 2 x 2 = 0 2x 3 2 = 0 if x 0 x 3 = 1 x = ±1 The critical number x = 1 is outsie the interval [1/2, 2]. Therefore, the only critical number we have insie the interval [1/2, 2] is x = 1. f(1/2) = ( ) /2 = = 4.25 f(2) = (2) = = 5 f(1) = (1) = = 3 The absolute maximum is 5 at x = 2. The absolute minimum is 3 at x = 1. Problem 2. Intervals of Increasing/Decreasing: Solve f (c) = (1 c)e c = 0. Since e x 0, the only solution is c = +1. This is the only critical number for f (x) since f (x) exists for all x. Write own a table showing where f(x) is increasing an ecreasing: Interval f (a) (a is in interval) Sign of f f (, 1) f (0) = 1 + increasing (1, ) f (3) = 2e 3 ecreasing Max/Min: f goes from increasing to ecreasing at x = 1 local max. f(1) = e 1 = 1 e. Point: (1, 1/e) Intervals of Concave Up/Concave Down: Solve f (c) = (c 2)e c = 0. Since e x 0, the only solution is c = +2. This is the only critical number for f (x) since f (x) exists for all x. Write own a table showing where f(x) is concave up an own:

3 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 3 of 10 Interval f (a) (a is in interval) Sign of f f (, 2) f (0) = 2 Concave Down (2, ) f (3) = e 3 + Concave Up Points of Inflection: The function f goes from concave own to concave up at x = 2 point of inflection. f(2) = 2e 2 = 2/e 2. Point: (2, f(2)) = (2, 2/e 2 ) Horizontal Asymptotes: ( f(x) xe x ) 0 ineterminant prouct ( x ) e x ineterminant quotient; use L Hospital s Rule x [x] x [ex ] ( ) 1 e x = 0 since e x = The line y = 0 is a horizontal asymptote. f(x) x = ( xe x ) x ( )( ) = There is no horizontal asymptote as x. Vertical Asymptotes: f(x) = ± x = a is a vertical asymptote x a This will not happen for our function. Our function has no vertical asymptotes. Sketch: Putting everything together from our etaile analysis, we get

4 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 4 of 10 Problem 3. x x2 e x 0 ineterminant prouct Problem 4. Asie: x x 2 e x x [x2 ] x x [e x ] 2x x e x = x = = = 0 2x e x x [2x] x x [e x ] 2 x e x 2 x e x ineterminant quotient; use L Hospital s Rule ineterminant quotient; use L Hospital s Rule ( ) x x ( )? Use logarithms to get the power own ( ) x x y = [( ) x ] x ln y = ln ( ) x ln y = x ln ( ) x ln y x ln x /x = = 1 ( ) x ln y x ln ln (1) = 0 ineterminant prouct ln ln y ( x x x+1 1 x [ ln x ) 0 0 ( )] x [ ] 1 x ineterminant quotient; use L Hospital s Rule

5 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 5 of 10 So ln y = 1. However, we wante Problem 5. ( x x x [ ] 1 x x/() x ( 1x ) 2 ) x () x ( x2 ) x [x] x [] x () 2 eln y = e ln y = e 1 = 1 e = = 1 f(x + h) 2f(x) + f(x h) h 0 h h 0 h 0 inetereminant quotient; use L Hospital s Rule [f(x + h) 2f(x) + f(x h)] h h [h2 ] [f(x + h)] + h h 2h [f(x h)] = f (x + h) h [x + h] + f (x h) [x h] h h 0 2h chain rule = f (x + h) f (x h) 0 h 0 2h 0 ineterminant quotient; use L HR = h [f (x + h) f (x h)] h 0 h [2h] f (x + h) h [x + h] f (x h) [x h] h h 0 2 f (x + h) + f (x h) h 0 2 = f (x + 0) + f (x 0) 2 = 2f (x) = f (x) 2

6 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 6 of 10 Problem 6. This is an optimization problem where we want to maximize the total area enclose. The perimeter of the fencing must be 750 ft. This is the constraint we will use to einate any extra variables in the expression for the total area, since we only know how to optimize a function of one variable. Diagram: Notice that the pens o not have to be the same size! The total area is A = xy. The total perimeter is P = 5y + x = 750 (the barn sie oes not require fencing, so we get x instea of 2x). Let s write x = 750 5y an the total area can be expresse as a function of one variable: A(y) = (750 5y)y = 750y 5y 2. Since this function is a parabola opening own, when we fin the extrema it will be a maximum. Also, it must be an absolute maximum ue to the shape of a parabola. To fin an extrema, solve A (y) = 0 for y. A(y) = 750y 5y 2 A (y) = y [750y 5y2 ] = y 0 = y y = 75 Therefore, the maximum are will be when y = 75 ft, or A(75) = ft 2. Problem 7. Here we are trying to maximize the printe area. Diagram:

7 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 7 of 10 Area of printe region = A = (x 3)(y 2). Area of poster is = xy = 180 in 2. Let s write y = 180/x an the total area can be expresse as a function of one variable: ( ) 180 A(x) = (x 3) x 2 = x + 6 = 186 2x x x. To fin an extrema, solve A (x) = 0 for x. A (x) = x 2 0 = 2x x 2 0 = 2x x = 270 in. We must answer the question of whether this value of x prouces a maximum or a minimum. Let s show that at x = 270 A(x) is concave own, an so we will have a maximum. A (x) = x 2 A (x) = 1080 x 3 A ( 270) = 1080 (270) 3/2 < 0 Since the secon erivative is less than zero at x = 270, we know that the function is concave own at that point. Therefore we have foun a maximum. The geometry of the situation (area of a rectangle) tells us that we will have a single maximum, therefore we have an absolute maximum if the poster has imensions x = 270 in, y = 180/ 270 in. Problem 8. If we construct a box as the problem suggests, all the squares which are cut out must have the same shape. Let s say these squares which are cut out are y y ft 2. Diagram:

8 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 8 of 10 The other imension on the flap we will label as x. This leas to the relation x + 2y = 3. When we fol the sies up, the volume of the box that is create will be V = x 2 y. Let s write x = 3 2y an the total volume can be expresse as a function of one variable: V (y) = (3 2y) 2 y = (9 12y + 4y 2 )y = 9y + 4y 3 12y 2. To fin an extrema, solve V (y) = 0 for y. V (y) = 9y + 4y 3 12y 2 V (y) = y 2 24y V (y) = y 2 24y 0 = 12y 2 24y + 9 Using the quaratic formula, we can solve for y: y = b ± b 2 4ac 2a = 24 ± (24) 2 4(12)(9) 2(12) 24 ± 12 = 24 = or = 3 2 or 1 2 Which one is the maximum? Are they both maximums? Let s answer this question by looking at the concavity. V (y) = 24y 24 V (1/2) = 24(1/2) 24 = 12 < 0 concave own, so y = 1/2 prouces a max V (3/2) = 24(3/2) 24 = +12 > 0 concave up, so y = 3/2 prouces a min Therefore, the maximum volume of the box is V (1/2) = 2 in 3.

9 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 9 of 10 Another way to argue that y = 1/2 prouces the max is that if y = 3/2 then x = 3 2y = 0, an the box becomes unphysical (zero volume). Also, if y = 0, the box is unphysical (zero volume). Therefore, function we wish to maximize if V (y) = 9y + 4y 3 12y 2, y [0, 3/2], which is continuous on its omain. V (0) = 0. V (1/2) = 2. V (3/2) = 0. So the maximum is at y = 1/2 by the Close Interval Theorem. Problem 9. Here are three problems with Newton s Metho: i) If f (x n ) 0, you can get a situation like the following. The next approximation coul be extremely far away from the root! ii) If you have two roots which are close together, you cannot tell which root Newton s Metho has foun. iii) Newton s metho can get stuck in the following manner (or in more complicate manners), an just oscillate forever without fining the root x r : Problem 10. This is an antiifferentiation problem a(t) = 10 + cos t + t 1/2 v(t) = 10t + sin t + t3/2 3/2 + c 1 v(t) = 10t + sin t t3/2 + c 1 s(t) = 5t 2 cos t + 2 t 5/2 3 5/2 + c 1t + c 2 s(t) = 5t 2 cos t t5/2 + c 1 t + c 2

10 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 10 of 10 Now we use the conitions to etermine the constants c 1 an c 2 : s(0) = 5(0) 2 cos (0)5/2 + c 1 (0) + c 2 0 = 1 + c 2 c 2 = 1 Therefore, s(π) = 5(π) 2 cos π (π)5/2 + c 1 (π) = 5π π5/2 + c 1 π + 1 c 1 = 1 π 5π 4 15 π3/2 s(t) = 5t 2 cos t t5/2 t( 1 π 5π 4 15 π3/2 ) + 1 Problem 11. This is an antierivative problem. f (x) = 3e x + 5 sin x f (x) = 3e x 5 cos x + c 1 f(x) = 3e x 5 sin x + c 1 x + c 2 Now we use the conitions to etermine the constants c 1 an c 2 : f(0) = 3e 0 5 sin 0 + c 1 (0) + c 2 1 = 3 + c 2 c 2 = 2 Therefore, f (π/2) = 3e π/2 5 cos π/2 + c 1 2 = 3e π/2 + c 1 c 1 = 2 3e π/2 f(x) = 3e x 5 sin x + (2 3e π/2 )x 2

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

by using the derivative rules. o Building blocks: d

by using the derivative rules. o Building blocks: d Calculus for Business an Social Sciences - Prof D Yuen Eam Review version /9/01 Check website for any poste typos an upates Eam is on Sections, 5, 6,, 1,, Derivatives Rules Know how to fin the formula

More information

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval Exam 3 Review Lessons 17-18: Relative Extrema, Critical Numbers, an First Derivative Test (from exam 2 review neee for curve sketching) Critical Numbers: where the erivative of a function is zero or unefine.

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

Fall 2016: Calculus I Final

Fall 2016: Calculus I Final Answer the questions in the spaces provie on the question sheets. If you run out of room for an answer, continue on the back of the page. NO calculators or other electronic evices, books or notes are allowe

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY

Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY 1. Calculate the following: a. 2 x, x(t) = A sin(ωt φ) t2 Solution: Using the chain rule, we have x (t) = A cos(ωt φ)ω = ωa cos(ωt φ) x (t) = ω 2

More information

MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM. Name (Print last name first):... Student ID Number (last four digits):...

MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM. Name (Print last name first):... Student ID Number (last four digits):... CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I SPRING 2007 April 27, 2007 FINAL EXAM Name (Print last name first):............................................. Student ID Number (last four digits):........................

More information

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test.

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test. Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. p. 1/?? Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. Question 2. Section 2.3. Graph

More information

Math Test #2 Info and Review Exercises

Math Test #2 Info and Review Exercises Math 180 - Test #2 Info an Review Exercises Spring 2019, Prof. Beyler Test Info Date: Will cover packets #7 through #16. You ll have the entire class to finish the test. This will be a 2-part test. Part

More information

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam.

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam. MATH 2250 Calculus I Date: October 5, 2017 Eric Perkerson Optimization Notes 1 Chapter 4 Note: Any material in re you will nee to have memorize verbatim (more or less) for tests, quizzes, an the final

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

Final Exam: Sat 12 Dec 2009, 09:00-12:00

Final Exam: Sat 12 Dec 2009, 09:00-12:00 MATH 1013 SECTIONS A: Professor Szeptycki APPLIED CALCULUS I, FALL 009 B: Professor Toms C: Professor Szeto NAME: STUDENT #: SECTION: No ai (e.g. calculator, written notes) is allowe. Final Exam: Sat 1

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information

FINAL EXAM 1 SOLUTIONS Below is the graph of a function f(x). From the graph, read off the value (if any) of the following limits: x 1 +

FINAL EXAM 1 SOLUTIONS Below is the graph of a function f(x). From the graph, read off the value (if any) of the following limits: x 1 + FINAL EXAM 1 SOLUTIONS 2011 1. Below is the graph of a function f(x). From the graph, rea off the value (if any) of the following its: x 1 = 0 f(x) x 1 + = 1 f(x) x 0 = x 0 + = 0 x 1 = 1 1 2 FINAL EXAM

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

Exam 2 Answers Math , Fall log x dx = x log x x + C. log u du = 1 3

Exam 2 Answers Math , Fall log x dx = x log x x + C. log u du = 1 3 Exam Answers Math -, Fall 7. Show, using any metho you like, that log x = x log x x + C. Answer: (x log x x+c) = x x + log x + = log x. Thus log x = x log x x+c.. Compute these. Remember to put boxes aroun

More information

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM Name (Print last name first):............................................. Student ID Number:...........................

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Implicit Differentiation. Lecture 16.

Implicit Differentiation. Lecture 16. Implicit Differentiation. Lecture 16. We are use to working only with functions that are efine explicitly. That is, ones like f(x) = 5x 3 + 7x x 2 + 1 or s(t) = e t5 3, in which the function is escribe

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

California State University Northridge MATH 255A: Calculus for the Life Sciences I Midterm Exam 3

California State University Northridge MATH 255A: Calculus for the Life Sciences I Midterm Exam 3 California State University Northrige MATH 255A: Calculus for the Life Sciences I Mierm Exam 3 Due May 8 2013. Instructor: Jing Li Stuent Name: Signature: Do not write your stuent ID number on this front

More information

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following.

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following. AP Calculus AB One Last Mega Review Packet of Stuff Name: Date: Block: Take the erivative of the following. 1.) x (sin (5x)).) x (etan(x) ) 3.) x (sin 1 ( x3 )) 4.) x (x3 5x) 4 5.) x ( ex sin(x) ) 6.)

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

2. Find the intervals where function is increasing and decreasing. Then find all relative extrema.

2. Find the intervals where function is increasing and decreasing. Then find all relative extrema. MATH 1071Q Exam #2 Review Fall 2011 1. Find the elasticity at the given points and determine whether demand is inelastic, elastic, or unit elastic. Explain the significance of your answer. (a) x = 10 2p

More information

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form)

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form) INTRO TO CALCULUS REVIEW FINAL EXAM NAME: DATE: A. Equations of Lines (Review Chapter) y = m + b (Slope-Intercept Form) A + By = C (Stanar Form) y y = m( ) (Point-Slope Form). Fin the equation of a line

More information

MATH 151, Fall 2015, Week 12, Section

MATH 151, Fall 2015, Week 12, Section MATH 151, Fall 2015, Week 12, Section 5.1-5.3 Chapter 5 Application of Differentiation We develop applications of differentiation to study behaviors of functions and graphs Part I of Section 5.1-5.3, Qualitative/intuitive

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION CALCULUS 3 INU0115/515 (MATHS 2) Dr Arian Jannetta MIMA CMath FRAS Implicit Differentiation 1/ 11 Arian Jannetta Explicit an implicit functions Explicit functions An explicit function

More information

Math 106 Exam 2 Topics. du dx

Math 106 Exam 2 Topics. du dx The Chain Rule Math 106 Exam 2 Topics Composition (g f)(x 0 ) = g(f(x 0 )) ; (note: we on t know what g(x 0 ) is.) (g f) ought to have something to o with g (x) an f (x) in particular, (g f) (x 0 ) shoul

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Flash Card Construction Instructions

Flash Card Construction Instructions Flash Car Construction Instructions *** THESE CARDS ARE FOR CALCULUS HONORS, AP CALCULUS AB AND AP CALCULUS BC. AP CALCULUS BC WILL HAVE ADDITIONAL CARDS FOR THE COURSE (IN A SEPARATE FILE). The left column

More information

When determining critical numbers and/or stationary numbers you need to show each of the following to earn full credit.

When determining critical numbers and/or stationary numbers you need to show each of the following to earn full credit. Definition Critical Numbers/Stationary Numbers A critical number of f, 0 x, is a number in the domain of f where either f x 0 0 or undefined. If f x 0 0, then the number x 0 is also called a stationary

More information

Section Maximum and Minimum Values

Section Maximum and Minimum Values Section 4.2 - Maximum and Minimum Values Definition The number f(c) is a local maximum value of f if when x is near c. local minimum value of f if when x is near c. Example 1: For what values of x does

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information

UNDERSTANDING INTEGRATION

UNDERSTANDING INTEGRATION UNDERSTANDING INTEGRATION Dear Reaer The concept of Integration, mathematically speaking, is the "Inverse" of the concept of result, the integration of, woul give us back the function f(). This, in a way,

More information

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises.

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises. BEFORE You Begin Calculus II If it has been awhile since you ha Calculus, I strongly suggest that you refresh both your ifferentiation an integration skills. I woul also like to remin you that in Calculus,

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

SYDE 112, LECTURE 1: Review & Antidifferentiation

SYDE 112, LECTURE 1: Review & Antidifferentiation SYDE 112, LECTURE 1: Review & Antiifferentiation 1 Course Information For a etaile breakown of the course content an available resources, see the Course Outline. Other relevant information for this section

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivatives 40. Introuction So far much of the term has been spent fining erivatives or rates of change. But in some circumstances we alreay know the rate of change an we wish to etermine the original

More information

2.5 SOME APPLICATIONS OF THE CHAIN RULE

2.5 SOME APPLICATIONS OF THE CHAIN RULE 2.5 SOME APPLICATIONS OF THE CHAIN RULE The Chain Rule will help us etermine the erivatives of logarithms an exponential functions a x. We will also use it to answer some applie questions an to fin slopes

More information

Chapter 1. Functions, Graphs, and Limits

Chapter 1. Functions, Graphs, and Limits Review for Final Exam Lecturer: Sangwook Kim Office : Science & Tech I, 226D math.gmu.eu/ skim22 Chapter 1. Functions, Graphs, an Limits A function is a rule that assigns to each objects in a set A exactly

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES 3: DIFFERENTIATION RULES Name: Date: Perio: LESSON 3. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Eample : Prove f ( ) 6 is not ifferentiable at 4. Practice Problems: Fin f '( ) using the

More information

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9 Calculus I Practice Test Problems for Chapter 3 Page of 9 This is a set of practice test problems for Chapter 3. This is in no wa an inclusive set of problems there can be other tpes of problems on the

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29,

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, This review includes typical exam problems. It is not designed to be comprehensive, but to be representative of topics covered

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES : DIFFERENTIATION RULES Name: LESSON. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Date: Perio: Mrs. Nguyen s Initial: Eample : Prove f ( ) 4 is not ifferentiable at. Practice Problems: Fin

More information

AP CALCULUS AB Summer Work. The following are guidelines for completing the summer work packet

AP CALCULUS AB Summer Work. The following are guidelines for completing the summer work packet Name: Perio: AP CALCULUS AB Summer Work For stuents to successfully complete the objectives of the AP Calculus curriculum, the stuent must emonstrate a high level of inepenence, capability, eication, an

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

The Natural Logarithm

The Natural Logarithm The Natural Logarithm -28-208 In earlier courses, you may have seen logarithms efine in terms of raising bases to powers. For eample, log 2 8 = 3 because 2 3 = 8. In those terms, the natural logarithm

More information

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim.

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim. Math 50 Eam #3 Practice Problem Solutions. Determine the absolute maimum and minimum values of the function f() = +. f is defined for all. Also, so f doesn t go off to infinity. Now, to find the critical

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

The plot shows the graph of the function f (x). Determine the quantities.

The plot shows the graph of the function f (x). Determine the quantities. MATH 211 SAMPLE EXAM 1 SOLUTIONS 6 4 2-2 2 4-2 1. The plot shows the graph of the function f (x). Determine the quantities. lim f (x) (a) x 3 + Solution: Look at the graph. Let x approach 3 from the right.

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3

A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3 A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3 Each of the three questions is worth 9 points. The maximum possible points earned on this section

More information

Math 106 Exam 2 Topics

Math 106 Exam 2 Topics Implicit ifferentiation Math 106 Exam Topics We can ifferentiate functions; what about equations? (e.g., x +y = 1) graph looks like it has tangent lines tangent line? (a,b) Iea: Preten equation efines

More information

Chapter 2 The Derivative Business Calculus 155

Chapter 2 The Derivative Business Calculus 155 Chapter The Derivative Business Calculus 155 Section 11: Implicit Differentiation an Relate Rates In our work up until now, the functions we neee to ifferentiate were either given explicitly, x such as

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Definition A function f has an absolute maximum (or global maximum) at c if f ( c) f ( x) for all x in D, where D is the domain of f. The number

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing:

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing: AP Calculus AB PRACTICE MIDTERM EXAM Read each choice carefully and find the best answer. Your midterm exam will be made up of 5 of these questions. I reserve the right to change numbers and answers on

More information

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4 CHAPTER SEVEN 7. SOLUTIONS 6 Solutions for Section 7.. 5.. 4. 5 t t + t 5 5. 5. 6. t 8 8 + t4 4. 7. 6( 4 4 ) + 4 = 4 + 4. 5q 8.. 9. We break the antierivative into two terms. Since y is an antierivative

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Related Rates. Introduction. We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones.

Related Rates. Introduction. We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones. Relate Rates Introuction We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones For example, for the sies of a right triangle we have a 2 + b 2 = c 2 or

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Bonus Homework and Exam Review - Math 141, Frank Thorne Due Friday, December 9 at the start of the final exam.

Bonus Homework and Exam Review - Math 141, Frank Thorne Due Friday, December 9 at the start of the final exam. Bonus Homework and Exam Review - Math 141, Frank Thorne (thornef@mailbox.sc.edu) Due Friday, December 9 at the start of the final exam. It is strongly recommended that you do as many of these problems

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 2) h(x) = x2-5x + 5

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 2) h(x) = x2-5x + 5 Assignment 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Using the derivative of f(x) given below, determine the critical points of f(x).

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

Derivatives and Its Application

Derivatives and Its Application Chapter 4 Derivatives an Its Application Contents 4.1 Definition an Properties of erivatives; basic rules; chain rules 3 4. Derivatives of Inverse Functions; Inverse Trigonometric Functions; Hyperbolic

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) =

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) = Theorem 13 (i) If p(x) is a polynomial, then p(x) = p(c) 1 Limits 11 12 Fining its graphically Examples 1 f(x) = x3 1, x 1 x 1 The behavior of f(x) as x approximates 1 x 1 f(x) = 3 x 2 f(x) = x+1 1 f(x)

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Related Rates General steps 1. Draw a picture!! (This may not be possible for every problem, but there s usually something you can draw.) 2. Label everything. If a quantity

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

1 Lecture 18: The chain rule

1 Lecture 18: The chain rule 1 Lecture 18: The chain rule 1.1 Outline Comparing the graphs of sin(x) an sin(2x). The chain rule. The erivative of a x. Some examples. 1.2 Comparing the graphs of sin(x) an sin(2x) We graph f(x) = sin(x)

More information

Abe Mirza Graphing f ( x )

Abe Mirza Graphing f ( x ) Abe Mirza Graphing f ( ) Steps to graph f ( ) 1. Set f ( ) = 0 and solve for critical values.. Substitute the critical values into f ( ) to find critical points.. Set f ( ) = 0 and solve for critical values.

More information