MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

Size: px
Start display at page:

Download "MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth"

Transcription

1 MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential Growth Exponential Functions Repeate multiplication is the basic iea behin the use of exponents. For example, (1) 2 4 = = 16. It turns out that it kin of makes sense to exten the efinition of exponents in certain ways, an things work out really well. By efinition, we take the following expressions to mean (2) (3) 2 0 = = (4) 2 1/2 = 2, an these allow us to make sense of any exponent that is a fraction. Amazingly, all of the important properties that exponents have still work uner the extene efinitions. In fact, if you graph the values of the function f(x) = 2 x for the fractional values of x, they all lie on a nice, smooth curve. It s har to make sense of an irrational exponent, like 2 π, algebraically, but since the rational (i.e. fractional) exponents graph nicely, we can exten to irrational exponents in terms of limits. What I m saying is that our exponential functions are mae-up functions that exten our basic unerstaning of exponents in the most natural way possible. Log Functions Once we have a function like f(x) = 2 x efine, it is convenient to have an inverse function available. An inverse function, in some sense, reverses the x s an y s. The name we use for the inverse of 2 x is log 2 (x). For example, if (5) y = f(3) = 2 3 = 8, then g(x) = log 2 (x) is efine so that (6) y = g(8) = log 2 (8) = 3. 1

2 MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth 2 In general, (7) (8) 2 log 2(x) = x, an log 2 (2 x ) = x. The functions 2 x an log 2 (x) uno each other. The graph of log 2 (x) has exactly the same shape as 2 x, except with the x s an y s reverse, which flips the graph over on its sie. For every positive real number a, we have an exponential function a x an log a (x), an they are all relate to each other in the same way (9) (10) The graphs all have the same basic shape. a log a (x) = x, an log a (a x ) = x. Solving Equations with Exponential an Log Functions One of the reasons for wanting pairs of inverse functions is algebraic. When we solve equations, we manipulate them by unoing things we on t want. To get ri of a multiplie constant, we ivie both sies of the equation by that number. Multiplication an ivision uno each other. Consier the equation (11) 7 2x 1 = 12. To solve for x, we want to get x by itself on one sie of the equation, an we o that by getting ri of the everything aroun the x. As it stans, x is insie of an exponential function f(x) = 7 x. The inverse of this exponential function is g(x) = log 7 (x), so we shoul apply this log function to both sies of the equation (12) log 7 ( 7 2x 1 ) = log 7 (12). The log function unoes the exponential function, an we have (13) 2x 1 = log 7 (12). To uno the minus 1, we a 1, an after that, to uno the times 2 we ivie by 2. This results in (14) x = log 7(12) Using your calculator to compute a log. If we want a ecimal value for x, we ll nee to use our calculator. Most of our calculators only have a button for ln(x) = log e (x) an log 10 (x), but the following formula allows us to fin logs for any base (15) log a (x) = log b(x) log b (a).

3 MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth 3 In this last example, we have a = 7. Our calculators can o b = e or b = 10. Using natural log, we have (16) log 7 (12) = ln(12) ln(7) = The solution to the equation above woul be (17) x = log 7(12) = Base e We ve been using this alreay, but remember that we have a special constant e, (18) e = , an we ll mostly o our exponential an log functions with e as the base. So THE exponential function will be e x, an the corresponing log function is the natural log function is the log base e, (19) ln(x) = log e (x). These, as you may recall, ha the nicest erivatives (20) an x [ ex ] = e x, (21) x [ln(x)] = 1 x. The erivatives of the other exponential an log functions So what are the erivatives of a x an log a (x)? Since we alreay know the erivatives of e x an ln(x), we shoul bring these in. Note that we can always reformulate our exponential an log problems in terms of the base e. Using (22) a = e ln(a). we can rewrite a x as follows, for any a. (23) a x = For completeness, we have the erivatives (24) (25) an base e is just a special case. ( e ln(a) ) x = e x ln(a), x [ ax ] = a x ln(a) x [ log a (x)] = 1 x ln(a) Note again that given any exponential function f(x) = a x, since we can write (26) a = e ln(a), we express f in terms of the exponential function e x. In particular, (27) f(x) = a x = e xln(a). For example, given the function f(x) = 3 x, we know that ln(3) = , an so in applications, we will generally use something like (28) f(x) e x instea. In other wors, we really only nee one exponential function, an we might as well use e x (a.k.a. exp(x)). Furthermore, if we re only going to use e x, then we ll also only nee one log function, log e (x) = ln(x).

4 MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth 4 Integral formulas The corresponing integral formulas are (29) e x x = e x + C, an (30) 1 x = ln(x) + C. x Absolute Value Signs? If you look at a table of integrals, you might see some absolute values in the natural log erivative an integral formulas. These just make the formulas more general, an we won t worry about them a lot. Here s an explanation, anyway. We have (31) x [ln(x)] = 1 x, but we shoul keep in min that since e x > 0 for all x, the natural log function is only efine for positive x s. We can see this in the graph of the natural log. If we were to take the absolute value of x before putting it in the natural log, that is, let f(x) = ln x, then this function woul be efine for all real numbers, except x = 0. The graph of this function looks like It s not completely clear in the picture, but the graph goes to negative infinity on either sie of the y-axis. Now. As you look at the graph of f(x) = ln( x ), the left branch is a mirror image of the right branch. The slopes are the same, except they re negative. Since 1 x is also negative for negative x s, we still have that 1 x is equal to the slopes on f. In other wors, (32) x [ ln( x )] = 1 x is vali for all non-zero x s.

5 MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth 5 Exponential growth moels We can think of calculus as starting with limits an erivatives. The erivative of a function tells us the slopes of the tangent lines, which can be interprete as a rate of change, how fast y is changing relative to x. A slope of 3 means that y increases 3 for every increase of 1 in x. Next we look at integrals an antierivatives. These are a bit harer, but actually provie us with more information. Integral applications are much more common than ifferential ones. Even more useful sithe next step. The ifferential equation. A ifferential equation is an eequation involving an unknown function an its erivatives. Solving the equation, i.e. fining the function, is a generalization of fining an antierivative. Here is a simple example. The exponential growth moel (a moel is a function escribing some phenomenon) is base on the assumption that the growth rate P (t) is proportional to the population size P(t). For example, if a population grows by 3% this year, then it ll probably grow by 3% every year. It s not obvious, however, what the actual growth rate might be, but it s important to assume that there is some constant growth rate r. This leas us to the equation (33) P (t) = r P(t). This is an example of a ifferential equation, the unknown population function P(t) is in the equation along with its erivative, the population growth rate P (t). With some thought, you might come up with a solution. (34) P(t) = e rt, an this clearly works. More generally, we see that (35) P(t) = Ce rt is a solution for all C (this is kin of like the +C in our inefinite integrals). Before we start with examples, note that (36) P(0) = Ce r 0 = C, an so the constant C is the population size at time t = 0. We ll call this the initial population size. Example. Suppose we have a cell culture that initially consists of 520 cells, an after three hours, has 610. Note that this kin of information woul be easily obtainable. If the cell culture is free to grow, an therefore, nothing will cause the growth rate to slow own (an not be constant), we can assume exponential growth. Since the initial population size is C = 520, we have the growth function (37) P(t) = 520e rt. The one thing we like to know is the growth rate r. We can solve for r using the fact that at time t = 3, the population size is 610. In other wors, (38) P(3) = 610. We can also express P(3) with our exponential growth function as (39) P(3) = 520e r 3. This gives us the equation (40) 610 = 520e 3r.

6 MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth 6 We woul like to solve for r. The key to oing this is remembering that ln(x) is the inverse function for e x, an ln(e x ) = x. We ll solve the equation like this (41) (42) (43) (44) (45) Our function, therefore, is 610 = 520e 3r = e3r ( ) 610 ln = ln ( e ) 3r = 3r 520 ( ) ln = r = r (46) P(t) = 520e r. From here, we can preict the population size at any time we want. In 10 hours, for example, we woul have (47) P(10) = 520e = Homework Suppose you introuce 150 rats onto an islan, an there is plenty of foo an room for the population of rats to expan. You can assume exponential growth in this situation. After 50 ays, you somehow fin that there are 330 rats. a. Fin C an r in the growth function P(t) = Ce rt. b. Preict the population size at t = 100 ays. c. One of the things were assuming in an exponential growth moel is the fact that the growth rate will stay the same. Can you think of anything normal that will make the growth rate change an shoul be accounte for in the moel? 2. Suppose we have a bacterial culture that starts with 57 cells, an after 2 hours has 83 cells. Fin C, r, an the number of cells after one ay (24 hours). Your t shoul be measure in hours.

7 MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth 7 Nothing in the exponential growth moel ifferential equation requires r to be positive. An the population coul be any number of things (like money, amount of oxygen in a room, etc.). 3. For example, if you ha some object that containe 1,000 carbon-14 atoms, because of raio-active ecay, after about 5,730 years, you ll only have about 500 carbon-14 atoms left. Fin C, r, an the amount left after 700 years. Roun your r to eight ecimal places this time, an note that it will be negative. Note: Living things have essentially the same concentration of carbon-14 as the atmosphere, but after they ie, the carbon-14 is not replace. Using the function you just foun, you can figure out about when something was alive. Answers: 1) C = 150, r = , P(100) = 726 (roune to whole numbers) 2) C = 57, r = , P(24) = 5180 (roune to whole numbers) 3) C = 1,000, r = , P(700) = 919 (roune to whole numbers)

Chapter 2. Exponential and Log functions. Contents

Chapter 2. Exponential and Log functions. Contents Chapter. Exponential an Log functions This material is in Chapter 6 of Anton Calculus. The basic iea here is mainly to a to the list of functions we know about (for calculus) an the ones we will stu all

More information

MA123, Supplement: Exponential and logarithmic functions (pp , Gootman)

MA123, Supplement: Exponential and logarithmic functions (pp , Gootman) MA23, Supplement: Exponential an logarithmic functions pp. 35-39, Gootman) Chapter Goals: Review properties of exponential an logarithmic functions. Learn how to ifferentiate exponential an logarithmic

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

The Natural Logarithm

The Natural Logarithm The Natural Logarithm -28-208 In earlier courses, you may have seen logarithms efine in terms of raising bases to powers. For eample, log 2 8 = 3 because 2 3 = 8. In those terms, the natural logarithm

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

0.1 The Chain Rule. db dt = db

0.1 The Chain Rule. db dt = db 0. The Chain Rule A basic illustration of the chain rules comes in thinking about runners in a race. Suppose two brothers, Mark an Brian, hol an annual race to see who is the fastest. Last year Mark won

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

SYDE 112, LECTURE 1: Review & Antidifferentiation

SYDE 112, LECTURE 1: Review & Antidifferentiation SYDE 112, LECTURE 1: Review & Antiifferentiation 1 Course Information For a etaile breakown of the course content an available resources, see the Course Outline. Other relevant information for this section

More information

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0.

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0. For a > 0 an x any real number, we efine Lecture 4 : General Logarithms an Exponentials. a x = e x ln a, a > 0. The function a x is calle the exponential function with base a. Note that ln(a x ) = x ln

More information

Antiderivatives. Definition (Antiderivative) If F (x) = f (x) we call F an antiderivative of f. Alan H. SteinUniversity of Connecticut

Antiderivatives. Definition (Antiderivative) If F (x) = f (x) we call F an antiderivative of f. Alan H. SteinUniversity of Connecticut Antierivatives Definition (Antierivative) If F (x) = f (x) we call F an antierivative of f. Antierivatives Definition (Antierivative) If F (x) = f (x) we call F an antierivative of f. Definition (Inefinite

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

1 Lecture 18: The chain rule

1 Lecture 18: The chain rule 1 Lecture 18: The chain rule 1.1 Outline Comparing the graphs of sin(x) an sin(2x). The chain rule. The erivative of a x. Some examples. 1.2 Comparing the graphs of sin(x) an sin(2x) We graph f(x) = sin(x)

More information

Review of Differentiation and Integration for Ordinary Differential Equations

Review of Differentiation and Integration for Ordinary Differential Equations Schreyer Fall 208 Review of Differentiation an Integration for Orinary Differential Equations In this course you will be expecte to be able to ifferentiate an integrate quickly an accurately. Many stuents

More information

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam.

Optimization Notes. Note: Any material in red you will need to have memorized verbatim (more or less) for tests, quizzes, and the final exam. MATH 2250 Calculus I Date: October 5, 2017 Eric Perkerson Optimization Notes 1 Chapter 4 Note: Any material in re you will nee to have memorize verbatim (more or less) for tests, quizzes, an the final

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Chapter 6: Integration: partial fractions and improper integrals

Chapter 6: Integration: partial fractions and improper integrals Chapter 6: Integration: partial fractions an improper integrals Course S3, 006 07 April 5, 007 These are just summaries of the lecture notes, an few etails are inclue. Most of what we inclue here is to

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives an the Prouct Rule James K. Peterson Department of Biological Sciences an Department of Mathematical Sciences Clemson University January 28, 2014 Outline Differentiability Simple Derivatives

More information

UNDERSTANDING INTEGRATION

UNDERSTANDING INTEGRATION UNDERSTANDING INTEGRATION Dear Reaer The concept of Integration, mathematically speaking, is the "Inverse" of the concept of result, the integration of, woul give us back the function f(). This, in a way,

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information

Fall 2016: Calculus I Final

Fall 2016: Calculus I Final Answer the questions in the spaces provie on the question sheets. If you run out of room for an answer, continue on the back of the page. NO calculators or other electronic evices, books or notes are allowe

More information

0.1 Differentiation Rules

0.1 Differentiation Rules 0.1 Differentiation Rules From our previous work we ve seen tat it can be quite a task to calculate te erivative of an arbitrary function. Just working wit a secon-orer polynomial tings get pretty complicate

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivatives 40. Introuction So far much of the term has been spent fining erivatives or rates of change. But in some circumstances we alreay know the rate of change an we wish to etermine the original

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

2 ODEs Integrating Factors and Homogeneous Equations

2 ODEs Integrating Factors and Homogeneous Equations 2 ODEs Integrating Factors an Homogeneous Equations We begin with a slightly ifferent type of equation: 2.1 Exact Equations These are ODEs whose general solution can be obtaine by simply integrating both

More information

Single Variable Calculus Warnings

Single Variable Calculus Warnings Single Variable Calculus Warnings These notes highlight number of common, but serious, first year calculus errors. Warning. The formula g(x) = g(x) is vali only uner the hypothesis g(x). Discussion. In

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

2.5 SOME APPLICATIONS OF THE CHAIN RULE

2.5 SOME APPLICATIONS OF THE CHAIN RULE 2.5 SOME APPLICATIONS OF THE CHAIN RULE The Chain Rule will help us etermine the erivatives of logarithms an exponential functions a x. We will also use it to answer some applie questions an to fin slopes

More information

Math 1B, lecture 8: Integration by parts

Math 1B, lecture 8: Integration by parts Math B, lecture 8: Integration by parts Nathan Pflueger 23 September 2 Introuction Integration by parts, similarly to integration by substitution, reverses a well-known technique of ifferentiation an explores

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

Trigonometric Functions

Trigonometric Functions 72 Chapter 4 Trigonometric Functions 4 Trigonometric Functions To efine the raian measurement system, we consier the unit circle in the y-plane: (cos,) A y (,0) B So far we have use only algebraic functions

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

December 2, 1999 Multiple choice section. Circle the correct choice. You do not need to show your work on these problems.

December 2, 1999 Multiple choice section. Circle the correct choice. You do not need to show your work on these problems. December 2, 1999 Multiple choice section Circle the correct choice You o not nee to show your work on these problems 1 Let f(x) = e 2x+1 What is f (0)? (A) 0 (B) e (C) 2e (D) e 2 (E) 2e 2 1b Let f(x) =

More information

Antiderivatives and Initial Value Problems

Antiderivatives and Initial Value Problems Antierivatives an Initial Value Problems Warm up If f (x) =2x, whatisf (x)? Can you think of another function that f (x) coul be? If f (x) =3x 2 +, what is f (x)? Can you think of another function that

More information

016A Homework 10 Solution

016A Homework 10 Solution 016A Homework 10 Solution Jae-young Park November 2, 2008 4.1 #14 Write each expression in the form of 2 kx or 3 kx, for a suitable constant k; (3 x 3 x/5 ) 5, (16 1/4 16 3/4 ) 3x Solution (3 x 3 x/5 )

More information

Calculus Math Fall 2012 (Cohen) Lecture Notes

Calculus Math Fall 2012 (Cohen) Lecture Notes Calculus Math 70.200 Fall 202 (Cohen) Lecture Notes For the purposes of this class, we will regar calculus as the stuy of limits an limit processes. Without yet formally recalling the efinition of a limit,

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Implicit Differentiation. Lecture 16.

Implicit Differentiation. Lecture 16. Implicit Differentiation. Lecture 16. We are use to working only with functions that are efine explicitly. That is, ones like f(x) = 5x 3 + 7x x 2 + 1 or s(t) = e t5 3, in which the function is escribe

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Logarithmic, Exponential and Other Transcendental Functions

Logarithmic, Exponential and Other Transcendental Functions Logarithmic, Eponential an Other Transcenental Fnctions 5: The Natral Logarithmic Fnction: Differentiation The Definition First, yo mst know the real efinition of the natral logarithm: ln= t (where > 0)

More information

2.4 Exponential Functions and Derivatives (Sct of text)

2.4 Exponential Functions and Derivatives (Sct of text) 2.4 Exponential Functions an Derivatives (Sct. 2.4 2.6 of text) 2.4. Exponential Functions Definition 2.4.. Let a>0 be a real number ifferent tan. Anexponential function as te form f(x) =a x. Teorem 2.4.2

More information

Calculus Class Notes for the Combined Calculus and Physics Course Semester I

Calculus Class Notes for the Combined Calculus and Physics Course Semester I Calculus Class Notes for the Combine Calculus an Physics Course Semester I Kelly Black December 14, 2001 Support provie by the National Science Founation - NSF-DUE-9752485 1 Section 0 2 Contents 1 Average

More information

Exam 2 Answers Math , Fall log x dx = x log x x + C. log u du = 1 3

Exam 2 Answers Math , Fall log x dx = x log x x + C. log u du = 1 3 Exam Answers Math -, Fall 7. Show, using any metho you like, that log x = x log x x + C. Answer: (x log x x+c) = x x + log x + = log x. Thus log x = x log x x+c.. Compute these. Remember to put boxes aroun

More information

Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Method

Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Method Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Metho Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Computing Inverse Trig Derivatives. Starting with the inverse

More information

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations Diophantine Approximations: Examining the Farey Process an its Metho on Proucing Best Approximations Kelly Bowen Introuction When a person hears the phrase irrational number, one oes not think of anything

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Mathcad Lecture #5 In-class Worksheet Plotting and Calculus

Mathcad Lecture #5 In-class Worksheet Plotting and Calculus Mathca Lecture #5 In-class Worksheet Plotting an Calculus At the en of this lecture, you shoul be able to: graph expressions, functions, an matrices of ata format graphs with titles, legens, log scales,

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

MATH 13200/58: Trigonometry

MATH 13200/58: Trigonometry MATH 00/58: Trigonometry Minh-Tam Trinh For the trigonometry unit, we will cover the equivalent of 0.7,.4,.4 in Purcell Rigon Varberg.. Right Triangles Trigonometry is the stuy of triangles in the plane

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Math 210 Midterm #1 Review

Math 210 Midterm #1 Review Math 20 Miterm # Review This ocument is intene to be a rough outline of what you are expecte to have learne an retaine from this course to be prepare for the first miterm. : Functions Definition: A function

More information

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures Hyperbolic Functions Notice: this material must not be use as a substitute for attening the lectures 0. Hyperbolic functions sinh an cosh The hyperbolic functions sinh (pronounce shine ) an cosh are efine

More information

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 This is a set of practice test problems for Chapter 4. This is in no way an inclusive set of problems there can be other types of problems

More information

MA Midterm Exam 1 Spring 2012

MA Midterm Exam 1 Spring 2012 MA Miterm Eam Spring Hoffman. (7 points) Differentiate g() = sin( ) ln(). Solution: We use the quotient rule: g () = ln() (sin( )) sin( ) (ln()) (ln()) = ln()(cos( ) ( )) sin( )( ()) (ln()) = ln() cos(

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Computing Derivatives

Computing Derivatives Chapter 2 Computing Derivatives 2.1 Elementary erivative rules Motivating Questions In this section, we strive to unerstan the ieas generate by the following important questions: What are alternate notations

More information

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0.

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0. Calculus refresher Disclaimer: I claim no original content on this ocument, which is mostly a summary-rewrite of what any stanar college calculus book offers. (Here I ve use Calculus by Dennis Zill.) I

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

2.5 The Chain Rule Brian E. Veitch

2.5 The Chain Rule Brian E. Veitch 2.5 The Chain Rule This is our last ifferentiation rule for this course. It s also one of the most use. The best way to memorize this (along with the other rules) is just by practicing until you can o

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises.

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises. BEFORE You Begin Calculus II If it has been awhile since you ha Calculus, I strongly suggest that you refresh both your ifferentiation an integration skills. I woul also like to remin you that in Calculus,

More information

Rules for Derivatives

Rules for Derivatives Chapter 3 Rules for Derivatives 3.1 Shortcuts for powers of x, constants, sums, an ifferences Leibniz notation for erivative: f 0 (x) = f, V 0 (t) = V t, C0 (q) = C q, etc. reas as the erivative of....

More information

f(x + h) f(x) f (x) = lim

f(x + h) f(x) f (x) = lim Introuction 4.3 Some Very Basic Differentiation Formulas If a ifferentiable function f is quite simple, ten it is possible to fin f by using te efinition of erivative irectly: f () 0 f( + ) f() However,

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Mathematics 116 HWK 25a Solutions 8.6 p610

Mathematics 116 HWK 25a Solutions 8.6 p610 Mathematics 6 HWK 5a Solutions 8.6 p6 Problem, 8.6, p6 Fin a power series representation for the function f() = etermine the interval of convergence. an Solution. Begin with the geometric series = + +

More information

Year 11 Matrices Semester 2. Yuk

Year 11 Matrices Semester 2. Yuk Year 11 Matrices Semester 2 Chapter 5A input/output Yuk 1 Chapter 5B Gaussian Elimination an Systems of Linear Equations This is an extension of solving simultaneous equations. What oes a System of Linear

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities:

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities: 6.4 Integration using tanx/) We will revisit the ouble angle ientities: sin x = sinx/) cosx/) = tanx/) sec x/) = tanx/) + tan x/) cos x = cos x/) sin x/) tan x = = tan x/) sec x/) tanx/) tan x/). = tan

More information

Higher. Further Calculus 149

Higher. Further Calculus 149 hsn.uk.net Higher Mathematics UNIT 3 OUTCOME 2 Further Calculus Contents Further Calculus 49 Differentiating sinx an cosx 49 2 Integrating sinx an cosx 50 3 The Chain Rule 5 4 Special Cases of the Chain

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

Trigonometric Functions

Trigonometric Functions 4 Trigonometric Functions So far we have use only algebraic functions as examples when fining erivatives, that is, functions that can be built up by the usual algebraic operations of aition, subtraction,

More information

q = F If we integrate this equation over all the mass in a star, we have q dm = F (M) F (0)

q = F If we integrate this equation over all the mass in a star, we have q dm = F (M) F (0) Astronomy 112: The Physics of Stars Class 4 Notes: Energy an Chemical Balance in Stars In the last class we introuce the iea of hyrostatic balance in stars, an showe that we coul use this concept to erive

More information

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS THE DERIVATIVE AS A FUNCTION f x = lim h 0 f x + h f(x) h Last class we examine the limit of the ifference quotient at a specific x as h 0,

More information

Derivative Methods: (csc(x)) = csc(x) cot(x)

Derivative Methods: (csc(x)) = csc(x) cot(x) EXAM 2 IS TUESDAY IN QUIZ SECTION Allowe:. A Ti-30x IIS Calculator 2. An 8.5 by inch sheet of hanwritten notes (front/back) 3. A pencil or black/blue pen Covers: 3.-3.6, 0.2, 3.9, 3.0, 4. Quick Review

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

Calculus of Variations

Calculus of Variations Calculus of Variations Lagrangian formalism is the main tool of theoretical classical mechanics. Calculus of Variations is a part of Mathematics which Lagrangian formalism is base on. In this section,

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

Bohr Model of the Hydrogen Atom

Bohr Model of the Hydrogen Atom Class 2 page 1 Bohr Moel of the Hyrogen Atom The Bohr Moel of the hyrogen atom assumes that the atom consists of one electron orbiting a positively charge nucleus. Although it oes NOT o a goo job of escribing

More information