Integration by Parts

Size: px
Start display at page:

Download "Integration by Parts"

Transcription

1 Integration by Parts If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an v This is the integration by parts formula The integral on the left correspons to the integral you re trying to o Parts replaces it with a term that oesn t nee integration (uv) an another integral ( vu) You hope that the new integral is easier to o than the ol one I m going to set up parts computations using tables; it is much easier to o repeate parts computations this way than to use the stanar u-v-v-u approach To see where the table comes from, start with the parts equation: uv = uv vu Apply parts to the integral on the right, ifferentiating u an integrating v This gives [( )( ) ( )( u 2 ) ] ( )( ) ( )( u u 2 ) u uv = uv v v 2 = uv v + v 2 If I apply parts yet again to the new integral on the right, I woul get uv = uv ( )( u ) v + ( 2 )( ( u 2 ) ) ( ( v ) )( 3 u v 3 ) There s a pattern here, an it s capture by the following table: + u v u v + 2 u 2 3 u 3 ( v ) v

2 To make the table, put alternating + s an s in the left-han column Take the original integral an break it into a u (secon column) an a v (thir column) (I ll iscuss how you choose u an v later) Differentiate repeately own the u-column, an integrate repeately own the v-column (You on t write own the ; it s kin of implicitly there in the thir column, since you re integrating) How o you get from the table to the messy equation above? Consier the first term on the right: uv You get that from the table by taking the + sign, taking the u net to it, an then moving southeast to grab the v If you compare the table with the equation, you ll see that you get the rest of the terms on the right sie by multiplying terms in the table accoring to the same pattern: (+ or ) (junk) (stuff) The table continues ownwar inefinitely, so how o you stop? If you look at the last messy equation above an compare it to the table, you can see how to stop: Just integrate all the terms the last row of the table A formal proof that the table represents the algebra can be given using mathematical inuction You ll see that in many eamples, the process will stop naturally when the erivative column entries become 0 Eample Compute 3 e 2 Integration by parts is often useful when you have a prouct of ifferent kins of functions in the same integral Here I have a power ( 3 ) an an eponential (e 2 ), an this suggests using parts I have to allocate 3 e 2 between u an v remember that implicitly goes into v I will use u = 3 an v = e 2 Here s the parts table: + 3 e e e2 6 8 e e2 You can see the erivatives of 3 in one column an the integrals of e 2 in another Notice that when I get a 0, I cut off the computation Therefore, 3 e 2 = 2 3 e e e2 6 6 e2 + 0 But 0 is just 0 (up to an arbitrary constant), so I can write 3 e 2 = 2 3 e e e2 6 6 e2 +C 2

3 Before leaving this problem, it s worth thinking about why the 3 went into the erivative column an the e 2 went into the integral column Here s what woul happen if the two were reverse: + e 2 3 2e e This is ba for two reasons First, I m not getting that nice 0 I got by repeately ifferentiating 3 Worse, the powers in the last column are getting bigger! This means that the problem is getting more complicate, rather than less Here s another attempt which oesn t work: + 3 e e 2 I got a 0 this time, but how can I fin the integral in the secon row? it s the same as the original integral! Putting the entire integran into the integration column never works On the other han, you ll see in eamples to follow that sometimes putting the entire integran into the ifferentiation column oes work Here s a rule of thumb which reflects the preceing iscussion When you re trying to ecie which part of an integral to put into the ifferentiation column, the orer of preference is roughly Logs Inverse trigs Powers Trig Eponentials L-I-P-T-E For eample, suppose this rule is applie to (ln) 2 You try the Log (ln) 2 in the ifferentiation column ahea of the Power Or consier e 2 sin5 Here you try the Trig function sin 5 in the ifferentiation column, because it has preceence over the Eponential e 2 Eample (a) Compute ln 3

4 (b) Compute (ln) 2 (a) + ln ln = ln = ln +C (b) (I compute + (ln) 2 2ln (ln) 2 = (ln) 2 2 ln = (ln) 2 2(ln )+C ln in part (a)) Eample Compute (+4) 50 First, (+4) 50 = u 50 u = 5 u5 +C = 5 (+4)5 +C [u = +4, u = ] The same substitution shows that (+4) 5 = 52 (+4)52 +C Now o the original integral by parts: + (+4) 50 5 (+4) (+4)52 (+4) 50 = 5 (+4) (+4)52 +C You can also o this integral using the substitution u = +4 4

5 Eample Compute sin Parts is also useful when the integran is a single, unsimplifiable chunk In this case, there isn t an obvious way to change or simplify sin Integration by parts replaces one integral with another, so I try it here an hope I get something that is easier to integrate: + sin 2 Therefore, sin = sin 2 I can o the new integral by substitution: Let u = 2, so u = 2, an = u 2 : sin = 2 sin u u 2 = sin + u = sin + 2 u 2 2 u+c = sin + 2 +C Eample Compute π/2 0 sin If you o a efinite integral using parts, compute the antierivative using parts as usual, then apply the limits of integration at the en + sin cos + 0 sin Thus, π/2 0 sin = [ cos+sin] π/2 0 = In some cases, integration by parts prouces a copy of the original integral Depening on how it arises, this may not be a ba thing Eample Compute e sin2 5

6 + e sin2 e 2 cos2 + e 4 sin2 e sin2 = 2 e cos2+ 4 e sin2 4 e sin2 What s this? All that work an you get the original integral again! Look at the equation as an equation to be solve for the original integral It looks like this: (original integral) = (some junk) (original integral) Move the copy of the original integral on the right back to the left an solve for it: e sin2 = 2 e cos2+ 4 e sin2 e sin2 4 5 e sin2 = 4 2 e cos2+ 4 e sin2 e sin2 = 2 5 e cos2+ 5 e sin2+c Eample Compute (csc) 3 (csc) 3 = (csc) 2 (csc) = [+(cot) 2 ](csc) = csc+ (cot) 2 csc = + cot csccot (csc) 2 csc csc csccot (csc) 3 = ln csc+cot csccot (csc) 3 There is a copy of the original integral on the right sie Thus, (csc) 3 = csccot ln csc+cot 2 (csc) 3 = csccot ln csc+cot (csc) 3 = 2 csccot 2 ln csc+cot +c (csc) 3 Eample Compute 2 ( ) 3 6

7 2 + 2 ( ) 3 2 2( ) ( ) ln 2 ( ) 3 = 2( ) 2 ln +C You coul also o this integral using the substitution u = c 207 by Bruce Ikenaga 7

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

The Natural Logarithm

The Natural Logarithm The Natural Logarithm -28-208 In earlier courses, you may have seen logarithms efine in terms of raising bases to powers. For eample, log 2 8 = 3 because 2 3 = 8. In those terms, the natural logarithm

More information

Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions Derivatives of Trigonometric Functions 9-8-28 In this section, I ll iscuss its an erivatives of trig functions. I ll look at an important it rule first, because I ll use it in computing the erivative of

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Antiderivatives. Definition (Antiderivative) If F (x) = f (x) we call F an antiderivative of f. Alan H. SteinUniversity of Connecticut

Antiderivatives. Definition (Antiderivative) If F (x) = f (x) we call F an antiderivative of f. Alan H. SteinUniversity of Connecticut Antierivatives Definition (Antierivative) If F (x) = f (x) we call F an antierivative of f. Antierivatives Definition (Antierivative) If F (x) = f (x) we call F an antierivative of f. Definition (Inefinite

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

UNDERSTANDING INTEGRATION

UNDERSTANDING INTEGRATION UNDERSTANDING INTEGRATION Dear Reaer The concept of Integration, mathematically speaking, is the "Inverse" of the concept of result, the integration of, woul give us back the function f(). This, in a way,

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -8-006 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0.

CHAPTER 4. INTEGRATION 68. Previously, we chose an antiderivative which is correct for the given integrand 1/x 2. However, 6= 1 dx x x 2 if x =0. CHAPTER 4. INTEGRATION 68 Previously, we chose an antierivative which is correct for the given integran /. However, recall 6 if 0. That is F 0 () f() oesn t hol for apple apple. We have to be sure the

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 8 First Orer Linear Differential Equations We now turn our attention to the problem of constructing analytic solutions of ifferential equations; that is to say,solutions that can be epresse in

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Connecting Algebra to Calculus Indefinite Integrals

Connecting Algebra to Calculus Indefinite Integrals Connecting Algebra to Calculus Inefinite Integrals Objective: Fin Antierivatives an use basic integral formulas to fin Inefinite Integrals an make connections to Algebra an Algebra. Stanars: Algebra.0,

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3 SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 8 3 L P f Q L segments L an L 2 to be tangent to the parabola at the transition points P an Q. (See the figure.) To simplify the equations you ecie to place the

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 6 First Orer Linear Differential Equations A linear first orer orinary ifferential equation is a ifferential equation of the form ( a(xy + b(xy = c(x. Here y represents the unknown function, y

More information

0.1 The Chain Rule. db dt = db

0.1 The Chain Rule. db dt = db 0. The Chain Rule A basic illustration of the chain rules comes in thinking about runners in a race. Suppose two brothers, Mark an Brian, hol an annual race to see who is the fastest. Last year Mark won

More information

Implicit Differentiation. Lecture 16.

Implicit Differentiation. Lecture 16. Implicit Differentiation. Lecture 16. We are use to working only with functions that are efine explicitly. That is, ones like f(x) = 5x 3 + 7x x 2 + 1 or s(t) = e t5 3, in which the function is escribe

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

WJEC Core 2 Integration. Section 1: Introduction to integration

WJEC Core 2 Integration. Section 1: Introduction to integration WJEC Core Integration Section : Introuction to integration Notes an Eamples These notes contain subsections on: Reversing ifferentiation The rule for integrating n Fining the arbitrary constant Reversing

More information

Lecture 16: The chain rule

Lecture 16: The chain rule Lecture 6: The chain rule Nathan Pflueger 6 October 03 Introuction Toay we will a one more rule to our toolbo. This rule concerns functions that are epresse as compositions of functions. The iea of a composition

More information

Chapter 2. Exponential and Log functions. Contents

Chapter 2. Exponential and Log functions. Contents Chapter. Exponential an Log functions This material is in Chapter 6 of Anton Calculus. The basic iea here is mainly to a to the list of functions we know about (for calculus) an the ones we will stu all

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives an the Prouct Rule James K. Peterson Department of Biological Sciences an Department of Mathematical Sciences Clemson University January 28, 2014 Outline Differentiability Simple Derivatives

More information

2 ODEs Integrating Factors and Homogeneous Equations

2 ODEs Integrating Factors and Homogeneous Equations 2 ODEs Integrating Factors an Homogeneous Equations We begin with a slightly ifferent type of equation: 2.1 Exact Equations These are ODEs whose general solution can be obtaine by simply integrating both

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives.

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives. Math 1314 ONLINE More from Lesson 6 The Limit Definition of the Derivative an Rules for Fining Derivatives Eample 4: Use the Four-Step Process for fining the erivative of the function Then fin f (1) f(

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Math 1B, lecture 8: Integration by parts

Math 1B, lecture 8: Integration by parts Math B, lecture 8: Integration by parts Nathan Pflueger 23 September 2 Introuction Integration by parts, similarly to integration by substitution, reverses a well-known technique of ifferentiation an explores

More information

( 3x +1) 2 does not fit the requirement of the power rule that the base be x

( 3x +1) 2 does not fit the requirement of the power rule that the base be x Section 3 4A: The Chain Rule Introuction The Power Rule is state as an x raise to a real number If y = x n where n is a real number then y = n x n-1 What if we wante to fin the erivative of a variable

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Review of Differentiation and Integration for Ordinary Differential Equations

Review of Differentiation and Integration for Ordinary Differential Equations Schreyer Fall 208 Review of Differentiation an Integration for Orinary Differential Equations In this course you will be expecte to be able to ifferentiate an integrate quickly an accurately. Many stuents

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

Ordinary Differential Equations

Ordinary Differential Equations Orinary Differential Equations Example: Harmonic Oscillator For a perfect Hooke s-law spring,force as a function of isplacement is F = kx Combine with Newton s Secon Law: F = ma with v = a = v = 2 x 2

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -7-08 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Chapter 6: Integration: partial fractions and improper integrals

Chapter 6: Integration: partial fractions and improper integrals Chapter 6: Integration: partial fractions an improper integrals Course S3, 006 07 April 5, 007 These are just summaries of the lecture notes, an few etails are inclue. Most of what we inclue here is to

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 5 Sturm-Liouville Theory In the three preceing lectures I emonstrate the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series are just the tip of the iceberg of the theory

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

Integration: Using the chain rule in reverse

Integration: Using the chain rule in reverse Mathematics Learning Centre Integration: Using the chain rule in reverse Mary Barnes c 999 University of Syney Mathematics Learning Centre, University of Syney Using the Chain Rule in Reverse Recall that

More information

Proof by Mathematical Induction.

Proof by Mathematical Induction. Proof by Mathematical Inuction. Mathematicians have very peculiar characteristics. They like proving things or mathematical statements. Two of the most important techniques of mathematical proof are proof

More information

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2)

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2) 3.5 Chain Rule 149 3.5 Chain Rule Introuction As iscusse in Section 3.2, the Power Rule is vali for all real number exponents n. In this section we see that a similar rule hols for the erivative of a power

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

2.5 The Chain Rule Brian E. Veitch

2.5 The Chain Rule Brian E. Veitch 2.5 The Chain Rule This is our last ifferentiation rule for this course. It s also one of the most use. The best way to memorize this (along with the other rules) is just by practicing until you can o

More information

Logarithmic, Exponential and Other Transcendental Functions

Logarithmic, Exponential and Other Transcendental Functions Logarithmic, Eponential an Other Transcenental Fnctions 5: The Natral Logarithmic Fnction: Differentiation The Definition First, yo mst know the real efinition of the natral logarithm: ln= t (where > 0)

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

Center of Gravity and Center of Mass

Center of Gravity and Center of Mass Center of Gravity an Center of Mass 1 Introuction. Center of mass an center of gravity closely parallel each other: they both work the same way. Center of mass is the more important, but center of gravity

More information

Fall 2016: Calculus I Final

Fall 2016: Calculus I Final Answer the questions in the spaces provie on the question sheets. If you run out of room for an answer, continue on the back of the page. NO calculators or other electronic evices, books or notes are allowe

More information

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures Hyperbolic Functions Notice: this material must not be use as a substitute for attening the lectures 0. Hyperbolic functions sinh an cosh The hyperbolic functions sinh (pronounce shine ) an cosh are efine

More information

Year 11 Matrices Semester 2. Yuk

Year 11 Matrices Semester 2. Yuk Year 11 Matrices Semester 2 Chapter 5A input/output Yuk 1 Chapter 5B Gaussian Elimination an Systems of Linear Equations This is an extension of solving simultaneous equations. What oes a System of Linear

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

Lecture 12. Energy, Force, and Work in Electro- and Magneto-Quasistatics

Lecture 12. Energy, Force, and Work in Electro- and Magneto-Quasistatics Lecture 1 Energy, Force, an ork in Electro an MagnetoQuasistatics n this lecture you will learn: Relationship between energy, force, an work in electroquasistatic an magnetoquasistatic systems ECE 303

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities:

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities: 6.4 Integration using tanx/) We will revisit the ouble angle ientities: sin x = sinx/) cosx/) = tanx/) sec x/) = tanx/) + tan x/) cos x = cos x/) sin x/) tan x = = tan x/) sec x/) tanx/) tan x/). = tan

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES 3: DIFFERENTIATION RULES Name: Date: Perio: LESSON 3. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Eample : Prove f ( ) 6 is not ifferentiable at 4. Practice Problems: Fin f '( ) using the

More information

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like)

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like) Stockton Univeristy Chemistry Program, School of Natural Sciences an Mathematics 101 Vera King Farris Dr, Galloway, NJ CHEM 340: Physical Chemistry II Solving the Schröinger Equation for the 1 Electron

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES : DIFFERENTIATION RULES Name: LESSON. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Date: Perio: Mrs. Nguyen s Initial: Eample : Prove f ( ) 4 is not ifferentiable at. Practice Problems: Fin

More information

does NOT exist. WHAT IF THE NUMBER X APPROACHES CANNOT BE PLUGGED INTO F(X)??????

does NOT exist. WHAT IF THE NUMBER X APPROACHES CANNOT BE PLUGGED INTO F(X)?????? MATH 000 Miterm Review.3 Te it of a function f ( ) L Tis means tat in a given function, f(), as APPROACHES c, a constant, it will equal te value L. Tis is c only true if f( ) f( ) L. Tat means if te verticle

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I MTH Test Spring 209 Name Calculus I Justify all answers by showing your work or by proviing a coherent eplanation. Please circle your answers.. 4 z z + 6 z 3 ez 2 = 4 z + 2 2 z2 2ez Rewrite as 4 z + 6

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

SYDE 112, LECTURE 1: Review & Antidifferentiation

SYDE 112, LECTURE 1: Review & Antidifferentiation SYDE 112, LECTURE 1: Review & Antiifferentiation 1 Course Information For a etaile breakown of the course content an available resources, see the Course Outline. Other relevant information for this section

More information

Determinant and Trace

Determinant and Trace Determinant an Trace Area an mappings from the plane to itself: Recall that in the last set of notes we foun a linear mapping to take the unit square S = {, y } to any parallelogram P with one corner at

More information

C6-1 Differentiation 2

C6-1 Differentiation 2 C6-1 Differentiation 2 the erivatives of sin, cos, a, e an ln Pre-requisites: M5-4 (Raians), C5-7 (General Calculus) Estimate time: 2 hours Summary Lea-In Learn Solve Revise Answers Summary The erivative

More information

MA Midterm Exam 1 Spring 2012

MA Midterm Exam 1 Spring 2012 MA Miterm Eam Spring Hoffman. (7 points) Differentiate g() = sin( ) ln(). Solution: We use the quotient rule: g () = ln() (sin( )) sin( ) (ln()) (ln()) = ln()(cos( ) ( )) sin( )( ()) (ln()) = ln() cos(

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION Mathematics Revision Guies Implicit Differentiation Page 1 of Author: Mark Kulowski MK HOME TUITION Mathematics Revision Guies Level: AS / A Level AQA : C4 Eecel: C4 OCR: C4 OCR MEI: C3 IMPLICIT DIFFERENTIATION

More information

MATH 13200/58: Trigonometry

MATH 13200/58: Trigonometry MATH 00/58: Trigonometry Minh-Tam Trinh For the trigonometry unit, we will cover the equivalent of 0.7,.4,.4 in Purcell Rigon Varberg.. Right Triangles Trigonometry is the stuy of triangles in the plane

More information

CHAPTER 3 DERIVATIVES (continued)

CHAPTER 3 DERIVATIVES (continued) CHAPTER 3 DERIVATIVES (continue) 3.3. RULES FOR DIFFERENTIATION A. The erivative of a constant is zero: [c] = 0 B. The Power Rule: [n ] = n (n-1) C. The Constant Multiple Rule: [c *f()] = c * f () D. The

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x).

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x). [Limits at infinity eamples] Eample. The graph of a function y = f() is shown below. Compute f() and f(). y -8 As you go to the far right, the graph approaches y =, so f() =. As you go to the far left,

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

ay (t) + by (t) + cy(t) = 0 (2)

ay (t) + by (t) + cy(t) = 0 (2) Solving ay + by + cy = 0 Without Characteristic Equations, Complex Numbers, or Hats John Tolle Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213-3890 Some calculus courses

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivatives 40. Introuction So far much of the term has been spent fining erivatives or rates of change. But in some circumstances we alreay know the rate of change an we wish to etermine the original

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

. Using a multinomial model gives us the following equation for P d. , with respect to same length term sequences.

. Using a multinomial model gives us the following equation for P d. , with respect to same length term sequences. S 63 Lecture 8 2/2/26 Lecturer Lillian Lee Scribes Peter Babinski, Davi Lin Basic Language Moeling Approach I. Special ase of LM-base Approach a. Recap of Formulas an Terms b. Fixing θ? c. About that Multinomial

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information