In this case it might be instructive to present all three components of the current density:

Size: px
Start display at page:

Download "In this case it might be instructive to present all three components of the current density:"

Transcription

1 Momentum, on the other hand, presents us with a me ompliated ase sine we have to deal with a vetial quantity. The problem is simplified if we treat eah of the omponents of the vet independently. s you reall from the brief presentation in Chapter 3, a omponent of momentum an be thought of as flowing through matter muh like entropy harge do. The flow of eah of the omponents of momentum results in a flow field like those shown in Chapter 3 and below in Fig Here are the equations f a single omponent of momentum. You an build the omplete result f all three omponents by ombining the parts. If we hoose the x-omponent, the speifi value of x-momentum p x is the x-omponent of the veloity. Therefe, we have px x px In etion , we transfmed a surfae integral into an integral over the volume bounded by the surfae. We treated the simple example of purely one-dimensional mi = ρv v+ (11.36) Figure 11.7: Flow pattern of one omponent of momentum resulting from tension in a flat strip having a noth. The omponent of momentum whose flow is depited here is the one identified with the diretion of tension. ee also Fig x In this ase it might be instrutive to present all three omponents of the urrent density: pxx = ρvv x x + pxx pxy = ρvv x y + pxy pxz = ρvv x z + pxz (11.37) These quantities have a simple graphial representation; pxx, f example, represents the urrent density of x-momentum flowing in x-diretion, while pxy is the urrent density of x-momentum flowing in y-diretion (see Fig. 11.7) ine there are three omponents of urrent density vets belonging to the three omponents of momentum, a total of nine omponents 7 fm the momentum urrent density tens Transfmation of a urfae Integral (Divergene Theem) 486 THE DYNMIC OF HET

2 11.2 DENITIE ND CURRENT DENITIE gration of lousts. ine the number of lousts is a salar quantity, its urrent density is a vet desribing the three possible diretions of flow of this fluidlike quantity. If the urrent density vet has only one omponent, then lousts move in only one diretion. In this ase, the lousts flux is I = n d = d Lx L x The seond fm on the right has been introdued to shten the notation. This integral an be transfmed into a volume integral ading to I = d= We used this relation to derive the loal fm of the equation of balane of lousts above in etion (see Equ.(11.6)). In this fm, the transfmation is the simplest example of what is alled the divergene theem Gauss s theem. Let me briefly write down this relation without giving a proof. 8 If we define a urrent density vet Q on the losed surfae of a body, the surfae integral an be transfmed into an integral over the volume enlosed by the surfae: def x L Lx Lx Lx d nd = d Q Q (11.38) 7. This quantity annot be represented as a vet anyme; rather, it is a tens whih may be written in matrix fm J p ρvv x x + ρvv + ρvv + = ρvv y x + ρvv + ρvv + ρvv z x + ρvv + ρvv + pxx x y pxy x z pxz pyx y y pyy y z pyz pzx z y pzy z z pzz The negative ondutive part of this quantity is ommonly alled the stress tens t t t T = t t t t t t xx xy xz yx yy yz zx zy zz pxx pxy pxz = pyx pyy pyz pzx pzy pzz while the omplete quantity would be alled the momentum urrent tens. The surfae integral of a row of the tens (f one of the omponents of the odinate systems) is alled the omponent of the surfae fe F x = T x n d (T x is the first row of the stress tens), while the surfae integral f the stress tens is the surfae fe vet F= T n d PRT III 487

3 where Q is alled the divergene of Q. In retangular Cartesian odinates = + + x y z Q Q x Q y Q z (11.39) The divergene of a vet written in omponent fm is often abbreviated as follows: x x + y y + z z x Q Q Q Qi i (11.40) In this notation it is assumed that a summation is arried out over all indies whih appear twie in the same term; x i, i = 1,2,3 stands f the three omponents (x,y,z) of the odinate system. In this fm, the divergene looks like the expression used in single-dimensional ases. In fat, the simplest examples usually suggest the proper fm of me ompliated ases THE BLNCE OF M Control volume Let us start with the first of the three fluidlike quantities f whih we have to obtain laws of balane, namely the amount of substane. The balane of amount of substane is a neessary prerequisite f fmulating theies appliable to fluid otherwise defmable media. If we wish to quantify onvetive urrents assoiated with proesses in open systems, we have to be able to write down the urrents of amount of substane. F pratial reasons, however, engineers ommonly use mass as a substitute f amount of substane, and as long as there are no hemial reations taking plae inside the material, there is no problem in doing so. Therefe, we will use a fmulation based on mass. In the previous setion we introdued the onepts and tools needed to fmulate the ontinuum fms of the laws of balane of fluidlike quantities. tarting with the integrated fm of the balane of mass ṁ= I m (11.41) + x Figure 11.8: imple one-dimensional flow with respet to an open and stationary ontrol volume. Imagine a fluid flowing in the x-diretion only. we an easily show how to obtain the appropriate loal equation appliable to the ontinuous ase. Let us apply this law to a stationary ontrol volume of simple shape (Fig. 11.8) and assume the flow field to be one-dimensional. In this equation, m is the mass inside the ontrol volume, while I m is the net urrent of mass aross the surfae of the ontrol volume. We shall replae the mass by the volume integral of the mass density, and the flux by the surfae integral of the flux density, as in Equ.(11.26). With Equ.(11.34) this leads to d dt ρd + ρv d = 0 (11.42) If we use the divergene theem f the surfae integral and apply the time derivative 8. F a derivation of the divergene theem see Marsden and Weinstein (1985), ol. III, p THE DYNMIC OF HET

4 11.4 THE BLNCE OF ENTROPY to the integrand of the first integral, we obtain ρ t d ρ t ρv d 0 x + = ρv d = 0 x + ine the integral must be zero f arbitrary volumes, the last expression an only be satisfied if the terms in brakets are equal to zero: ρ + ( ρv )= 0 t x (11.43) You an easily apply the transfmations to the me general three-dimensional ase ρ + ( ρv i)= 0 t x i ρ + ( ρ )= t v 0 (11.44) (11.45) This looks very similar to the simpler expression. In ontrast to Equ.(11.42) whih is the integral fm of the law of balane of mass, Equ.(11.43) and its ounterpart in Equations (11.44) (11.45) represent the loal differential fm of this law. The balane of mass often is alled the equation of ontinuity THE BLNCE OF ENTROPY Entropy is a salar quantity ust like mass, so the derivation of the loal fm of the law of balane should lead to a result similar to what we have ust seen. Consider as we did in Fig. 11.8, the flow of a fluid in the x-diretion only. s far as entropy is onerned, we will inlude ondutive and onvetive transpts in the derivation, and prodution of entropy in irreversible proesses. oures of entropy from radiation, however, will be exluded here. The integral fm of the equation of balane of entropy f the ontrol volume in Fig then looks like = I + I +Π, onv, ond (11.46) If we introdue densities and urrent densities as in etion 11.2, the law beomes d dt = + + ρsd sρv d d (11.47) s is the speifi entropy of the fluid, () and represent the ondutive entropy urrent density and the density of the entropy prodution rate, respetively. Remember that we are dealing with a purely one-dimensional ase. If we now apply the transfmation of the surfae integral, we obtain PRT III 489

5 ρ s ρ t x s + v + d = 0 The expression in brakets must be zero, whih yields the loal fm of the law of balane: ρ ( s)+ ρ t x s v + ( ) = (11.48) The general three-dimensional ase an be written in a fm that looks ust like the one derived f purely one-dimensional transpts. pplying the divergene theem to the generalized fm of Equ.(11.47) yields = ρ ρ ( s)+ s v+ t (11.49) I p,onv ( i ) = i ρ ( s)+ sρv i + t x (11.50) Extending this result to inlude the effets of soures from radiation is pretty simple. How this is done will be demonstrated below f the ase of momentum (remember that gravity leads to soures of momentum). v Σ p + z I p,ond Figure 11.9: Flow lines depiting the onvetive and ondutive transpts of momentum are shown together with a soure of momentum due to the interation of the fluid with the gravitational field. The fluid is flowing downward leading to the onvetive downward flow of momentum together with the fluid (dashed lines). ine the material is under ompression, momentum flows ondutively in the positive diretion (downward; solid lines). With the positive diretion as hosen, the gravitational field supplies momentum to the fluid THE BLNCE OF MOMENTUM Basially, the law of balane of momentum is derived analogously to what you have seen so far. While the fundamental ideas do not hange, the urrent ase an be rather omplex if we try to deal with it in the most general fm. It is therefe all the me imptant to disuss the simplest possible nontrivial ase. Ftunately, purely one-dimensional flow of momentum is meaningful in physial terms, so let us deal with this ase in some detail. One-dimensional onvetive transpt of momentum is a simple onept: if a fluid flows in one diretion only, it arries only one single omponent of momentum. The ase of one-dimensional ondutive transpt is ust as well known. Let the diretion of fluid flow define the spatial omponent we are talking about. Having the same omponent of momentum flowing through the fluid simply means that the material is under ompression tension in the same diretion. fritionless fluid flowing through a straight pipe demonstrates what we mean: the ondutive momentum urrent density of the omponent parallel to the pipe s axis is the pressure of the fluid. In addition to ondutive and onvetive modes of transpt, we will onsider soures of momentum due to the interation of the fluid with a field. If you imagine the fluid flowing through a vertial pipe (Fig. 11.9), the ation of the gravitational field leads to the flow of momentum of the same (vertial) omponent diretly into out of the body. If we ollet the different terms, the integral equation of balane of momentum f the z-diretion looks like 490 THE DYNMIC OF HET

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach Measuring & Induing Neural Ativity Using Extraellular Fields I: Inverse systems approah Keith Dillon Department of Eletrial and Computer Engineering University of California San Diego 9500 Gilman Dr. La

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

The homopolar generator: an analytical example

The homopolar generator: an analytical example The homopolar generator: an analytial example Hendrik van Hees August 7, 214 1 Introdution It is surprising that the homopolar generator, invented in one of Faraday s ingenious experiments in 1831, still

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

F = F x x + F y. y + F z

F = F x x + F y. y + F z ECTION 6: etor Calulus MATH20411 You met vetors in the first year. etor alulus is essentially alulus on vetors. We will need to differentiate vetors and perform integrals involving vetors. In partiular,

More information

Modes are solutions, of Maxwell s equation applied to a specific device.

Modes are solutions, of Maxwell s equation applied to a specific device. Mirowave Integrated Ciruits Prof. Jayanta Mukherjee Department of Eletrial Engineering Indian Institute of Tehnology, Bombay Mod 01, Le 06 Mirowave omponents Welome to another module of this NPTEL mok

More information

Determination of the reaction order

Determination of the reaction order 5/7/07 A quote of the wee (or amel of the wee): Apply yourself. Get all the eduation you an, but then... do something. Don't just stand there, mae it happen. Lee Iaoa Physial Chemistry GTM/5 reation order

More information

Examples of Tensors. February 3, 2013

Examples of Tensors. February 3, 2013 Examples of Tensors February 3, 2013 We will develop a number of tensors as we progress, but there are a few that we an desribe immediately. We look at two ases: (1) the spaetime tensor desription of eletromagnetism,

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E')

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') 22.54 Neutron Interations and Appliations (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') Referenes -- J. R. Lamarsh, Introdution to Nulear Reator Theory (Addison-Wesley, Reading, 1966),

More information

Physical Laws, Absolutes, Relative Absolutes and Relativistic Time Phenomena

Physical Laws, Absolutes, Relative Absolutes and Relativistic Time Phenomena Page 1 of 10 Physial Laws, Absolutes, Relative Absolutes and Relativisti Time Phenomena Antonio Ruggeri modexp@iafria.om Sine in the field of knowledge we deal with absolutes, there are absolute laws that

More information

Dynamics of the Electromagnetic Fields

Dynamics of the Electromagnetic Fields Chapter 3 Dynamis of the Eletromagneti Fields 3.1 Maxwell Displaement Current In the early 1860s (during the Amerian ivil war!) eletriity inluding indution was well established experimentally. A big row

More information

23.1 Tuning controllers, in the large view Quoting from Section 16.7:

23.1 Tuning controllers, in the large view Quoting from Section 16.7: Lesson 23. Tuning a real ontroller - modeling, proess identifiation, fine tuning 23.0 Context We have learned to view proesses as dynami systems, taking are to identify their input, intermediate, and output

More information

SURFACE WAVES OF NON-RAYLEIGH TYPE

SURFACE WAVES OF NON-RAYLEIGH TYPE SURFACE WAVES OF NON-RAYLEIGH TYPE by SERGEY V. KUZNETSOV Institute for Problems in Mehanis Prosp. Vernadskogo, 0, Mosow, 75 Russia e-mail: sv@kuznetsov.msk.ru Abstrat. Existene of surfae waves of non-rayleigh

More information

The concept of the general force vector field

The concept of the general force vector field The onept of the general fore vetor field Sergey G. Fedosin PO box 61488, Sviazeva str. 22-79, Perm, Russia E-mail: intelli@list.ru A hypothesis is suggested that the lassial eletromagneti and gravitational

More information

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO Evaluation of effet of blade internal modes on sensitivity of Advaned LIGO T0074-00-R Norna A Robertson 5 th Otober 00. Introdution The urrent model used to estimate the isolation ahieved by the quadruple

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

TENSOR FORM OF SPECIAL RELATIVITY

TENSOR FORM OF SPECIAL RELATIVITY TENSOR FORM OF SPECIAL RELATIVITY We begin by realling that the fundamental priniple of Speial Relativity is that all physial laws must look the same to all inertial observers. This is easiest done by

More information

A Queueing Model for Call Blending in Call Centers

A Queueing Model for Call Blending in Call Centers A Queueing Model for Call Blending in Call Centers Sandjai Bhulai and Ger Koole Vrije Universiteit Amsterdam Faulty of Sienes De Boelelaan 1081a 1081 HV Amsterdam The Netherlands E-mail: {sbhulai, koole}@s.vu.nl

More information

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light Final Review A Puzzle... Diretion of the Fore A point harge q is loated a fixed height h above an infinite horizontal onduting plane. Another point harge q is loated a height z (with z > h) above the plane.

More information

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene Exerpt from the Proeedings of the OMSOL onferene 010 Paris Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene M. Bekmann-Kluge 1 *,. errero 1, V. Shröder 1, A. Aikalin and J. Steinbah

More information

DIGITAL DISTANCE RELAYING SCHEME FOR PARALLEL TRANSMISSION LINES DURING INTER-CIRCUIT FAULTS

DIGITAL DISTANCE RELAYING SCHEME FOR PARALLEL TRANSMISSION LINES DURING INTER-CIRCUIT FAULTS CHAPTER 4 DIGITAL DISTANCE RELAYING SCHEME FOR PARALLEL TRANSMISSION LINES DURING INTER-CIRCUIT FAULTS 4.1 INTRODUCTION Around the world, environmental and ost onsiousness are foring utilities to install

More information

Einstein s Three Mistakes in Special Relativity Revealed. Copyright Joseph A. Rybczyk

Einstein s Three Mistakes in Special Relativity Revealed. Copyright Joseph A. Rybczyk Einstein s Three Mistakes in Speial Relativity Revealed Copyright Joseph A. Rybzyk Abstrat When the evidene supported priniples of eletromagneti propagation are properly applied, the derived theory is

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE?

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? The stars are spheres of hot gas. Most of them shine beause they are fusing hydrogen into helium in their entral parts. In this problem we use onepts of

More information

Diffusion and compensating subsidence as limiting cases of a single flux parameterization. David Randall

Diffusion and compensating subsidence as limiting cases of a single flux parameterization. David Randall ! Revised September 014 9:49 AM! 1 Diffusion and ompensating subsidene as limiting ases of a single flux parameterization David Randall The tendeny of the average of a onservative variable h due to a vertial

More information

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12.

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12. 2 Relativity Postulates (a) All inertial observers have the same equations of motion and the same physial laws. Relativity explains how to translate the measurements and events aording to one inertial

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

The Laws of Acceleration

The Laws of Acceleration The Laws of Aeleration The Relationships between Time, Veloity, and Rate of Aeleration Copyright 2001 Joseph A. Rybzyk Abstrat Presented is a theory in fundamental theoretial physis that establishes the

More information

Geometry of Transformations of Random Variables

Geometry of Transformations of Random Variables Geometry of Transformations of Random Variables Univariate distributions We are interested in the problem of finding the distribution of Y = h(x) when the transformation h is one-to-one so that there is

More information

7 Max-Flow Problems. Business Computing and Operations Research 608

7 Max-Flow Problems. Business Computing and Operations Research 608 7 Max-Flow Problems Business Computing and Operations Researh 68 7. Max-Flow Problems In what follows, we onsider a somewhat modified problem onstellation Instead of osts of transmission, vetor now indiates

More information

Heat exchangers: Heat exchanger types:

Heat exchangers: Heat exchanger types: Heat exhangers: he proess of heat exhange between two fluids that are at different temperatures and separated by a solid wall ours in many engineering appliations. he devie used to implement this exhange

More information

Chapter 11. Maxwell's Equations in Special Relativity. 1

Chapter 11. Maxwell's Equations in Special Relativity. 1 Vetor Spaes in Phsis 8/6/15 Chapter 11. Mawell's Equations in Speial Relativit. 1 In Chapter 6a we saw that the eletromagneti fields E and B an be onsidered as omponents of a spae-time four-tensor. This

More information

Process engineers are often faced with the task of

Process engineers are often faced with the task of Fluids and Solids Handling Eliminate Iteration from Flow Problems John D. Barry Middough, In. This artile introdues a novel approah to solving flow and pipe-sizing problems based on two new dimensionless

More information

Part G-4: Sample Exams

Part G-4: Sample Exams Part G-4: Sample Exams 1 Cairo University M.S.: Eletronis Cooling Faulty of Engineering Final Exam (Sample 1) Mehanial Power Engineering Dept. Time allowed 2 Hours Solve as muh as you an. 1. A heat sink

More information

2. Mass transfer takes place in the two contacting phases as in extraction and absorption.

2. Mass transfer takes place in the two contacting phases as in extraction and absorption. PRT 11- CONVECTIVE MSS TRNSFER 2.1 Introdution 2.2 Convetive Mass Transfer oeffiient 2.3 Signifiant parameters in onvetive mass transfer 2.4 The appliation of dimensional analysis to Mass Transfer 2.4.1

More information

Indian Institute of Technology Bombay. Department of Electrical Engineering. EE 325 Probability and Random Processes Lecture Notes 3 July 28, 2014

Indian Institute of Technology Bombay. Department of Electrical Engineering. EE 325 Probability and Random Processes Lecture Notes 3 July 28, 2014 Indian Institute of Tehnology Bombay Department of Eletrial Engineering Handout 5 EE 325 Probability and Random Proesses Leture Notes 3 July 28, 2014 1 Axiomati Probability We have learned some paradoxes

More information

231 Outline Solutions Tutorial Sheet 7, 8 and January Which of the following vector fields are conservative?

231 Outline Solutions Tutorial Sheet 7, 8 and January Which of the following vector fields are conservative? 231 Outline olutions Tutorial heet 7, 8 and 9. 12 Problem heet 7 18 January 28 1. Whih of the following vetor fields are onservative? (a) F = yz sin x i + z osx j + y os x k. (b) F = 1 2 y i 1 2 x j. ()

More information

3 Tidal systems modelling: ASMITA model

3 Tidal systems modelling: ASMITA model 3 Tidal systems modelling: ASMITA model 3.1 Introdution For many pratial appliations, simulation and predition of oastal behaviour (morphologial development of shorefae, beahes and dunes) at a ertain level

More information

Ph1c Analytic Quiz 2 Solution

Ph1c Analytic Quiz 2 Solution Ph1 Analyti Quiz 2 olution Chefung Chan, pring 2007 Problem 1 (6 points total) A small loop of width w and height h falls with veloity v, under the influene of gravity, into a uniform magneti field B between

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

Differential Forms and Electromagnetic Field Theory

Differential Forms and Electromagnetic Field Theory Progress In Eletromagnetis Researh, Vol. 148, 83 112, 2014 Differential Forms and Eletromagneti Field Theory Karl F. Warnik 1, * and Peter Russer 2 (Invited Paper) Abstrat Mathematial frameworks for representing

More information

Vector Analysis in Three Dimensions

Vector Analysis in Three Dimensions Appendix 1 etor Analysis in Three Dimensions MULTIPLICATIE RELATIONHIP a (b ) = (a b) = b ( a) (A1.1) a (b ) = b(a ) (a b) (A1.2) a (b ) (b a) = b (a ) (A1.3) (a b) ( d) = (a )(b d) (a d)(b ) (A1.4) a

More information

What s New in ChemSep TM 6.8

What s New in ChemSep TM 6.8 What s New in ChemSep TM 6.8 January 2011 (Updated Marh 2011) Harry Kooijman and Ross Taylor In this doument we identify and desribe the most important new features in ChemSep. 1. New: GUI an diretly load

More information

Class XII - Physics Electromagnetic Waves Chapter-wise Problems

Class XII - Physics Electromagnetic Waves Chapter-wise Problems Class XII - Physis Eletromagneti Waves Chapter-wise Problems Multiple Choie Question :- 8 One requires ev of energy to dissoiate a arbon monoxide moleule into arbon and oxygen atoms The minimum frequeny

More information

A study on control of accumulators in web processing lines 1

A study on control of accumulators in web processing lines 1 A study on ontrol of aumulators in web proessing lines Prabhakar R. Pagilla, Inderpal Singh, and Ramamurthy V. Dwivedula Abstrat: Design of a ontrol algorithm for web tension regulation in an aumulator,

More information

Fig Review of Granta-gravel

Fig Review of Granta-gravel 0 Conlusion 0. Sope We have introdued the new ritial state onept among older onepts of lassial soil mehanis, but it would be wrong to leave any impression at the end of this book that the new onept merely

More information

THE REFRACTION OF LIGHT IN STATIONARY AND MOVING REFRACTIVE MEDIA

THE REFRACTION OF LIGHT IN STATIONARY AND MOVING REFRACTIVE MEDIA HDRONIC JOURNL 24, 113-129 (2001) THE REFRCTION OF LIGHT IN STTIONRY ND MOVING REFRCTIVE MEDI C. K. Thornhill 39 Crofton Road Orpington, Kent, BR6 8E United Kingdom Reeived Deember 10, 2000 Revised: Marh

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

Homework Set 4. gas B open end

Homework Set 4. gas B open end Homework Set 4 (1). A steady-state Arnold ell is used to determine the diffusivity of toluene (speies A) in air (speies B) at 298 K and 1 atm. If the diffusivity is DAB = 0.0844 m 2 /s = 8.44 x 10-6 m

More information

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES MISN-0-211 z ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES y È B` x ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES by J. S. Kovas and P. Signell Mihigan State University 1. Desription................................................

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review Maxwell s Equations Physis for Sientists & Engineers 2 Spring Semester 2005 Leture 32 Name Equation Desription Gauss Law for Eletri E d A = q en Fields " 0 Gauss Law for Magneti Fields Faraday s

More information

KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1

KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1 KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1 CIMM- Av.Velez Sarsfield 1561 C.P.5000 Córdoba, Argentina. aabril@intiemor.gov.ar Abstrat - A new interpretation to the kinetis of iron oxide

More information

Natural Convection Experiment Measurements from a Vertical Surface

Natural Convection Experiment Measurements from a Vertical Surface OBJECTIVE Natural Convetion Experiment Measurements from a Vertial Surfae 1. To demonstrate te basi priniples of natural onvetion eat transfer inluding determination of te onvetive eat transfer oeffiient.

More information

Berry s phase for coherent states of Landau levels

Berry s phase for coherent states of Landau levels Berry s phase for oherent states of Landau levels Wen-Long Yang 1 and Jing-Ling Chen 1, 1 Theoretial Physis Division, Chern Institute of Mathematis, Nankai University, Tianjin 300071, P.R.China Adiabati

More information

1 sin 2 r = 1 n 2 sin 2 i

1 sin 2 r = 1 n 2 sin 2 i Physis 505 Fall 005 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with

More information

Math 32B Review Sheet

Math 32B Review Sheet Review heet Tau Beta Pi - Boelter 6266 Contents ouble Integrals 2. Changing order of integration.................................... 4.2 Integrating over more general domains...............................

More information

ELECTROCHEMISTRY Lecture/Lession Plan -1

ELECTROCHEMISTRY Lecture/Lession Plan -1 Chapter 4 ELECTROCHEMISTRY Leture/Lession Plan -1 ELECTROCHEMISTRY 4.1 Conept of eletrohemistry Eletrohemistry is a branh of hemistry where we will study how hemial energy an be transformed into eletrial

More information

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically. Eletrodynamis I Exam 3 - Part A - Closed Book KSU 205/2/8 Name Eletrodynami Sore = 24 / 24 points Instrutions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to

More information

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite.

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite. Leture Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the funtion V ( x ) to be positive definite. ost often, our interest will be to show that x( t) as t. For that we will need

More information

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013 Ultrafast Pulses and GVD John O Hara Created: De. 6, 3 Introdution This doument overs the basi onepts of group veloity dispersion (GVD) and ultrafast pulse propagation in an optial fiber. Neessarily, it

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of lassial thermodynamis Fundamental Laws, roperties and roesses () First Law - Energy Balane hermodynami funtions of state Internal energy, heat and work ypes of paths (isobari, isohori, isothermal,

More information

ELECTRODYNAMICS: PHYS 30441

ELECTRODYNAMICS: PHYS 30441 . Relativisti Eletromagnetism. Eletromagneti Field Tensor How do E and B fields transform under a LT? They annot be 4-vetors, but what are they? We again re-write the fields in terms of the salar and vetor

More information

Quantum Mechanics: Wheeler: Physics 6210

Quantum Mechanics: Wheeler: Physics 6210 Quantum Mehanis: Wheeler: Physis 60 Problems some modified from Sakurai, hapter. W. S..: The Pauli matries, σ i, are a triple of matries, σ, σ i = σ, σ, σ 3 given by σ = σ = σ 3 = i i Let stand for the

More information

Chapter 8 Thermodynamic Relations

Chapter 8 Thermodynamic Relations Chapter 8 Thermodynami Relations 8.1 Types of Thermodynami roperties The thermodynami state of a system an be haraterized by its properties that an be lassified as measured, fundamental, or deried properties.

More information

The concept of the general force vector field

The concept of the general force vector field OALib Journal, Vol. 3, P. 1-15 (16). http://dx.doi.org/1.436/oalib.11459 The onept of the general fore vetor field Sergey G. Fedosin PO box 61488, Sviazeva str. -79, Perm, Russia E-mail: intelli@list.ru

More information

CHAPTER 26 The Special Theory of Relativity

CHAPTER 26 The Special Theory of Relativity CHAPTER 6 The Speial Theory of Relativity Units Galilean-Newtonian Relativity Postulates of the Speial Theory of Relativity Simultaneity Time Dilation and the Twin Paradox Length Contration Four-Dimensional

More information

Supplementary Information. Infrared Transparent Visible Opaque Fabrics (ITVOF) for Personal Cooling

Supplementary Information. Infrared Transparent Visible Opaque Fabrics (ITVOF) for Personal Cooling Supplementary Information Infrared Transparent Visible Opaque Fabris (ITVOF) for Personal Cooling Jonathan K. Tong 1,Ɨ, Xiaopeng Huang 1,Ɨ, Svetlana V. Boriskina 1, James Loomis 1, Yanfei Xu 1, and Gang

More information

n n=1 (air) n 1 sin 2 r =

n n=1 (air) n 1 sin 2 r = Physis 55 Fall 7 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with index

More information

Spinning Charged Bodies and the Linearized Kerr Metric. Abstract

Spinning Charged Bodies and the Linearized Kerr Metric. Abstract Spinning Charged Bodies and the Linearized Kerr Metri J. Franklin Department of Physis, Reed College, Portland, OR 97202, USA. Abstrat The physis of the Kerr metri of general relativity (GR) an be understood

More information

Modelling and Simulation. Study Support. Zora Jančíková

Modelling and Simulation. Study Support. Zora Jančíková VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ Modelling and Simulation Study Support Zora Jančíková Ostrava 5 Title: Modelling and Simulation Code: 638-3/

More information

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon Albuquerque, NM 0 POCEEDINGS of the NPA 457 The Gravitational Potential for a Moving Observer, Merury s Perihelion, Photon Defletion and Time Delay of a Solar Grazing Photon Curtis E. enshaw Tele-Consultants,

More information

SOME FUNDAMENTAL ASPECTS OF COMPRESSIBLE FLOW

SOME FUNDAMENTAL ASPECTS OF COMPRESSIBLE FLOW SOE FUNDAENAL ASECS OF CORESSIBLE FLOW ah number gas veloity mah number, speed of sound a a R < : subsoni : transoni > : supersoni >> : hypersoni art three : ah Number 7 Isentropi flow in a streamtube

More information

6.4 Dividing Polynomials: Long Division and Synthetic Division

6.4 Dividing Polynomials: Long Division and Synthetic Division 6 CHAPTER 6 Rational Epressions 6. Whih of the following are equivalent to? y a., b. # y. y, y 6. Whih of the following are equivalent to 5? a a. 5, b. a 5, 5. # a a 6. In your own words, eplain one method

More information

Einstein s theory of special relativity

Einstein s theory of special relativity Einstein s theory of speial relatiity Announements: First homework assignment is online. You will need to read about time dilation (1.8) to answer problem #3 and for the definition of γ for problem #4.

More information

1 Summary of Electrostatics

1 Summary of Electrostatics 1 Summary of Eletrostatis Classial eletrodynamis is a theory of eletri and magneti fields aused by marosopi distributions of eletri harges and urrents. In these letures, we reapitulate the basi onepts

More information

Today in Physics 217: Ampère s Law

Today in Physics 217: Ampère s Law Today in Physis 217: Ampère s Law Magneti field in a solenoid, alulated with the Biot-Savart law The divergene and url of the magneti field Ampère s law Magneti field in a solenoid, alulated with Ampère

More information

u x u t Internal Waves

u x u t Internal Waves Internal Waves We now examine internal waves for the ase in whih there are two distint layers and in whih the lower layer is at rest. This is an approximation of the ase in whih the upper layer is muh

More information

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2 Sensor and Simulation Notes Note 53 3 May 8 Combined Eletri and Magneti Dipoles for Mesoband Radiation, Part Carl E. Baum University of New Mexio Department of Eletrial and Computer Engineering Albuquerque

More information

A NETWORK SIMPLEX ALGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM

A NETWORK SIMPLEX ALGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM NETWORK SIMPLEX LGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM Cen Çalışan, Utah Valley University, 800 W. University Parway, Orem, UT 84058, 801-863-6487, en.alisan@uvu.edu BSTRCT The minimum

More information

Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College

Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College 3-14-06 1 Propagation of waves through a medium As you ll reall from last semester, when the speed of sound is measured

More information

Beams on Elastic Foundation

Beams on Elastic Foundation Professor Terje Haukaas University of British Columbia, Vanouver www.inrisk.ub.a Beams on Elasti Foundation Beams on elasti foundation, suh as that in Figure 1, appear in building foundations, floating

More information

Finite Formulation of Electromagnetic Field

Finite Formulation of Electromagnetic Field Finite Formulation o Eletromagneti Field Enzo TONTI Dept.Civil Engin., Univ. o Trieste, Piazzale Europa 1, 34127 Trieste, Italia. e-mail: tonti@univ.trieste.it Otober 16, 2000 Abstrat This paper shows

More information

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES.

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. All systems with interation of some type have normal modes. One may desribe them as solutions in absene of soures; they are exitations of the system

More information

Sensitivity Analysis in Markov Networks

Sensitivity Analysis in Markov Networks Sensitivity Analysis in Markov Networks Hei Chan and Adnan Darwihe Computer Siene Department University of California, Los Angeles Los Angeles, CA 90095 {hei,darwihe}@s.ula.edu Abstrat This paper explores

More information

Temperature-Gradient-Driven Tearing Modes

Temperature-Gradient-Driven Tearing Modes 1 TH/S Temperature-Gradient-Driven Tearing Modes A. Botrugno 1), P. Buratti 1), B. Coppi ) 1) EURATOM-ENEA Fusion Assoiation, Frasati (RM), Italy ) Massahussets Institute of Tehnology, Cambridge (MA),

More information

Chapter 9. The excitation process

Chapter 9. The excitation process Chapter 9 The exitation proess qualitative explanation of the formation of negative ion states Ne and He in He-Ne ollisions an be given by using a state orrelation diagram. state orrelation diagram is

More information

Classical Field Theory

Classical Field Theory Preprint typeset in JHEP style - HYPER VERSION Classial Field Theory Gleb Arutyunov a a Institute for Theoretial Physis and Spinoza Institute, Utreht University, 3508 TD Utreht, The Netherlands Abstrat:

More information

Advances in Radio Science

Advances in Radio Science Advanes in adio Siene 2003) 1: 99 104 Copernius GmbH 2003 Advanes in adio Siene A hybrid method ombining the FDTD and a time domain boundary-integral equation marhing-on-in-time algorithm A Beker and V

More information

22.01 Fall 2015, Problem Set 6 (Normal Version Solutions)

22.01 Fall 2015, Problem Set 6 (Normal Version Solutions) .0 Fall 05, Problem Set 6 (Normal Version Solutions) Due: November, :59PM on Stellar November 4, 05 Complete all the assigned problems, and do make sure to show your intermediate work. Please upload your

More information

Line Radiative Transfer

Line Radiative Transfer http://www.v.nrao.edu/ourse/astr534/ineradxfer.html ine Radiative Transfer Einstein Coeffiients We used armor's equation to estimate the spontaneous emission oeffiients A U for À reombination lines. A

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

SOA/CAS MAY 2003 COURSE 1 EXAM SOLUTIONS

SOA/CAS MAY 2003 COURSE 1 EXAM SOLUTIONS SOA/CAS MAY 2003 COURSE 1 EXAM SOLUTIONS Prepared by S. Broverman e-mail 2brove@rogers.om website http://members.rogers.om/2brove 1. We identify the following events:. - wathed gymnastis, ) - wathed baseball,

More information

arxiv: v1 [math.gt] 22 Nov 2018

arxiv: v1 [math.gt] 22 Nov 2018 SOME REMARKS ON THE CHORD INDEX ZHIYUN CHENG, HONGZHU GAO, AND MENGJIAN XU arxiv:1811.09061v1 [math.gt] 22 Nov 2018 ABSTRACT. In this paper we disuss how to define a hord index via smoothing a real rossing

More information

A Characterization of Wavelet Convergence in Sobolev Spaces

A Characterization of Wavelet Convergence in Sobolev Spaces A Charaterization of Wavelet Convergene in Sobolev Spaes Mark A. Kon 1 oston University Louise Arakelian Raphael Howard University Dediated to Prof. Robert Carroll on the oasion of his 70th birthday. Abstrat

More information

Properties of Quarks

Properties of Quarks PHY04 Partile Physis 9 Dr C N Booth Properties of Quarks In the earlier part of this ourse, we have disussed three families of leptons but prinipally onentrated on one doublet of quarks, the u and d. We

More information

Bäcklund Transformations: Some Old and New Perspectives

Bäcklund Transformations: Some Old and New Perspectives Bäklund Transformations: Some Old and New Perspetives C. J. Papahristou *, A. N. Magoulas ** * Department of Physial Sienes, Helleni Naval Aademy, Piraeus 18539, Greee E-mail: papahristou@snd.edu.gr **

More information