Necklace Flower Constellations

Size: px
Start display at page:

Download "Necklace Flower Constellations"

Transcription

1 David Arnas Martínez Necklace Flower Constellations Departamento Instituto Universitario de Investigación en Matemáticas y sus Aplicaciones Director/es Eva Tresaco Vidaller Antonio Elipe Sánchez

2 Reconocimiento NoComercial SinObraDerivada (by-nc-nd): No se permite un uso comercial de la obra original ni la generación de obras derivadas. Universidad de Zaragoza Servicio de Publicaciones ISSN

3 Tesis Doctoral NECKLACE FLOWER CONSTELLATIONS Autor David Arnas Martínez Director/es Eva Tresaco Vidaller Antonio Elipe Sánchez UNIVERSIDAD DE ZARAGOZA Instituto Universitario de Investigación en Matemáticas y sus Aplicaciones 2018 Repositorio de la Universidad de Zaragoza Zaguan

4

5

6

7

8

9

10

11 G M G M L Ω L M N M L Ω L M

12 J2 n J 2

13

14

15

16

17

18

19

20 n n

21

22

23

24 n n

25

26

27 m 1 ẍ 1 = G m 1m 2 x 1 x 2 2 x 1 x 2 x 1 x 2, m 2 ẍ 2 = G m 1m 2 x 2 x 1 2 x 2 x 1 x 2 x 1,

28 G m 1 m 2 x 1 x 2 ẍ 1 ẍ 2 r = µ r r 3, µ = G(M +m 2 ) GM M r h h = r ṙ, r ṙ h ḣ = ṙ ṙ + r ṙ = r ṙ µ (r r) = 0, r3 r = r h r = 0 h v = 0 h r ṙ u x, u y u z r = ( 3µ yz ) ( r 5 3µyz r 5 u x + 3µ xz ) ( r 5 3µxz r 5 u y + 3µ xy ) r 5 3µxy r 5 u z = 0, V V = r r r r dr = µ r 3 dr = µ r.

29 ξ ξ = v2 2 µ r. d ( r ) r (ṙ r) = dt r r 3 = r h = d (ṙ ) h, µ dt µ e = eu e = ṙ h µ r r, h e h = 0,

30 u r u θ u h u r u h u h = h/ h u θ = u h u r r, θ r = ru r, ṙ = ṙu r + r θu θ, ( r = r θ ) 2 r u r + ( θr + 2 θṙ ) u θ, h = hu h = r 2 θuh θ = h r 2, θ e = ( ) θrh µ 1 u r ṙh µ u θ, e ξ ξ = (e2 1)µ 2 2h 2, Ω i z

31 x cos(i) = h u z h, cos(ω) = (u z h) u x u z h, i [0, π) Ω [0, 2π) ω u e u n = u z u h cos(ω) = (u z h) e u z h e, ω [0, 2π) Ω, i ω ν cos(ν) = r e re, r = p 1 + e cos(ν), p = h 2 /µ r 2 = x 2 p + y 2 p x p = r cos(ν) x p y p (u e, u p = (u h u e ), u h ) (1 e 2 )x 2 p + y 2 p + 2epx p p 2 = 0, e a r per r apo a = r per + r apo 2 = p 2 ( e + 1 ) = p 1 e 1 e 2.

32 ṙ = p e sin(ν) ν, (1 + e cos(ν)) 2 sin(ν) = 0 ṙ 2 = h2 r 2, ξ = 1 h 2 2 p 2 (1 + e)2 µ p (1 + e) = 1 2 µ(1 e2 ) = µ p 2a, a e i Ω ω ν E r 2 = a 2 (1 e 2 ) sin 2 (E) + (ae a cos(e)) 2, r = a(1 e cos(e)). ṙ = ae sin(e)ė. ṙ 2 + ( ) h 2 = 2µ r r µ a, ṙ ṙ 2 = µ ( 2 a r 1 (1 ) e2 ) r 2.

33 E µ = (1 e cos(e))ė, a3 M = E e sin(e) = µ a 3 t. M M n M n = µ a 3, M = 0 M = 2π a 3 T = 2π µ, T µ J 2

34 J 2 J 2, J 3, J 4

35 J 2 S m S/m = 0.001m 2 /kg S/m = 0.01m 2 /kg r = µ r r 3 + γ, γ H t H = µ R(a, e, i, ω, Ω, M, t), 2a R

36 da dt de dt di dt dω dt dω dt dm dt = 2 R na M, = 1 e2 R 1 e na 2 e M 2 R na 2 e ω, cos i R = na 2 1 e 2 sin i M 1 R na 2 1 e 2 sin i Ω, 1 e 2 R = na 2 e e cos i R na 2 1 e 2 sin i i, 1 R = na 2 1 e 2 sin i i, = n 2 na R a 1 e2 na 2 e R e. J 2 J 2 R = 3µJ 2 2r ( R r ) 2 ( sin 2 (i) sin 2 (ω + ν) 1 ), 3 R J 2 = R avg = µj 2 a ( R a ) 2 ( 3 4 sin2 (i) 1 ) ( 2 1 (1 e 2 ) 3/2 ), ȧ sec = 0, ė sec = 0, i sec = 0, ( R ω sec = 3 ) 2 4 J 2 a(1 e 2 n ( 4 5sin 2 (i) ), ) Ω sec = 3 ) 2 2( 2 J R a(1 e 2 n cos(i), ) [ µ Ṁ sec = a ( ) 2 4 J R ( 2 2 3sin 2 a(1 e 2 (i) ) 1 e 2], ) ȧ sec ė sec i sec ω sec Ωsec Ṁsec J 2 sin 2 (i) = 4/5

37 ω sec = 0 i = o u r, u θ, u h γ r γ θ γ h ȧ = 2a2 h ( e sin(ν)γ r + p ) r γ θ, ė = 1 h (p sin(ν)γ r + ((p + r) cos(ν) + re) γ θ ), i = r h cos(ω + ν)γ h, Ω = r sin(ω + ν) γ h, h sin(i) ω = 1 eh ( p cos(ν)γ r + (p + r) sin(ν)γ θ ) + r sin(ω + ν) γ h, h tan(i) 1 e 2 Ṁ = n + ((p cos(ν) 2re)γ r (p + r) sin(ν)γ θ ). eh

38 N o N so N c N c [0, N o 1] Ω, M Ω M Ω, M Ω M 2π N o 0 N c N so Ω ij M ij = 2π i 1 j 1, i = 1,, N o j = 1,, N so N c [0, N o 1] Ω ij M ij (i, j) j i a e i ω Ω 11 M N o = 5 3 N so = 3 a = 14419, 944 km i = o e = 0 N c = 3 Ω 11 = 0 M 11 = 0 (Ω, M) (Ω, M)

39 (Ω, M) Ω = 0 Ω M (Ω, M)

40 N o N w N so N c1, N c2, N c3 N c1 [0, N o 1] N c2 [0, N w 1] N c3 [0, N o 1] N o 0 0 Ω ijk i 1 N c3 N w 0 ω ijk = 2π k 1 ; N c1 N c2 N so M ijk j 1 Ω ijk ω ijk M ijk Ω 111 ω 111

41 M 111 i = 1,, N o j = 1,, N so k = 1,, N w i k j Ω ijk ω ijk M ijk [0, 2π] N o = 5 N w = 3 N so = 3 N c1 = 3 N c2 = 2 N c3 = Ω ijk ω ijk M ijk = 2π i 1 k 1 j 1 ; N o N w N so = 45 N o N ω N so = 45 N ω N so = 9 N c1, N c2, N c3 N o N so (Ω, ω, M) N c1 N c2 N c3

42 (Ω, ω, M) a = 11522, 451 km e = 0.25 i = o y = 0

43 n 1 n + 1 G Z n = {1,..., n} G = {1, 2, 4} Z 4 G 1 G 2 = G 1 = G2 s : G 1 = G 2 + s mod (n), s Z n s G = {1, 2, 4} = {1, 2, 3} = {2, 3, 4} = {1, 3, 4} ;

44 K(n) = K(n) = { Z n }/ =, G G Z n Sym(G) r Z n G + r = G Z n Sym(G) = min {1 r n : G + r = G Z n }. r G 1 = G2 Sym(G 1 ) = Sym(G 2 ) Sym : K(n) N G Sym(G). n = 6 G = {1, 3, 5} Z 6

45 Sym(G) = 2 {1, 3, 5} {3, 5, 7} mod (6) {2, 4, 6} G n k N k (n) = 1 φ(d)k n/d, n d n d n φ(d) d d d k = 2 Ω ij M ij M Ω Ω ij M ij G k {1,..., Sym(G) 1} Ω M

46 M = 2π N so k 2π N so N c N o, k N o M Sym(G) kn o N c, Sym(G) kn o N c Sym(G) N o N c G = {1, 2} N so = 4 Sym(G) = 4 N o = 6 N c = 2 k Ω = 2π 4 6k 2, k = {1, 3}

47 G + X + : G X X (g, x) g + x, g 1 + (g 2 + x) = (g 1 + g 2 ) + x 1 G + x = x g 1, g 2 G, x X (x) x + (x) = {g + x g G} X; g (g) X g (g) = {x X g + x = x}. X y = g + x y x + 1 (g), G g G Y Y

48

49

50 L Ω 0 L MΩ L M Ω ij M ij = 2π i 1 j 1, L Ω L M L MΩ i {1,..., L Ω } j {1,..., L M } Ω ij = 2π L Ω (i 1), M ij = 2π L M (j 1) 2π L M L MΩ L Ω (i 1), G M Z LM N M G M G M {1,..., L M }, G M = N M G M G M = {G M (1),..., G M (j ),..., G M (N M )}, 1 G M (1) < < G M (j ) < < G M (N M ) L M, j G M N M j + N M j G M : Z NM Z LM j G M (j ).

51 G M (j ) j {1,..., N M } (a, b) = a mod (b) G M (j ) = G M ( (j + N M, N M )), j = j + L M mod (L M ), S MΩ Z j : (Z LΩ Z NM ) (Z LΩ Z LM ) (i, j ) (i, j), j = G M (j ) + S MΩ (i 1). j 1 = G M (j ) 1 + S MΩ (i 1). j G M = G M + Sym(G M ) Z LM, j 1 = (G M (j ) 1 + S MΩ (i 1), Sym(G M )). Ω ij = 2π L Ω (i 1), M ij = 2π L M ( (G M (j ) 1 + S MΩ (i 1), Sym(G M ))) 2π L M L MΩ L Ω (i 1), G M i j

52 S MΩ S MΩ {0,..., Sym(G M ) 1} Sym(G M ) Ω ij = Ω i(j M +N M ), M ij = M i(j +N M ), Ω ij = Ω (i+lω )j Ω, M ij = M (i+lω )j, M 2π L Ω (i 1) = 2π L Ω (i 1), (G M (j ) 1 + S MΩ (i 1), Sym(G M )) = = (G M ( (j + N M, N M )) 1 + S MΩ (i 1), Sym(G M )). G M (j ) = G M ( (j + N M, N M )) 2π L Ω (i 1) = 2π L Ω (L Ω + i 1) mod (L Ω ), L M 2π M (i+l Ω )j = L M 2π M ij, (G M (j ) 1 + S MΩ (L Ω + i 1), Sym(G M )) L MΩ L Ω (L Ω + i 1) = = (G M (j ) 1 + S MΩ (i 1), Sym(G M )) L MΩ L Ω (i 1). A Z G M (j ) 1 + S MΩ (i 1) + ASym(G M ) = G M (j ) 1 + S MΩ (L Ω + i 1) L MΩ, ASym(G M ) = S MΩ L Ω L MΩ,

53 S MΩ G M L Ω L MΩ Sym(G M ) S MΩ L Ω L MΩ, Sym(G M ) (S MΩ L Ω L MΩ ) G M 14 e = 0 a = km i = o L Ω = 7 N M = 2 N c = {0,..., 6} L M = 20 L Ω L M = 140 N M = 2 70 G M = {1, 2} Z 20 L MΩ = 6 Sym(G M ) = 20 {1, 2} = {1, 2} + 20 mod (20) Sym(G M ) S MΩ L Ω L MΩ 20 7S MΩ 6, S MΩ = 18 (Ω, M) Ω 11 = M 11 = 0 Ω = 0 Ω = 2π L Ω L M (Ω, M) N M = 2

54 (Ω, M) (Ω, M) 90 o

55 G M G M S MΩ G M gcd(sym(g M ), L Ω ) L MΩ gcd(sym(g M ), L Ω ). ASym(G M ) + L Ω S MΩ = L MΩ,

56 A A S MΩ gcd(sym(g M ), L Ω ) L MΩ. (S MΩ ) λ = (S MΩ ) 0 + λ l, l = L Ω (A) λ = (A) 0 λ gcd(sym(g M ), L Ω ), Sym(G M ) gcd(sym(g M ), L Ω ), (S MΩ ) 0 (A) 0 λ Sym(G M ) {1,..., L M }, S MΩ {0,..., Sym(G M ) 1}, L MΩ {0,..., L Ω 1}, S MΩ S MΩ = (Sym(G M ) 1) λ l S MΩ SMΩ (Sym(GM ) 1) gcd(sym(g M ), L Ω ) = = l x x = Sym(G M ) gcd(sym(g M ), L Ω ) gcd(sym(g M), L Ω ) Sym(G M ), gcd(sym(g M ), L Ω ) gcd(sym(gm ), L Ω ) gcd(sym(g M ), L Ω ), Sym(G M ) x x gcd(sym(g M ), L Ω ) [1, Sym(G M )] gcd(sym(g M ), L Ω ) Sym(G M ) (0, 1], gcd(sym(g M ), L Ω ) 1.

57 S MΩ (S MΩ ) λ gcd(sym(g M ), L Ω ), L Ω L MΩ Sym(G M ) G M L Ω L M G M L Ω L M Sym(G M ) {S MΩ, L MΩ } G M L Ω L M L Ω L Ω S MΩ 1L MΩ = ASym(G M ), S MΩ L MΩ gcd(l Ω, 1) ASym(G M ), gcd(l Ω, 1) = 1 ASym(G M ) Sym(G M ) L Ω (S MΩ ) λ = (S MΩ ) 0 + λ, (L MΩ ) λ = (L MΩ ) 0 λl Ω, (S MΩ ) 0 (L MΩ ) 0 λ ASym(G M ) L MΩ {0,..., L Ω 1} A

58 ASym(G M ) min (ASym(G M )) = (L Ω 1), max (ASym(G M )) = (Sym(G M ) 1)L Ω. ASym(G M ) (ASym(G M )) = max (ASym(G M )) min (ASym(G M )) = L Ω Sym(G M ) 1. Sym(G M ) (ASym(G M )) = ASym(G M ), A A = L Ω 1 Sym(G M ). 1 A A A A = 1 L Ω Sym(G M ) = L Ω 1 Sym(G M ). Sym(G M ) 1 (0, 1] L Ω 1 L Ω A A L Ω Sym(G M ) L Ω L M L Ω L M L Ω L M d L M φ(d)2 LM /d, d L M φ(d) d {L MΩ, S MΩ } {L MΩ, S MΩ }

59 N M L Ω L M N M = G M N M L Ω L M L Ω L M L M g=1 g L M L Mg N M (g), (g) g (g) = L M g g N M g L M L M g g 1 g =1 g g N M g (g ). L M + Z LM G M Z LM G = Z LM L M ϕ ϕ : G X X (g, x) x + g mod (L M ). (g) g G (X) g = Sym(G M ) g L M L M g N M

60 g = Sym(G M ) (g) g L M /g L M N M g/l M g P C(g) P C(g) = g N M g L M. L M /g L M N M L M g L M g P C(g) = L M g g N M. g L M L M = 4 N M = 2 g = 4 g = 2 {1, 3} {2, 4} g N M g (g) g g P C(g ) = g L M (g ). g g < g P C(g) = g N M g L M L M g g 1 g =1 g g N M g L M (g ), g g g L M g N M g

61 (g) (g) = L M g g N M g L M L M g g 1 g =1 g g N M g (g ), L M g G = Z LM g N M L M 1 g g N M g L M (g ) L M g g 1 g =1 g g N M g (g ). L M L Ω g L Ω g g N M g L M L M g g 1 g =1 g g N M g (g ). L M L M g=1 g L M L Mg N M L Ω g g N M g L M L M g g 1 g =1 g g N M g (g ), L M

62 L Ω L M L M g=1 g L M L Mg N M (g), (g) G M G Ω N Ω L Ω G Ω {1,..., L Ω }, G Ω = N Ω i G Ω G Ω (i ) = G Ω ( (i + N Ω, N Ω )), i = (i + L Ω, L Ω ). i i G Ω i = G Ω (i ), Ω i j = 2π L Ω (G Ω (i ) 1), M i j = 2π ( (G M (j ) 1 + S MΩ (G Ω (i ) 1), Sym(G M ))) L M 2π L MΩ (G Ω (i ) 1), L M L Ω

63 G Ω N Ω N M G Ω G M Sym(G M ) S MΩ L Ω L MΩ L Ω L M S MΩ L MΩ a e i ω Ω i j M i j a e i ω N Ω, N M L Ω, L M S MΩ L MΩ Ω i j M i j

64

65

66 L Ω L ω L M L MΩ, L Mω, L ωω L MΩ [0, L Ω 1] L Mω [0, L w 1] L ωω [0, L Ω 1] L Ω 0 0 L ωω L ω 0 L MΩ L Mω L M Ω ijk ω ijk M ijk = 2π i 1 k 1 j 1 Ω ijk ω ijk M ijk {Ω 000, ω 000, M 000 } (i, j, k) i [1, L Ω ] k [1, L ω ] j [1, L M ] Ω ijk ω ijk M ijk [0, 2π] ; Ω ijk = 2π L Ω (i 1), ω ijk = 2π L ω (k 1) 2π L ω L ωω L Ω (i 1), M ijk = 2π (j 1) 2π L Mω (k 1) 2π L M L M L ω L M ( LMΩ L Ω L Mω L ω ) L ωω (i 1), L Ω ω ijk i = 1 i = L Ω +1 i [1, L Ω + 1] k ω ijk ω (i+lω )jk

67 M ijk M (i+lω )jk M ijk M ij(k+lω) G M N M = G M G M Z LM N M L M G M N M G M = (G M (1),, G M (j ),, G M (N M )), 1 G M (1) G M (j ) G M (N M ) L M, j N M j + N M j : Z NM Z LM j G M (j ). G M (j ) j {1,, N M } (a, b) = a mod (b) G M (j ) = G M ( (j + N M, N M )), j = j + L M mod (L M ), G ω N ω = G ω L ω G M G ω = (G ω (1),, G ω (k ),, G ω (N ω )), 1 G ω (1) G ω (k ) G M (N ω ) L ω,

68 k N ω : Z Nω Z Lω k G ω (k ), G ω (k ) k {1,, N ω } G ω (k ) = G ω ( (k + N ω, N ω )), k = k + L ω mod (L ω ), (i, j, k ) (i, j, k) : Z LΩ Z NM Z Nω Z LΩ Z LM Z Lω (i, j, k ) (i, j, k), S ωω S MΩ S Mω k j k = G ω (k ) + S ωω (i 1), j = G M (j ) + S Mω (k 1) + S MΩ (i 1). k 1 = G ω (k ) 1 + S ωω (i 1), j 1 = G M (j ) 1 + S Mω (k 1) + S MΩ (i 1). k 1 = G ω (k ) 1 + S ωω (i 1) mod Sym(G ω ), j 1 = G M (j ) 1 + S Mω (k 1) + S MΩ (i 1) mod Sym(G M ).

69 j k k k j 1 = G M (j ) 1 + S Mω (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) + + S MΩ (i 1) mod Sym(G M ), j Ω ij k = 2π (i 1), L Ω ω ij k = 2π [ (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) L ωω L ω M ij k = 2π L M [ ( G M (j ) 1 + S Mω ( G ω (k ) S ωω (i 1), Sym(G ω ) ) ) + S MΩ (i 1), Sym(G M ) ] (i 1) L Ω, L Mω L ( ω LMΩ (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) L ) ] Mω L ωω (i 1), L ω L Ω L Ω G M G ω M ij k S ωω, S Mω, S MΩ S ωω [0, Sym(G ω ) 1], S Mω [0, Sym(G M ) 1], S MΩ [0, Sym(G M ) 1],

70 Ω ij k = Ω i(j +N M )k, ω ij k = ω i(j +N M )k, M ij k = M i(j +N M )k, Ω ij k ω ij k M ij k Ω ij k = Ω ij(k +N ω), ω ij k = ω ij (k +N ω), M ij k = M ij (k +N ω), k ω ij k k + N ω ω ij k + 2π = ω ij (k +N ω), [ 2π (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) L ] ωω (i 1) + 2π = L ω L Ω = 2π [ (G ω (k + N ω ) 1 + S ωω (i 1), Sym(G ω )) L ] ωω (i 1), L ω L Ω

71 (G ω (k + N ω ) 1 + S ωω (i 1), Sym(G ω )) (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) = L ω, M ij k [ 2π ( G M (j ) 1 + S Mω ( G ω (k ) 1 + L M + S ωω (i 1), Sym(G ω ) ) ) + S MΩ (i 1), Sym(G M ) L Mω L ( ω LMΩ (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) L ) ] Mω L ωω (i 1) = L ω L Ω L Ω = 2π [ ( G M (j ) 1 + S Mω ( G ω (k + N ω ) 1 + L M + S ωω (i 1), Sym(G ω ) ) ) + S MΩ (i 1), Sym(G M ) L Mω L ( ω LMΩ (G ω (k + N ω ) 1 + S ωω (i 1), Sym(G ω )) L ) ] Mω L ωω (i 1) ; L ω L Ω L Ω ( G M (j ) 1 + S Mω (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) + ) + S MΩ (i 1), Sym(G M ) L Mω (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) = L ( ω = G M (j ) 1 + S Mω (G ω (k + N ω ) 1 + S ωω (i 1), Sym(G ω )) + ) + S MΩ (i 1), Sym(G M ) L Mω (G ω (k + N ω ) 1 + S ωω (i 1), Sym(G ω )). L ω Sym(G M ) ASym(G M ) = S Mω L ω L Mω ; A Sym(G M ) S Mω L ω L Mω, Sym(G M ) (S Mω L ω L Mω )

72 S Mω Ω ij k = Ω (i+l Ω )j k, ω ij k = ω (i+l Ω )j k, M ij k = M (i+l Ω )j k. Ω ij k = 2π L Ω (i 1) = 2π L Ω (i 1) + 2π mod (2π), L ω 2π ω ij k = L ω 2π ω (i+l Ω )j k, (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) L ωω L Ω (i 1) = = (G ω (k ) 1 + S ωω (i 1) + S ωω L Ω, Sym(G ω )) L ωω L Ω (i 1) L ωω, (G ω (k ) 1 + S ωω (i 1) + S ωω L Ω, Sym(G ω )) (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) = L ωω, Sym(G ω ) BSym(G ω ) = S ωω L Ω L ωω ; B Sym(G ω ) S ωω L Ω L ωω.

73 S ωω Sym(G ω ) L Ω L ωω L M 2π M ij k = L M 2π M (i+l Ω )j k, ( ) G M (j ) 1 + S Mω (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) + S MΩ (i 1), Sym(G M ) ( ) LMΩ (i 1) = L Mω (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) L Mω L ωω L ω L Ω L ω L Ω ( = G M (j ) 1 + S Mω (G ω (k ) 1 + S ωω (i 1) + S ωω L Ω, Sym(G ω )) + ) + S MΩ (i 1) + S MΩ L Ω, Sym(G M ) (G ω (k ) 1 + S ωω (i 1) + S ωω L Ω, Sym(G ω )) ( LMΩ L Ω L Mω L ω L ωω L Ω ) (i 1) L Mω L ω ( L MΩ L MωL ωω L ω ), ( G M (j ) 1 + S Mω (G ω (k ) 1 + S ωω (i 1)+ ) + S ωω L Ω, Sym(G ω )) + S MΩ (i 1) + S MΩ L Ω, Sym(G M ) ( G M (j ) 1 + S Mω (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) + ) + S MΩ (i 1), Sym(G M ) = L MΩ. Sym(G ω ) CSym(G M ) = S MΩ L Ω (L MΩ S Mω L ωω ), C Sym(G M ) S MΩ L Ω (L MΩ S Mω L ωω ). S MΩ S Mω

74 G Ω ij k = 2π (i 1), L Ω ω ij k = 2π [ (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) L ωω L ω M ij k = 2π L M [ ( G M (j ) 1 + S Mω ( G ω (k ) S ωω (i 1), Sym(G ω ) ) ) + S MΩ (i 1), Sym(G M ) ] (i 1) L Ω, L Mω L ( ω LMΩ (G ω (k ) 1 + S ωω (i 1), Sym(G ω )) L ) ] Mω L ωω (i 1), L ω L Ω L Ω S ωω S Mω S Mω Sym(G ω ) S ωω L Ω L ωω, Sym(G M ) S Mω L ω L Mω, Sym(G M ) S MΩ L Ω (L MΩ S Mω L ωω ). Sym(G) S MΩ L Ω N c, G N c L MΩ

75 L Ω = 7 N ω = 2 N M = 3 L ω = 6 L M = 9 G M = 10 G ω = 3 G M G ω L 2 Ω L ω = 8820 L 2 Ω N ω = 98 L MΩ = 4 L Mω = 3 L ωω = 6 G M = {1, 4, 7} G ω = {1, 4} Sym(G M ) = 3 Sym(G ω ) = 3 Sym(G ω ) S ωω L Ω L ωω 3 7S ωω 6, S ωω = 0 Sym(G M ) S Mω L ω L Mω 3 6S Mω 3, S Mω = 0, 1, 2 Sym(G M ) S MΩ L Ω (L MΩ S Mω L ωω ) 3 7S MΩ (4 6S Mω ), S MΩ = 1 S Mω = 0, 1, 2 S Mω S MΩ S Mω S ωω = 0 S Mω = 2 S MΩ = 1 (Ω, ω, M)

76 (Ω, ω, M) e = 0.3 i = o a = 12, 770 km

77

78 n

79 J 2 J 2

80 a M ω Ω {V a, V Ω, V ω, V M } V a V Ω V ω V M {V a, V Ω, V ω, V M } {V a, V Ω, V ω, V M } [0, 1] {r, i, k, j} L a L Ωa L Ω 0 0 L ωa L ωω L ω 0 L Ma L MΩ L Mω L M V a ijkr V Ω ijkr V ω ijkr V M ijkr = r i k j ; L a L Ω L ω L M r = {1,..., L a } i = {1,..., L Ω } k = {1,..., L ω } j = {1,..., L M } L Ωa {0,..., L a 1} L ωa {0,..., L a 1} L ωω {0,..., L Ω 1} L Ma {0,..., L a 1} L MΩ {0,..., L Ω 1} L Mω {0,..., L ω 1}

81 V a ijkr = 1 L a r, V Ω ijkr = 1 L Ω i L Ωa L a L Ω r, Vijkr ω = 1 k L ωω i 1 L ω L ω L Ω L ω Vijkr M = 1 j L Mω k 1 L M L M L ω 1 L M ( LMa L a L MΩ L Ω L M ( Lωa L Ωa L a L a ( LMΩ L ωω L Ωa L Ω L Ω L Mω L ω L a L Mω L ω ( Lωa L a ) r, L ωω L Ω ) i L Ωa L a L ωω L Ω )) r, [ ] 1 Vijkr a = r, 1, L a [ ( 1 Vijkr Ω = i L ) ] Ωa r, 1, L Ω L a [ ( 1 Vijkr ω = k L ( ωω Lωa i L ) ) ] ωω L Ωa r, 1, L ω L ω L a L Ω L a [ ( 1 Vijkr M = j L ( Mω LMΩ k L ) Mω L ωω i L M L ω L Ω L ω L Ω ( LMa L MΩ L Ωa L ( Mω Lωa L )) ) ] Ωa L ωω r, 1, L a L Ω L a L ω L a L a L Ω [a, b] a b L a L a L Ω L a L Ω L ω L a L Ω L ωm L a Vijkr a = [r, L a ], L Ω L a Vijkr Ω = [L a i L Ωa r, L Ω L a ], L ω L Ω L a Vijkr ω = [L Ω L a k L ωω L a i (L ωa L Ω L ωω L Ωa ) r, L ω L Ω L a ], L M L ω L Ω L a Vijkr M = [L ω L Ω L a j L Mω L Ω L a k (L MΩ L ω L a L Mω L ωω L a ) i (L Ma L ω L Ω L MΩ L Ωa L ω L Mω (L ωa L Ω L Ωa L ωω )) r, L M L ω L Ω L a ]. {N a, N Ω, N ω, N M } N a ijkr = L a V a ijkr, Nijkr Ω = L Ω L a Vijkr Ω Nijkr ω = L ω L Ω L a Vijkr ω N M ijkr = L M L ω L Ω L a V M ijkr,

82 Nijkr a = [r, L a ], Nijkr Ω = [L a i L Ωa r, L Ω L a ], Nijkr ω = [L Ω L a k L ωω L a i (L ωa L Ω L ωω L Ωa ) r, L ω L Ω L a ], Nijkr M = [L ω L Ω L a j L Mω L Ω L a k (L MΩ L ω L a L Mω L ωω L a ) i (L Ma L ω L Ω L MΩ L Ωa L ω L Mω (L ωa L Ω L Ωa L ωω )) r, L M L ω L Ω L a ], {N a, N Ω, N ω, N M } N a {1,..., L a }, N Ω {1,..., L Ω L a }, N ω {1,..., L ω L Ω L a }, N M {1,..., L M L ω L Ω L a }, L a L Ω = 4 N Ω = {1, 2, 3, 4} Ω 1 = 0 o Ω 2 = 30 o Ω 3 = 90 o Ω 4 = 180 o N p N d N p N d T c = N p T = N d T d, T T d

83 T c N d N p N p J2 J 2 J 2 J 2 [ µ ȧ sec = 0; n = a ( ) 2 4 J R ( 2 2 3sin 2 a(1 e 2 (i) ) 1 e 2] ; ) ( R ) 2 n ( 5cos 2 (i) 1 ) ; ė sec = 0; ω sec = 3 4 J 2 a(1 e 2 ) i sec = 0; Ωsec = 3 ) 2 2( 2 J R a(1 e 2 n cos(i); ) µ R n Ω sec = Ω sec0 ω sec = ω sec0 T c Ω sec0 ω sec0 T c = N p 2π n = N dt d.

84 [ 2π N p µ = T d N d a ( ) 2 4 J R ( 2 2 3sin 2 a(1 e 2 (i) ) 1 e 2], ) ω sec0 = 3 ( ) 2 4 J R 2π N p ( 2 5cos 2 a(1 e 2 (i) 1 ), ) T d N d Ω sec0 = 3 ) 2 2( 2 J R 2π N p a(1 e 2 cos(i), ) T d N d N a ω sec0 Ω sec0 cos(i) = ω sec0 ± ω sec Ω 2 sec0 5 Ω, sec0 ω sec0 Ω sec0 Ω sec0 1 e 2 = R a 3 2 J 2 2π N p cos(i), Ω sec0 T d N d a 3 T d N d 2 = µ 1 Ω sec0 T d N d 2 3 sin 2 (i) R 3 J 2 2π N p cos(i), 2π N p 4π N p cos(i) a 2 Ω sec0 T d N d N a L a = 2

85 L Ω = 3 L ω = 3 L M = 3 N d = 3 i = o e = 0.1 N p = {8, 6} km km Ω ijkr = 2π N ijkr Ω ; ω ijkr = 2π N ijkr ω ; L a L Ω L a L Ω L ω N M ijkr M ijkr = 2π. L a L Ω L ω L M L ij L 21 = 0 L 32 = 2 L 31 = 1 L 43 = 0 L 42 = 2 L 41 = 1

86 N a G Ω G ω G M

87 G G Ω {1,..., L Ω }, G ω {1,..., L ω }, G M {1,..., L M }, G Ω = N Ω G Ω G ω = N ω G ω G M = N M G M G Ω = {G Ω (1),..., G Ω (i ),..., G Ω (N Ω )}, G ω = {G ω (1),..., G ω (k ),..., G ω (N ω )}, G M = {G M (1),..., G M (j ),..., G M (N M )}, 1 G Ω (1) < < G Ω (i ) < < G Ω (N Ω ) L Ω, 1 G ω (1) < < G ω (k ) < < G ω (N ω ) L ω, 1 G M (1) < < G M (j ) < < G M (N M ) L M, i k j G Ω G ω G M G : Z La Z NΩ Z Nω Z NM Z La Z LΩ Z Lω Z LM (r, i, k, j ) (r, G Ω (i ), G ω (k ), G M (j )). G i {1,..., N Ω } k {1,..., N ω } j {1,..., N M } S Ωr S ωr S ωω S Mr S MΩ S Mω i = G Ω (i ) + S Ωr r, k = G ω (k ) + S ωr r + S ωω i, j = G M (j ) + S Mr r + S MΩ i + S Mω k. Sym(G) Sym(G) = min {1 r n : G + r G}. i = [G Ω (i ) + S Ωr r, Sym(G Ω )], k = [G ω (k ) + S ωr r + S ωω i, Sym(G ω )], j = [G M (j ) + S Mr r + S MΩ i + S Mω k, Sym(G M )].

88 S Ωr {0,..., Sym(G Ω ) 1}, S ωr, S ωω {0,..., Sym(G ω ) 1}, S Mr, S MΩ, S Mω {0,..., Sym(G M ) 1}. i k j k i = [G Ω (i ) + S Ωr r, Sym(G Ω )], k = [G ω (k ) + S ωr r + S ωω [G Ω (i ) + S Ωr r, Sym(G Ω )], Sym(G ω )], j = [G M (j ) + S Mr r + S MΩ [G Ω (i ) + S Ωr r, Sym(G Ω )] + + S Mω [G ω (k ) + S ωr r+ + S ωω [G Ω (i ) + S Ωr r, Sym(G Ω )], Sym(G ω )], Sym(G M )], Ni a j k r = [r, L a ], Ni Ω j k r = [L a [G Ω (i ) + S Ωr r, Sym(G Ω )] L Ωa r, L Ω L a ], Ni ω j k r = [L Ω L a [G ω (k ) + S ωr r + S ωω [G Ω (i )+ + S Ωr r, Sym(G Ω )], Sym(G ω )] L ωω L a [G Ω (i )+ + S Ωr r, Sym(G Ω )] (L ωa L Ω L ωω L Ωa ) r, L ω L Ω L a ], Ni M j k r = [L ω L Ω L a [G M (j ) + S Mr r + S MΩ [G Ω (i )+ + S Ωr r, Sym(G Ω )] + S Mω [G ω (k ) + S ωr r+ + S ωω [G Ω (i ) + S Ωr r, Sym(G Ω )], Sym(G ω )], Sym(G M )] L Mω L Ω L a [G ω (k ) + S ωr r + S ωω [G Ω (i )+ + S Ωr r, Sym(G Ω )], Sym(G ω )] (L MΩ L ω L a L Mω L ωω L a ) [G Ω (i ) + S Ωr r, Sym(G Ω )] (L Ma L ω L Ω L MΩ L Ωa L ω L Mω (L ωa L Ω L Ωa L ωω )) r, L M L ω L Ω L a ].

89 ( ) Ni a j k (r+l, N Ω a) i j k (r+l, N ω a) i j k (r+l, N M a) i j k (r+l a) = = ( Ni a j k r, N i Ω j k r, N i ω j k r, N i M j k r), ( ) N(i a +N Ω )j k r, N (i Ω +N Ω )j k r, N (i ω +N Ω )j k r, N (i M +N Ω )j k r = = ( Ni a j k r, N i Ω j k r, N i ω j k r, N i M j k r), ( ) Ni a j (k +N, N Ω ω)r i j (k +N, N ω ω)r i j (k +N, N M ω)r i j (k +N ω)r = = ( Ni a j k r, N i Ω j k r, N i ω j k r, N i M j k r), ( ) Ni a (j +N M )k r, N i Ω (j +N M )k r, N i ω (j +N M )k r, N i M (j +N M )k r = = ( N a i j k r, N Ω i j k r, N ω i j k r, N M i j k r), Sym(G Ω ) S Ωr L r L Ωr, Sym(G ω ) S ωω L Ω L ωω, Sym(G ω ) S ωr L r (L ωr S ωω L Ωr ), Sym(G M ) S Mω L ω L Mω, Sym(G M ) S MΩ L Ω (L MΩ S Mω L ωω ), Sym(G M ) S Mr L r (L Mr S MΩ L Ωr S Mω L ωr ), a > Ω > ω > M

90 G M = {1} N M = 1 G ω = {1, 2, 3} G ω = {1, 2, 3} Sym(G M ) = 3 1 2S Ωr 0, S Ωr = 0 1 3S ωω 2, S ωω = 0 S ωr = 0 1 2S ωr (1 0), 3 3S Mω 0, S Mω = 0, 1, 2 3 3S MΩ (2 2S Mω ), S Mω = 1 S MΩ = 0, 1, 2 3 2S Mr (1 0 1), S Mr = 0 S MΩ S MΩ S MΩ = 0, 1, 2 S MΩ = 2

91 M ω M ω M Ω M r

92 x z L a = 1 L ω = 1

93 J 2 J 2

94

95 n n n (n 1) n

96 n n n n Z n R n : Z n R n k V, k V k i i Z n V i [0, 1] i = 1,..., n {V i V V i [0, 1]} i {k i k k i Z} L ii V i {k j j i} L ii i k i L ii k i {V (k)} {V (k )} {V (k)} {V (k )} {V (k )} = {V (k)}. V (k ) = V (k), V i (k ) = V i (k), i {1,..., n} V (k) V i ({1,..., k m 1, k m, k m+1,..., k n }) = = V i ({1,..., k m 1, k m + L mm, k m+1,..., k n }) i, m {1, 2,..., n}, k V i (k m ) = V i (k m + L mm ).

97 L ij n n n V i = 1 i 1 k i (L ij V j ), 1, L ii (a, b) b a L ij Z n R n j=1 : Z n R n {α 1,..., α i,..., α n } {V 1,..., V i,..., V n }, n P 1,1 P 1,2 P 1,n V 1 α 1 P 2,1 P 2,2 P 2,n V 2 α = 2, P n,1 P n,2 P n,n P i,j V i P i,j α i L 1, V 1 k 1 L 2,1 L 2,2 0 0 V 2 k 2 =, L n 1,1 L n 1,2 L n 1,n 1 0 V n 1 k n 1 L n,1 L n,2 L n,n L ij Z k i Z P ij α i i L ij V j = k i, V i V i = 1 i 1 k i L ij V j, L ii j=1 j=1 V n V n α n k n

98 n V i (k m ) = V i (k m + L mm ), m > i V i k j j i m = i 1 L ii V i (k i ) = V i (k i + L ii ) i {1, 2,..., n}, i 1 k i L ij V j = 1 i 1 k i + L ii L ij V j, L ii j=1 j=1 L ii = 0 V i = 1 i 1 k i L ij V j, L ii, L ii j=1 k i = k i + L ii mod (L ii ). k i Z Lii k i = k i + L ii mod (L ii ). m < i 1 i 1 k i L ij V j (k m ) = 1 L ii j=1 L ii i 1 k i L ij V j (k m + L mm ), j=1 V j (k m ) = V j (k m + L mm ) j, m {1, 2,..., n},

99 L ii V i = 1 i 1 k i L ij V j, 1. L ii k i = L ii i Z n j=1 L ii L ii V i {k j j i} {L ij i j} k i L ij k i k i {1, 2,..., L ii } k m k m Z k m km Z k m m 1 L mm k m m 1 j=1 L mj V j, 1 = 1 L mm k m m 1 j=1 L mj V j, 1. 1 k m L mm m 1 j=1 L mj V j + A = 1 L mm k m m 1 j=1 L mj V j, A k m + AL mm = km, k m Z Lmm = {1, 2,..., L mm } km Z k m {1, 2,..., L mm }

100 n L ij L ij {0, 1,..., L jj 1}. L L i 1 L ij = L ij + A p L pj, p=j A p n n L ij [0, L jj 1] i L ij L L L L n L ij = L ij + A p L pj, p=1 A p n i 1 L ij = L ij + A p L pj, p=j L ij = L ij + i 1 p=j+1 A p L pj + A j L jj,

101 A j L ij = L ij + i 1 p=j+1 A p L pj mod (L jj ), L ij {0, 1,..., L jj 1}, L ij {0, 1,..., L jj 1} i (L ii ) V i = 1 i 1 k i (L ij V j ), 1, L ii j=1 i (L ii ) n n i i=1 j=1 L ii n L ii L ij i j L ij i i 1 L jj j=1 n i 1 i=1 j=1 L jj

102 n n 1 n 2 n (n 1) L jj L jj L jj = L (n 1) 11 L (n 2) 22 L (1) (n 1)(n 1), j=1 j=1 n i=1 j=1 L (n i) ii = n n i L ii. i=1 j=1 n G Z m, m G 1 G 2 G 1 G 2 {G 1 } = {G 2 }. G 1 G 2 = s Z m G 1 = G2 s : G 1 G 2 + s mod (m), s m

103 G Sym(G) Sym(G) = min {1 r n : G + r G}. G {s : Sym(G) s} G G (Sym(G) 1) S S {0, 1,..., (Sym(G) 1)}. G i i G i N i N i i {k j j i} G i Z Lii G i {1,..., L ii }, G i = N i G i G i = {G i (1),..., G M (k i ),..., G i (N i )}, 1 G i (1) G i (k i ) G i (N i ) L ii, k i {1,..., N i} N i k i + N i k i G i G i : Z Ni Z Lii k i G i (k i ). G i (ki ) G i (ki ) = G i ( (ki + N i, N i )),

104 n i k i = k i + L ii mod (L ii ), i Sym(G i ) G i G i G i + ASym(G i ), A G i = G i + Sym(G i ) mod (Sym(G i )). L ii Sym (G) Sym (G) Sym (G) L ii S n n S ij Z G i j G i G j j < i V i k i n i L ij V j = k i ; j=1 i 1 k i = G i (ki ) + S ij k j, Sym (G i ), j=1 G i i k i S ij G i j k i G i (ki ) : (Z N1 Z N2 Z Nn ) (Z L11 Z L22 Z Lnn ) (k 1, k 2,..., k n) (k 1, k 2,..., k n ),

105 k i i 1 k i = G i (ki ) + S ij k j, G i (ki ) i 1 j=1 S ijk j G i i 1 k i = G i (ki ) + S ij k j, Sym(G i ), j=1 j=1 i L ij V j = k i ; j=1 i 1 k i = G i (ki ) + S ij k j, Sym (G i ). j=1 L ij S ij j > i i L ij V j = k i ; j=1 i 1 k i = G i (ki ) + S ij k j, Sym (G i ), Sym(G i ) S ijl jj L ij j=1 i 1 q=j+1 S iq L qj. i V i (k j ) = V i (k j + L jj ) i, j {1, 2,..., n},

106 n j i V i (k j ) = V i (k j + L jj ) i j, j > i j = i j < i i L ip V p (k j ) = k i (k j ) p=1 i 1 k i (k j ) = G i (ki ) + S ip k p (k j ) + A i Sym (G i ), p=1 j V p (k j ) k p (k j ) A i i L ip V p (k j + L jj ) = k i (k j + L jj ) p=1 i 1 k i (k j + L jj ) = G i (ki ) + S ip k p (k j + L jj ) + B i Sym (G i ), p=1 j V q (k j + L jj ) q j k p (k j + L jj ) k p B i j > i j k i i i i L ip V p (k j + L jj ) L ip V p (k j ) = L ip [V p (k j + L jj ) V p (k j )] = 0, p=1 p=1 p=1 k p (k j + L jj ) = k p (k j ) p < j. i 1 0 = S ip [k p (k j + L jj ) k p (k j )] + (B i A i )Sym (G i ) p=1

107 j = i j L jp [V p (k j + L jj ) V p (k j )] = L jj, p=1 L jj = k j (k j + L jj ) k j (k j ) j 1 L jj [V j (k j + L jj ) V j (k j )] + L jp [V p (k j + L jj ) V p (k j )] = L jj, p=1 V j (k j + L jj ) V j (k j ) = 1 i V i 1 V i (k i + L ii ) = V i (k i ) j 1 L jj = S jp [k p (k j + L jj ) k p (k j )] + (B j A j )Sym (G j ), p=1 L jj = (B j A j )Sym (G j ), Sym (G j ) L jj j < i i i L iq V q (k j + L jj ) L iq V q (k j ) = k i (k j + L jj ) k i (k j ), q=1 q=1 i L iq [V q (k j + L jj ) V q (k j )] = k i (k j + L jj ) k i (k j ), q=1 + j 1 L iq [V q (k j + L jj ) V q (k j )] + L ij [V j (k j + L jj ) V j (k j )] + q=1 i q=j+1 L iq [V q (k j + L jj ) V q (k j )] = k i (k j + L jj ) k i (k j ),

108 n L ij = k i (k j + L jj ) k i (k j ). i 1 k i (k j + L jj ) k i (k j ) = S ip [k p (k j + L jj ) k p (k j )] + (B j A j )Sym (G j ), p=1 i 1 L ij = S ip [k p (k j + L jj ) k p (k j )] + (B j A j )Sym (G j ). p=j L ij = S ij [k j (k j + L jj ) k j (k j )] + + i 1 p=j+1 S ip [k p (k j + L jj ) k p (k j )] + (B j A j )Sym (G j ), k j (k j + L jj ) k j (k j ) = L jj, j k p (k j + L jj ) k p (k j ) = L pj L ij = S ij L jj + i 1 p=j+1 Sym(G i ) S ij L jj L ij S ip L pj + (B j A j )Sym (G j ), i 1 q=j+1 S iq L qj, Sym(G i ) S i 1 ijl jj L ij S iq L qj. q=j+1

109 n G i i {1,..., n} G i L ii i {1,..., n} N i = G i L ii i {1,..., n} L G N G {1,..., L} G = N = N L L g=1 g L L g N 1 g g N L g g 1 g =1 g g L g N g L (g ). g = Sym(G) (g ) g (g) = L g g N L g g 1 g =1 g g L g N (g ), g L + Z L G Z L G = Z L L ϕ ϕ : G X X (g, x) x + g mod (L). (g) g G (X)

110 n g = Sym(G) g L L g N g = Sym(G) (g) g L/g L Ng/L g P C(g) P C(g) = g N L g. L/g L N L g L g P C(g) = L g g N L g. L = 6 N = 3 g = 6 g = 3 {1, 4} {2, 5} {3, 6} g N g (g) g g P C(g ) = g (g ). L g g < g P C(g) = g g 1 N g L g (g ), L g g g L g N g g =1 g g L g N

111 (g) (g) = L g g N L g g 1 g =1 g g L g N g L (g ), g G = Z L 1 L L M g=1 g L M L Mg N M L M g=1 g L M L g N 1 g g N L g (g), g 1 g =1 g g L g N g L (g ). G i i {1,..., n} G i S ij G i i {1,..., n} gcd(sym(g i ), L jj ) L ij i 1 q=j+1 S ij L qj, {i, j : i > j},

112 n n i 1 gcd(sym(g i ), L jj ), i=1 j=1 ASym(G i ) + L jj S ij = L ij i 1 q=j+1 S ij L qj, A A S ij gcd(sym(g i ), L jj ) L i 1 ij S ij L qj. q=j+1 (S ij ) λ = (S ij ) 0 + λ l, l = L jj (A) λ = (A) 0 λ gcd(sym(g i ), L jj ), Sym(G i ) gcd(sym(g i ), L jj ), (S ij ) 0 (A) 0 λ S ij S ij {0,..., Sym(G i ) 1} S ij Sym(Gi ) 1 (Sym(Gi ) 1) gcd(sym(g i ), L jj ) + 1 = + 1 = l Sym(G i ) gcd(sym(gm ), L Ω ) = gcd(sym(g i ), L jj ) + 1 = Sym(G M ) = gcd(sym(g i ), L jj ). S ij gcd(sym(g i ), L jj ) L ij i 1 q=j+1 S ij L qj, {i, j : i > j}, S ij n i 1 gcd(sym(g i ), L jj ). i=1 j=1

113 Sym(G i ) = 1 n i 1 gcd(1, L jj ) = 1. i=1 j=1 G i L ii i {1,..., n} G i L ii Sym(G i ) {S ij, L ij } G i L ii n n i L ii. i=1 j=1 i S ij L ij L jj S ij 1L ij = ASym(G M ) i 1 q=j+1 S iq L qj, S iq L qj q > j S ij L ij gcd(l jj, 1) ASym(G M) i 1 q=j+1 (S ij ) λ = (S ij ) 0 + λ, S iq L qj (L ij ) λ = (L ij ) 0 + λl jj, (S ij ) 0 (L ij ) 0 λ

114 n A L ij {0,..., L jj 1} A L ij S ij A A min = 1 i 1 Sym(G i ) S iq L qj (L jj 1), A max = 1 Sym(G i ) q=j+1 i 1 q=j+1 S iq L qj + L jj (Sym(G i ) 1), Ljj (Sym(G i ) 1) + (L jj 1) A max A min + 1 = + 1 = L jj Sym(G i ) A L jj {L ij, S ij } L ij {0,..., L jj 1} n n i L ii, i=1 j=1 G i L ii N i L ii i {1,..., n} G i N i = G i

115 L ii i {1,..., n} i n N i n i=1 L (n i) ii L ii g=1 g L ii L ii g N i 1 g g N i g L ii g 1 g =1 g g L ii g N i g (g ), L ii (g ) i g (g) = L g g N L g g 1 g =1 g g L g N (g ), i P i = L ii g=1 g L ii L ii g N i 1 g g N i g L ii g 1 g =1 g g L ii g N i g L g (g ), L ii (g) = L ii g g N i g L ii g 1 g =1 g g L ii g N i g (g ). L ii n P i. i=1 n n P i i=1 i=1 L (n i) ii.

116 n n P i L (n i) ii, n i=1 L (n i) ii L ii g=1 g L ii L ii g N i 1 g i=1 g N i g L ii g 1 g =1 g g L ii g N i g (g ), L ii N i L ii N i = L ii i V i i L ij V j = k i, i 1 p=1 L pp i j=1 j=1 i 1 L pp V j = k i L pp, L ij i 1 p=1 i 1 L pp V i + L ii i 1 p=1 j=1 L ij i 1 p=1 i 1 L pp V j = k i L pp, p=1 p=1 i i 1 i 1 j i 1 L pp V i + L pp V j = k i L pp. p=1 L ij L mm j=1 m=j+1 p=1 p=1

117 V i N i V i i N i = L pp V i. p=1 i 1 N i + L ij N j j=1 i 1 m=j+1 i 1 L mm = k i L pp, p=1 k i i 1 i 1 N i = k i L pp L ij N j p=1 j=1 i 1 m=j+1 L mm. V i N i = [ i p=1 L ppv i N i 0, ] i p=1 L pp N i = k i i 1 i 1 L pp L ij N j p=1 j=1 i 1 m=j+1 L mm, i p=1 L pp. N i Z i i 1 N i + L ij N j j=1 i 1 m=j+1 i 1 L mm = k i L pp ; p=1 i 1 k i = G i (ki ) + S ij k j, Sym (G i ), j=1 N i [ N i 1,..., ] i p=1 L pp

118 n n n n

119

120 a e i ω Ω M x = (r cos f, r sin f, 0), r r = a ( 1 e 2) 1 + e cos f,

121 f R 3 R 1 x ECI = R 3 (Ω) R 1 (i) R 3 (ω) x, x ECEF = R 3 ( ψ G0 ω t) x ECI, ψ G0 t = 0 ω r cos f x ECEF = R 3 ( ψ G0 ω t) R 3 (Ω) R 1 (i) R 3 (ω) r sin f, 0 r cos f x ECEF = R 3 (Ω ψ G0 ω t) R 1 (i) R 3 (ω) r sin f. 0 a e i ω a e i ω Ω 0 t 0 x 0 r cos f x 0 ECEF = R 3 (Ω 0 ψ G0 ω t) R 1 (i) R 3 (ω) r sin f, 0 r f t t 0 t 1 t 0

122 Ω = ω (t 1 t 0 ) x 1 t 1 r cos f x 1 ECEF = R 3 (Ω 0 ψ G0 ω (t 1 t 0 + t)) R 1 (i) R 3 (ω) r sin f, 0 r f t 1 + t x 1 ECI = R 3 (ψ G0 + ω t) x 1 ECEF, x 1 ECI = R 3 (Ω 0 ω (t 1 t 0 )) R 1 (i) R 3 (ω) r cos f r sin f 0. {a, e, i, ω, Ω 0, M 0 } {a, e, i, ω, Ω 1, M 1 } M 0 M 1 x 0 ECEF (t + (t 1 t 0 )) = x 1 ECEF (t) t R, t 1 t Ω 1 = Ω 0 ω (t 1 t 0 ). M = n(t + t 0 τ), τ t 0 n n = µ a 3, µ τ 0 τ 1 M 1 = n(t + t 1 τ),

123 t 1 1 M 1 = M 0 + n(t 1 t 0 ). M 1 Ω 1 ( M 1 = M 0 + n ) Ω 0 n Ω 1 ; ω ω M 1 (Ω 1 ) n/ω (Ω, M) (Ω, M) t q t 1 N st q [1, N st ] q ( M q = M 0 + n ) Ω 0 n Ω q ; ω ω r cos f x q ECI = R 3 (Ω 0 ω (t q t 0 )) R 1 (i) R 3 (ω) r sin f. 0 Ω q q Ω q = Ω 0 ω (t q t 0 ).

124 t q t 0 t t q ω Ω q f q t q t q x q ECI = R 3 (Ω 0 ω (t q t 0 )) R 1 (i) R 3 (ω) a ( 1 e 2) 1 + e cos f q cos f q a ( 1 e 2) 1 + e cos f q sin f q 0. t q Ω q = Ω 0 ω (t q t 0 ); M q = M 0 + n(t q t 0 ); t q Ω 0 t 0 M 0 a = km e = 0.4 i = o Ω 0 = 0 M 0 = 0 t 0 = 0 t q = 300(q 1); q [1, 5] 300 Ω q = ω t q ; M q = nt q ;

125 Ω q deg M q deg N t k [1, N t ] N s N s = N st N t, N st k0 k 00

126 r cos f x kq ECEF = R 3 (σ) R 1 (i) R 3 (ω) r sin f, 0 σ = Ω 0 + Ω k ψ G0 ω (t kq t 0 + t), Ω k t kq r f t kq t kq k q Ω k t kq f kq q k x kq ECI = R 3 (Ω kq ) R 1 (i) R 3 (ω) a ( 1 e 2) 1 + e cos f kq cos f kq a ( 1 e 2) 1 + e cos f kq sin f kq 0, Ω kq = Ω 0 + Ω k ω (t kq t 0 ), (Ω, M) Ω kq = Ω 0 + Ω k ω (t kq t 0 ), M kq = M 0 + n(t kq t 0 ), Ω kq M kq M kq = ( M 0 + n ) Ω 0 + n Ω k n Ω kq ; ω ω ω 11 k = 1, q = 1 Ω 1

127 (Ω, M) 880km a = 7260 km i = o Ω k = 2π k 1 N t, t kq = 2π q 1 N st ; N t = 3 N st = 5 Ω kq = 2π k 1 N t M kq = 2π q 1 N st, 2πω n q 1 N st, k [1, N t ] q [1, N st ] (Ω, M)

128 (Ω, M) Ω kq Ω kq

129 t kq Ω k t kq Ω k t kq t k t q t kq = t k + t q, t q t k k t k Ω k t q Ω kq = Ω 0 + Ω k ω (t k + t q t 0 ), k t k = Ω k ω, t k Ω kq = Ω 0 ω (t q t 0 ). Ω kq k t q q k f kq t q + t k (Ω, M) Ω kq = Ω 0 ω (t q t 0 ), ( ) Ωk M kq = M 0 + n + t q t 0, ω ( M kq = M 0 + n ) Ω 0 + n Ω k n Ω kq. ω ω ω t q t k

130 (Ω, M) a = km e = 0 i = 50 o Ω 0 = 0 M 0 = 0 t 0 = 0 t q Ω k k = 1 k = 2 k = 3 q = 2

131 q = 3 q = 1 t q t 1 = 0 s t 2 = 600 s t 3 = 600 s Ω k Ω 1 = 0 Ω 2 = ω t 2 Ω 3 = ω t 3 (k, q) q k (1, 1) (1, 2) (1, 3) (2, 2) (3, 3) Ω kq deg M kq deg

132 x 0 t = t q t 0, t 0 t q q [1, N st ] x q ECI ṽ q ECI x q ECEF v q ECEF x q ECEF = R 3 ( ψ G0 ω (t q t 0 )) x q ECI, v q ECEF = R 3 ( ψ G0 ω (t q t 0 )) ṽ q ECI ω x q ECEF. x q ECI v q ECI x q ECI = R 3 (ψ G0 ) x q ECEF, v q ECI = R 3 (ψ G0 ) v q ECEF + ω x q ECI.

133 t kq Ω k a 0 e 0 i 0 w 0 Ω k0 = Ω 0 + Ω k ω (t k0 t 0 ), Ω k0 k [1, N t ] t 0 t k0 t kq t k0 N t t = t kq t 0 x kq ECEF = R 3 ( ψ G0 ω (t kq t 0 )) x kq ECI, v kq ECEF = R 3 ( ψ G0 ω (t kq t 0 )) ṽ kq ECI ω x kq ECEF ; x kq ECI = R 3 (ψ G0 ) x kq ECEF, v kq ECI = R 3 (ψ G0 ) v kq ECEF + ω x kq ECI. x kq ECI v kq ECI N t N s t k t q t kq = t k + t q t k Ω k

134 t k ω ω Ω Ω t k = Ω k ω Ω k0, Ω k0 k t k N s N t N st T c T c = N p T Ω = N d T ΩG, N p N d T Ω T ΩG N st q [1, N st ] t q T c t q < T c t q = (q 1) T c N st. N t k [1, N t ]

135 Ω k = Ω 0 + (k 1) 2π N t, Ω k = Ω k Ω 0 = (k 1) 2π N t. t k t k = (k 1) 2π N t ω Ω k0, t kq = t k + t q t kq = (q 1) T c 2π + (k 1) ( N st N t ω Ω ). k0 N d N p N p = 2 N d = 3 N p = 4 N d = 6 N p N t N f N p N t Ω k = Ω 0 + (k 1) 2π, N t N f t kq = (q 1) T c 2π + (k 1) ( N st N t N f ω Ω ), k0

136 N p N d N st N t (ψ r, ϕ r ) f = π x y z v x v y v z

137 t 0 t 0 = 0 N p = 2 N d = 1 i = o e = 0.5 N t = 6 N st = 4 N s = N t N st = 24 N t = 6 N p = 2 N f = 2 ϕ r = o ψ r = o

138

139 o 705 ± 5 km a = km e = 0 i = o x y z v x v y v z 16 16

140 16 16

141

142

143

144 a e i ω Ω M ω µ R J 2 J 2 T c T c = N p T Ω = N d T ΩG, N p N d T Ω n M o ω T Ω = 2π Ṁ + ω = 2π n + M o + ω.

145 T ΩG T ΩG = 2π ω Ω, n + M o + ω = N ( p ω N Ω ), d J 2 n = M o = ω = µ a 3 ; 3J 2 nr 2 4a 2 (1 e 2 ) 2 1 e 2 ( 2 3 sin 2 i ) = 3J 2 nr 2 4a 2 (1 e 2 ) 2 ( 4 5 sin 2 i ) = 3J 2nR 2 4a 2 (1 e 2 ) 2 1 e 2 ( 3 cos 2 i 1 ) ; 3J 2nR 2 4a 2 (1 e 2 ) 2 ( 5 cos 2 i 1 ) ; Ω = 3J 2nR 2 2a 2 (1 e 2 2 cos i. ) [ µ 3J 2 R 2 [ (2 a sin 2 4a 2 (1 e 2 ) 2 i ) ] ] 1 e sin 2 i = µ = N p 3J 2 N d ω a + 3 R2 2a 2 (1 e 2 ) 2 cos i, µ [a 2 + 3J 2R 2 [ (2 3 sin 2 4 (1 e 2 ) 2 i ) 1 e sin 2 i 2 N ]] p cos i = N p ω a 7/2. N d N d k 1 k 2 k 1 = N d µ ; N p ω k 2 = k 1 3J 2 R 2 4 (1 e 2 ) 2 [ (2 3 sin 2 i ) 1 e sin 2 i 2 N ] p cos i, N d a 7/2 k 1 a 2 k 2 = 0.

146 a j+1 = a j a7/2 j k 1 a 2 j k 2, 7 2 a5/2 j 2k 1 a j a j+1 a j < tol tol a 0 [ a 3 0 µ N p = N (Nd ) ] 2 1/3 d µ = a 0 =. ω J 2 T Ω N p ω 2 J 2 i = o N p = 14 N d = 1 ϕ r = o N ψ r = o W

147 N p = 14 N d = 1 i = o T c Δψ ψ

148 2N p T c ψ a 0 N p N d ψ 0 ψ 0 a ψ 0 = ω (T c0 T c ) = ω N p (T 0 T ), N p T 0 T a 0 a ψ 0 = ω N p 2π a 3 0 µ 2π a 3. µ dψ dψ 0 = ψ 0 T c. dψ 0 ( ) dψ 0 = ω 1 a3 a 3. 0 a 0 dψ 0 a ( a = a 0 1 dψ ) 2/3 0. ω ( a i = a i 1 1 dψ ) 2/3 i 1, ω

149 a j = a (j 1) dψ (j 1) ( a(j 1) a (j 2) ) ( dψ(j 1) dψ (j 2) ), a j dψ j < ϵ ϵ N d = 1 N p = 14 N p = 14 N d = 1 e = 0.0 i = o

150 J < km km/day km km/day < x y z v x v y v z

151 N p N d 0 o 0 o w = 90 o 0 o N p N d km N p = 15 N d = km/day km km 0.55 km 1 km

152 Deviation in Equator (km/day) e = 0.00 e = 0.01 e = 0.02 e = 0.03 e = 0.04 e = Inclination (deg) N p = 15 N d = Difference in semi major axis (km) e = 0.00 e = e = 0.02 e = e = 0.04 e = Inclination (deg) N p = 15 N d = 1 N p = 3 N d = 1 8 km/day

153 Deviation in Equator (km/day) e = 0.0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = Inclination (deg) N p = 3 N d = km Difference in semi major axis (km) e = 0.0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = Inclination (deg) N p = 3 N d = 1

154 N p = 1 N d = 1 Deviation in Equator (km/day) e = 0.0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = Inclination (deg) N p = 1 N d = 1 Difference in semi major axis (km) e = 0.0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = Inclination (deg) N p = 1 N d = 1

155 Ω sec = ω yr, Ω sec yr = Ω sec = 3 2 J R 2 µ 2 a 7/2 (1 e 2 2 cos i. )

156 N p N d ( 1 e 2 ) ( 2 3 N = 2 J 2 yr R 2 7 p Nd 7 ω 4 µ 2 ) 1/3 cos i. r p = a (1 e), N p N d e max = 1 ( N 2 p ω 2 N 2 d µ ) 1/3 r p. ( e min = 3 N 1 2 J 2 yr R 2 7 p N 7 d ω 4 ) 1/3 µ 2. cos i max = 2 ( ) 1 e 2 2 ( min N 7 d 3 J 2 yr R Np 7 cos i min = 2 ( ) 1 e 2 2 ( max N 7 d 3 J 2 yr R Np 7 ω 4 µ 2 ) 1/3 ω 4 µ 2 ) 1/3.

157 J 2 J 3 J 2 J 3 ė = 3 2 [ ẇ = µ a 3 3J 3 (1 e 2 ) 2 ( R ) 3 J 3 (1 e 2 ) a µ R 2 a 3 a 2 ( 2 sin i cos ω )] [ ( sin2 i 1 5 ) 4 sin2 i, 1 + J 3 R J 2 2a sin ω 1 e 2 ( sin 2 i e 2 cos 2 i e sin i )]. ω = π/2, 3π/2 ( 1 e 2 ) e = 1 J 3 R sin 2 i e 2 cos 2 i sin ω, 2 J 2 a sin i a i

158 Ω kq = Ω 00 ω (t q t 0 ), M kq = M 00 + n (t k + t q t 0 ) ; Ω 00 M 00 t 0 t q t k k Ω kq M kq q k 2π t k = (k 1) ( N t N f ω Ω ), k0 t q = (q 1) T c N st, N t N st Ωk0 k0 N f N p N t N f = gcd(n p, N t ) k [1, N t ] q [1, N st ] N p = 59 N d = 4

159 N t = 1 N st = 4 N st /gcd(n st, N d ) x y z v x v y v z J 2

160

161

162

163

164 Ω kq = Ω k ω (t kq t 0 ), M kq = n(t kq t 0 ), (t kq t 0 ) Ω k Ω ij = 2π L Ω (i 1), M ij = 2π L M (j 1) 2π L M L MΩ L Ω (i 1), L Ω L M [( ) (i 1) Ω k = 2π (t kq t 0 ) = 2π n 1 ω n [ (j 1) L M L MΩ L M L Ω L MΩ L M (i 1) L Ω ] (j 1) L M + ω mod (2π), n ], (i 1) = G Ω 1, (j 1) = G M 1 + S MΩ (G Ω 1),

165 [( Ω k = 2π 1 ω n (t kq t 0 ) = 2π n L MΩ L M ) (GΩ 1) L Ω [ (GM 1 + S MΩ (G Ω 1)) L M + ω n ] (G M 1 + S MΩ (G Ω 1)) L MΩ L M (G Ω 1) L Ω mod (2π), ]. L M n ω N p N d n = 2π N p T c, ω = 2π N d T c, T c [( Ω k = 2π 1 N ) d L MΩ (GΩ 1) + N ] d (G M 1 + S MΩ (G Ω 1)) N p L M L Ω N p L M (t kq t 0 ) = T [ ] ( c (GM 1 + S MΩ (G Ω 1)) Tc + A N p N p L M L MΩ L M (G Ω 1) L Ω mod (2π), ), A (t kq t 0 ) = (q 1) T c = T [ c (GM 1 + S MΩ (G Ω 1)) L ] ( ) MΩ (G Ω 1) Tc + A, N st N p L M L M L Ω N p N st = L Ω L M (q 1) (q 1) = N st N p [ (GM 1 + S MΩ (G Ω 1)) L M L ] MΩ (G Ω 1) + A L M L Ω ( Nst N p ), (q 1) = 1 [ ] ( ) LΩ L M (G M 1 + S MΩ (G Ω 1))L Ω (G Ω 1)L MΩ + A. N p N p (q 1) L MΩ

166 Ω q = 2πN d (q 1) N st, M q = 2πN p (q 1) N st,

167 ±7.5 o 185 km 705 km ± 5 km 38.5 o o 32.9 o o

168 ±0.15 o 1982 kg 4 m 2.7 m 705 km ±0.1 o 530 kg 2.3 m 1.4 m 705 km 999 kg 2.3 m 2.3 m 2.8 m 1.5 km ±0.01

169 705 km N p N d N p = 233 N d = km o o

170 51.43 o 360 o / o 7 L Ω = 7 N Ω = 3 0 = 2πN d (q 1) N st mod (2π), N d L M = N d = 16 N M = 2 (Ω, M) L Ω L M L MΩ

171 L MΩ = 2 (Ω, M) G M G M = {1, 9} G M (1) = 1 G M (2) = 9 8 7S MΩ 2, S MΩ = o

172 G Ω = {1, 2, 7} G Ω (1) = 1 G Ω (2) = 2 G Ω (3) = 7 G Ω (1) G Ω (2) G Ω (3) G M (1) G M (2) G M (1) G M (2) G M (1) G M (2) Ω o o o o o o M o o o o o o (Ω, M) q {1,..., L Ω L M }

173 G Ω (1) G Ω (2) G Ω (3) G M (1) G M (2) G M (1) G M (2) G M (1) G M (2) q J 2

174 J 2 ±0.01 o ±1.5 km

175

176

177 v

178 v

179

180 v 0.02 o v = m/s

181 ±0.01 o

182

183

184

185

186 n

187

188 n

189

190 th J 2

191

192 J 2

ENGIN 211, Engineering Math. Fourier Series and Transform

ENGIN 211, Engineering Math. Fourier Series and Transform ENGIN 11, Engineering Math Fourier Series and ransform 1 Periodic Functions and Harmonics f(t) Period: a a+ t Frequency: f = 1 Angular velocity (or angular frequency): ω = ππ = π Such a periodic function

More information

I. Relationship with previous work

I. Relationship with previous work x x i t j J t = {0, 1,...J t } j t (p jt, x jt, ξ jt ) p jt R + x jt R k k ξ jt R ξ t T j = 0 t (z i, ζ i, G i ), ζ i z i R m G i G i (p j, x j ) i j U(z i, ζ i, x j, p j, ξ j ; G i ) = u(ζ i, x j,

More information

Easy and not so easy multifacility location problems... (In 20 minutes.)

Easy and not so easy multifacility location problems... (In 20 minutes.) Easy and not so easy multifacility location problems... (In 20 minutes.) MINLP 2014 Pittsburgh, June 2014 Justo Puerto Institute of Mathematics (IMUS) Universidad de Sevilla Outline 1 Introduction (In

More information

E.., (2) g t = e 2' g E. g t = g ij (t u k )du i du j, i j k =1 2. (u 1 0 0) u2 2 U, - v, w, g 0 (v w) = g ij (0 u k 0)v i w j = 0, (t) = g ij (t u k

E.., (2) g t = e 2' g E. g t = g ij (t u k )du i du j, i j k =1 2. (u 1 0 0) u2 2 U, - v, w, g 0 (v w) = g ij (0 u k 0)v i w j = 0, (t) = g ij (t u k 2007 10 (545) 517.929..,.. 1. g t M, d dt g t = ;2 Ric(g t ) (1) Ric(g) g.,, -, - (., [1], [2]).,,.,, f t - (M G), g t = ft G,, (1)., -, -, (, ), - (,, [3]). t - E 3, g t, t E 3, (1). t -., -. (M g) Ric

More information

D D = 2, 3, 4, 5, 6 D D = 2, 3, 4, 5, 6 N =(2, 0) N =(2, 0) N =(2, 0) N =2 (2) l (2) r (2) R (2) r (2) R (2) r N =2 S 4 N =2 S 4 N =2 (2) l (2) r (2) R (2) r (2) R (2) r N =2 S 4 N =2 S 4 T µν g µν T

More information

Lecture D20-2D Rigid Body Dynamics: Impulse and Momentum

Lecture D20-2D Rigid Body Dynamics: Impulse and Momentum J Peraire 1607 Dynamics Fall 004 Version 11 Lecture D0 - D Rigid Body Dynamics: Impulse and Momentum In lecture D9, we saw the principle of impulse and momentum applied to particle motion This principle

More information

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant, FYST5 Quantum Mechanics II 9..212 1. intermediate eam (1. välikoe): 4 problems, 4 hours 1. As you remember, the Hamilton operator for a charged particle interacting with an electromagentic field can be

More information

Ossama Abdelkhalik and Daniele Mortari Department of Aerospace Engineering, Texas A&M University,College Station, TX 77843, USA

Ossama Abdelkhalik and Daniele Mortari Department of Aerospace Engineering, Texas A&M University,College Station, TX 77843, USA Two-Way Orbits Ossama Abdelkhalik and Daniele Mortari Department of Aerospace Engineering, Texas A&M University,College Station, TX 77843, USA November 17, 24 Abstract. This paper introduces a new set

More information

K(ζ) = 4ζ 2 x = 20 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ

More information

Useful Formulae ( )

Useful Formulae ( ) Appendix A Useful Formulae (985-989-993-) 34 Jeremić et al. A.. CHAPTER SUMMARY AND HIGHLIGHTS page: 35 of 536 A. Chapter Summary and Highlights A. Stress and Strain This section reviews small deformation

More information

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 015 14. Oscillations Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License This wor

More information

Chemistry 532 Practice Final Exam Fall 2012 Solutions

Chemistry 532 Practice Final Exam Fall 2012 Solutions Chemistry 53 Practice Final Exam Fall Solutions x e ax dx π a 3/ ; π sin 3 xdx 4 3 π cos nx dx π; sin θ cos θ + K x n e ax dx n! a n+ ; r r r r ˆL h r ˆL z h i φ ˆL x i hsin φ + cot θ cos φ θ φ ) ˆLy i

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Phys 7221 Homework # 8

Phys 7221 Homework # 8 Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

More information

X-MA2C01-1: Partial Worked Solutions

X-MA2C01-1: Partial Worked Solutions X-MAC01-1: Partial Worked Solutions David R. Wilkins May 013 1. (a) Let A, B and C be sets. Prove that (A \ (B C)) (B \ C) = (A B) \ C. [Venn Diagrams, by themselves without an accompanying logical argument,

More information

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 Any periodic function f(t) can be written as a Fourier Series a 0 2 + a n cos( nωt) + b n sin n

More information

Noninertial Reference Frames

Noninertial Reference Frames Chapter 12 Non Reference Frames 12.1 Accelerated Coordinate Systems A reference frame which is fixed with respect to a rotating rigid is not. The parade example of this is an observer fixed on the surface

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 015 fall Set 1 for 16/17. November 015 Problem 68: Te Lagrangian for

More information

Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques Universitat de Barcelona MARKOV CHAINS

Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques Universitat de Barcelona MARKOV CHAINS Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques Universitat de Barcelona MARKOV CHAINS Autor: Anna Areny Satorra Director: Dr. David Márquez Carreras Realitzat a: Departament de probabilitat,

More information

[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2

[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2 2 S 2 2 2 2 2 M M 4 S 2 S 2 z, w : C S 2 z = 1/w e iψ S 1 S 2 σ 1 = 1 ( ) [ zd z zdz dψ + 2i 2 1 + z 2, σ 2 = Re 2 e i ψ 2 dz 1 + z 2 ], σ 3 = Im [ 2 e i ψ 2 dz 1 + z 2 σ 2 σ 3 (σ 2 ) 2 (σ 3 ) 2 σ 2 σ

More information

Urban heat islands: An optimal control approach. Departamento de Matemática Aplicada II Universidad de Vigo Spain

Urban heat islands: An optimal control approach. Departamento de Matemática Aplicada II Universidad de Vigo Spain Urban heat islands: An optimal control approach L.J. Alvarez-Vázquez, F.J.Fernández, N. García-Chan, A. Martínez, M.E. Vázquez-Méndez. Departamento de Matemática Aplicada II Universidad de Vigo Spain The

More information

Lecture D10 - Angular Impulse and Momentum

Lecture D10 - Angular Impulse and Momentum J. Peraire 6.07 Dynamics Fall 2004 Version.2 Lecture D0 - Angular Impulse and Momentum In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel

More information

Towards a Search for Stochastic Gravitational-Wave Backgrounds from Ultra-light Bosons

Towards a Search for Stochastic Gravitational-Wave Backgrounds from Ultra-light Bosons Towards a Search for Stochastic Gravitational-Wave Backgrounds from Ultra-light Bosons Leo Tsukada RESCEU, Univ. of Tokyo The first annual symposium "Gravitational Wave Physics and Astronomy: Genesis"

More information

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II November 5, 207 Prof. Alan Guth FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 207 A few items below are marked

More information

Spaceflight Dynamics

Spaceflight Dynamics Spaceflight Dynamics Prof. S. P. Bhat Department of Aerospace Engineering Indian Institute of Technology, Bombay April 21, 2006 Prof. S. P. Bhat (IITB) Spaceflight Dynamics April 21, 2006 1 / 97 Outline

More information

Physics 443, Solutions to PS 4

Physics 443, Solutions to PS 4 Physics, Solutions to PS. Neutrino Oscillations a Energy eigenvalues and eigenvectors The eigenvalues of H are E E + A, and E E A and the eigenvectors are ν, ν And ν ν b Similarity transformation S S ν

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

On Sun-Synchronous Orbits and Associated Constellations

On Sun-Synchronous Orbits and Associated Constellations On Sun-Synchronous Orbits and Associated Constellations Daniele Mortari, Matthew P. Wilkins, and Christian Bruccoleri Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843,

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Somnath Bharadwaj and S. Pratik Khastgir Department of Physics and Meteorology IIT Kharagpur Module : Oscillations Lecture : Oscillations Oscillations are ubiquitous. It would be

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms K. JANKOWSKI a, R. SŁUPSKI a, and J. R. FLORES b a Nicholas Copernicus University 87-100 Toruń,

More information

Rotational Kinematics. Description of attitude kinematics using reference frames, rotation matrices, Euler parameters, Euler angles, and quaternions

Rotational Kinematics. Description of attitude kinematics using reference frames, rotation matrices, Euler parameters, Euler angles, and quaternions Rotational Kinematics Description of attitude kinematics using reference frames, rotation matrices, Euler parameters, Euler angles, and quaternions Recall the fundamental dynamics equations ~ f = d dt

More information

Lecture II: Rigid-Body Physics

Lecture II: Rigid-Body Physics Rigid-Body Motion Previously: Point dimensionless objects moving through a trajectory. Today: Objects with dimensions, moving as one piece. 2 Rigid-Body Kinematics Objects as sets of points. Relative distances

More information

S i = a b i A i r i i T avg T min T max T vit e 2 e 2 (4/1.8) 2 ϕ inc ϕ diff m B λ = Λ(sin θ incident + sin θ diffracted ) m B λ Λ θ diffracted F uel ext Air Nozzle Fuel 1 Spark Vitiation Stage Second

More information

sin(y + z) sin y + sin z (y + z)sin23 = y sin 23 + z sin 23 [sin x][sinx] = [sinx] 2 = sin 2 x sin x 2 = sin ( x 2) = sin(x x) ...

sin(y + z) sin y + sin z (y + z)sin23 = y sin 23 + z sin 23 [sin x][sinx] = [sinx] 2 = sin 2 x sin x 2 = sin ( x 2) = sin(x x) ... Sec. 01 notes Some Observations Not Linear Doubling an angles does NOT usually double the ratio. Compare sin10 with sin 20, for example. generally,... sin(2x) 2 sinx sin IS NOT a number If x, y and z are

More information

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423 Chapter 5 - Part 1 Orbit Perturbations D.Mortari - AERO-43 Orbital Elements Orbit normal i North Orbit plane Equatorial plane ϕ P O ω Ω i Vernal equinox Ascending node D. Mortari - AERO-43 Introduction

More information

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section 5. 3 The (DT) Fourier transform (or spectrum) of x[n] is X ( e jω) = n= x[n]e jωn x[n] can be reconstructed from its

More information

Phys 7221, Fall 2006: Homework # 5

Phys 7221, Fall 2006: Homework # 5 Phys 722, Fal006: Homewor # 5 Gabriela González October, 2006 Prob 3-: Collapse of an orbital system Consier two particles falling into each other ue to gravitational forces, starting from rest at a istance

More information

Prime Numbers and Irrational Numbers

Prime Numbers and Irrational Numbers Chapter 4 Prime Numbers and Irrational Numbers Abstract The question of the existence of prime numbers in intervals is treated using the approximation of cardinal of the primes π(x) given by Lagrange.

More information

Physics 8, Fall 2011, equation sheet work in progress

Physics 8, Fall 2011, equation sheet work in progress 1 year 3.16 10 7 s Physics 8, Fall 2011, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic mass unit ) = 1 1.66

More information

Continuum Theory of Liquid Crystals continued...

Continuum Theory of Liquid Crystals continued... Continuum Theory of Liquid Crystals continued... Iain W. Stewart 25 July 2013 Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK Raffaella De Vita, Don Leo at Virginia Tech,

More information

Partial Derivatives of Observables with Respect to Two-Body Orbital Elements

Partial Derivatives of Observables with Respect to Two-Body Orbital Elements Partial Derivatives of Observables with Respect to Two-Body Orbital Elements Marc A. Murison U.S. Naval Observatory, Washington, DC murison@usno.vy.mil 6 November, 26 Abstract We calculate the partial

More information

Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group

Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (2007), 049, 28 pages Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group David IGLESIAS, Juan Carlos

More information

ANSWERS TO PROBLEM SET 1

ANSWERS TO PROBLEM SET 1 CHM1485: Molecular Dynamics and Chemical Dynamics in Liquids ANSWERS TO PROBLEM SET 1 1 Properties of the Liouville Operator a. Give the equations of motion in terms of the Hamiltonian. Show that they

More information

SOLUTIONS, PROBLEM SET 11

SOLUTIONS, PROBLEM SET 11 SOLUTIONS, PROBLEM SET 11 1 In this problem we investigate the Lagrangian formulation of dynamics in a rotating frame. Consider a frame of reference which we will consider to be inertial. Suppose that

More information

Dynamics and Control of Rotorcraft

Dynamics and Control of Rotorcraft Dynamics and Control of Rotorcraft Helicopter Aerodynamics and Dynamics Abhishek Department of Aerospace Engineering Indian Institute of Technology, Kanpur February 3, 2018 Overview Flight Dynamics Model

More information

Physics 8, Fall 2013, equation sheet work in progress

Physics 8, Fall 2013, equation sheet work in progress (Chapter 1: foundations) 1 year 3.16 10 7 s Physics 8, Fall 2013, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

z 0 > 0 z = 0 h; (x, 0)

z 0 > 0 z = 0 h; (x, 0) n = (q 1,..., q n ) T (,, t) V (,, t) L(,, t) = T V d dt ( ) L q i L q i = 0, i = 1,..., n. l l 0 l l 0 l > l 0 {x} + = max(0, x) x = k{l l 0 } +ˆ, k > 0 ˆ (x, z) x z (0, z 0 ) (0, z 0 ) z 0 > 0 x z =

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

ESM 3124 Intermediate Dynamics 2012, HW6 Solutions. (1 + f (x) 2 ) We can first write the constraint y = f(x) in the form of a constraint

ESM 3124 Intermediate Dynamics 2012, HW6 Solutions. (1 + f (x) 2 ) We can first write the constraint y = f(x) in the form of a constraint ESM 314 Intermediate Dynamics 01, HW6 Solutions Roller coaster. A bead of mass m can slide without friction, under the action of gravity, on a smooth rigid wire which has the form y = f(x). (a) Find the

More information

On complexified quantum mechanics and space-time

On complexified quantum mechanics and space-time On complexified quantum mechanics and space-time Dorje C. Brody Mathematical Sciences Brunel University, Uxbridge UB8 3PH dorje.brody@brunel.ac.uk Quantum Physics with Non-Hermitian Operators Dresden:

More information

MATH 31BH Homework 5 Solutions

MATH 31BH Homework 5 Solutions MATH 3BH Homework 5 Solutions February 4, 204 Problem.8.2 (a) Let x t f y = x 2 + y 2 + 2z 2 and g(t) = t 2. z t 3 Then by the chain rule a a a D(g f) b = Dg f b Df b c c c = [Dg(a 2 + b 2 + 2c 2 )] [

More information

DEVELOPMENT OF A MULTIPURPOSE LOW THRUST INTERPLANETARY TRAJECTORY CALCULATION CODE

DEVELOPMENT OF A MULTIPURPOSE LOW THRUST INTERPLANETARY TRAJECTORY CALCULATION CODE AAS 03-667 DEVELOPMENT OF A MULTIPURPOSE LOW THRUST INTERPLANETARY TRAJECTORY CALCULATION CODE Tadashi Sakai 1 and John R. Olds 2 A multipurpose low thrust interplanetary trajectory calculation code has

More information

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

Trade Patterns, Production networks, and Trade and employment in the Asia-US region Trade Patterns, Production networks, and Trade and employment in the Asia-U region atoshi Inomata Institute of Developing Economies ETRO Development of cross-national production linkages, 1985-2005 1985

More information

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be.

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be. Chapter 4 Energy and Stability 4.1 Energy in 1D Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be T = 1 2 mẋ2 and the potential energy

More information

Quantum chaos in ultra-strongly coupled nonlinear resonators

Quantum chaos in ultra-strongly coupled nonlinear resonators Quantum chaos in ultra-strongly coupled nonlinear resonators Uta Naether MARTES CUANTICO Universidad de Zaragoza, 13.05.14 Colaborators Juan José García-Ripoll, CSIC, Madrid Juan José Mazo, UNIZAR & ICMA

More information

Merton College Maths for Physics Prelims August 29, 2008 HT I. Multiple Integrals

Merton College Maths for Physics Prelims August 29, 2008 HT I. Multiple Integrals Merton College Maths for Physics Prelims August 29, 28 HT I Multiple Integrals 1. (a) For the following integrals sketch the region of integration and so write equivalent integrals with the order of integration

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

Formulas to remember

Formulas to remember Complex numbers Let z = x + iy be a complex number The conjugate z = x iy Formulas to remember The real part Re(z) = x = z+z The imaginary part Im(z) = y = z z i The norm z = zz = x + y The reciprocal

More information

Outline PGeneral Many body 2Pconsistent Conclusions Basics

Outline PGeneral Many body 2Pconsistent Conclusions Basics Ĥ = kσ ϵ(k)c kσ c kσ + iσ V i n iσ + U i n i n i { Ĥ ext = d1d2 η σ(1, 2)c σ(1)c σ (2)... σ ] + [η (1, 2)c (1)c (2) + η (1, 2)c (2)c (1)... + ] [ ξ σ(1, 2)c σ (1)c σ (2) + ξ σ(1, 2)c σ(1)c σ(2)... σ ]

More information

Green s function, wavefunction and Wigner function of the MIC-Kepler problem

Green s function, wavefunction and Wigner function of the MIC-Kepler problem Green s function, wavefunction and Wigner function of the MIC-Kepler problem Tokyo University of Science Graduate School of Science, Department of Mathematics, The Akira Yoshioka Laboratory Tomoyo Kanazawa

More information

Chapter 10 Solutions

Chapter 10 Solutions Chapter 0 Solutions 0. (a) α ω ω i t.0 rad/s 4.00 rad/s 3.00 s θ ω i t + αt (4.00 rad/s )(3.00 s) 8.0 rad 0. (a) ω ω π rad 365 days π rad 7.3 days *0.3 ω i 000 rad/s α 80.0 rad/s day 4 h day 4 h h 3600

More information

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as MAS113 CALCULUS II SPRING 008, QUIZ 5 SOLUTIONS Quiz 5a Solutions (1) Solve the differential equation y = x 1 + y. (1 + y )y = x = (1 + y ) = x = 3y + y 3 = x 3 + c. () Solve the differential equation

More information

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico 1. Starting from R αβµν Z ν = 2 [α β] Z µ, deduce the components of the Riemann curvature tensor in terms of the Christoffel symbols.

More information

Newman-Penrose formalism in higher dimensions

Newman-Penrose formalism in higher dimensions Newman-Penrose formalism in higher dimensions V. Pravda various parts in collaboration with: A. Coley, R. Milson, M. Ortaggio and A. Pravdová Introduction - algebraic classification in four dimensions

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

Short-time Fourier transform for quaternionic signals

Short-time Fourier transform for quaternionic signals Short-time Fourier transform for quaternionic signals Joint work with Y. Fu and U. Kähler P. Cerejeiras Departamento de Matemática Universidade de Aveiro pceres@ua.pt New Trends and Directions in Harmonic

More information

EN221 - Fall HW # 1 Solutions

EN221 - Fall HW # 1 Solutions EN221 - Fall2008 - HW # 1 Solutions Prof. Vivek Shenoy 1. Let A be an arbitrary tensor. i). Show that II A = 1 2 {(tr A)2 tr A 2 } ii). Using the Cayley-Hamilton theorem, deduce that Soln. i). Method-1

More information

Solutions. Problems of Chapter 1

Solutions. Problems of Chapter 1 Solutions Problems of Chapter 1 1.1 A real square matrix A IR n n is invertible if and only if its determinant is non zero. The determinant of A is a polynomial in the entries a ij of A, whose set of zeros

More information

1 r. Published on 28 January Abstract. will be discussed period Recently frequency jumps

1 r. Published on 28 January Abstract. will be discussed period Recently frequency jumps L R R 6 L L R R 6 R ˆ R - - ˆ 6 ˆ ˆ ˆ q q R R G P S G P S N A 4 N A D P U D C P U C B CO 89 -z 9 B CO 89 z9 U S R A q q q G q P q S U S A N A N A @ N A W W A 8 J A D 8 J P U C P 8 J P 8 J A A B CO 89 z

More information

Lagrange s Equations of Motion with Constraint Forces

Lagrange s Equations of Motion with Constraint Forces Lagrange s Equations of Motion with Constraint Forces Kane s equations do not incorporate constraint forces 1 Ax0 A is m n of rank r MEAM 535 Review: Linear Algebra The row space, Col (A T ), dimension

More information

Classical Mechanics. Luis Anchordoqui

Classical Mechanics. Luis Anchordoqui 1 Rigid Body Motion Inertia Tensor Rotational Kinetic Energy Principal Axes of Rotation Steiner s Theorem Euler s Equations for a Rigid Body Eulerian Angles Review of Fundamental Equations 2 Rigid body

More information

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Downloaded from orbit.dtu.dk on: Jan 22, 2019 Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Nystrup, Peter Publication date: 2018 Document Version

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

EE GATE

EE GATE EE GATE-009 www.gateforum.com GATE - 009 Answer Keys 1 B C 3 A 4 D 5 B 6 D 7 A 8 A 9 B 10 D 11 D 1 B 13 A 14 C 15 B 16 C 17 C 18 D 19 B 0 C 1 D C 3 A 4 A 5 D 6 C 7 D 8 D 9 B 30 C 31 C 3 A 33 A 34 B 35

More information

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring International Mathematical Forum, Vol. 9, 2014, no. 29, 1369-1375 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47131 Diameter of the Zero Divisor Graph of Semiring of Matrices over

More information

MATH45061: SOLUTION SHEET 1 V

MATH45061: SOLUTION SHEET 1 V 1 MATH4561: SOLUTION SHEET 1 V 1.) a.) The faces of the cube remain aligned with the same coordinate planes. We assign Cartesian coordinates aligned with the original cube (x, y, z), where x, y, z 1. The

More information

Half BPS solutions in type IIB and M-theory

Half BPS solutions in type IIB and M-theory Half BPS solutions in type IIB and M-theory Based on work done in collaboration with Eric D Hoker, John Estes, Darya Krym (UCLA) and Paul Sorba (Annecy) E.D'Hoker, J.Estes and M.G., Exact half-bps type

More information

Singular Monopoles and Instantons on Curved Backgrounds

Singular Monopoles and Instantons on Curved Backgrounds Singular Monopoles and Instantons on Curved Backgrounds Sergey Cherkis (Berkeley, Stanford, TCD) C k U(n) U(n) U(n) Odense 2 November 2010 Outline: Classical Solutions & their Charges Relations between

More information

Structures of AS-regular Algebras

Structures of AS-regular Algebras Structures of AS-regular Algebras Hiroyuki Minamoto and Izuru Mori Abstract In this paper, we define a notion of AS-Gorenstein algebra for N-graded algebras, and show that symmetric AS-regular algebras

More information

Equations. A body executing simple harmonic motion has maximum acceleration ) At the mean positions ) At the two extreme position 3) At any position 4) he question is irrelevant. A particle moves on the

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

CLASSIFICATION OF MÖBIUS ISOPARAMETRIC HYPERSURFACES IN THE UNIT SIX-SPHERE

CLASSIFICATION OF MÖBIUS ISOPARAMETRIC HYPERSURFACES IN THE UNIT SIX-SPHERE Tohoku Math. J. 60 (008), 499 56 CLASSIFICATION OF MÖBIUS ISOPARAMETRIC HYPERSURFACES IN THE UNIT SIX-SPHERE Dedicated to Professors Udo Simon and Seiki Nishikawa on the occasion of their seventieth and

More information

Prescribed Mean Curvature Systems. Conrad Alexander Hengesbach

Prescribed Mean Curvature Systems. Conrad Alexander Hengesbach Prescribed Mean Curvature Systems by Conrad Alexander Hengesbach A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate

More information

LYAPUNOV-BASED ELLIPTICAL TO CIRCULAR PLANAR ORBIT TRANSFERS IN LEVI-CIVITA COORDINATES

LYAPUNOV-BASED ELLIPTICAL TO CIRCULAR PLANAR ORBIT TRANSFERS IN LEVI-CIVITA COORDINATES (Preprint) AAS 2-66 LYAPUNOV-BASED ELLIPTICAL TO CIRCULAR PLANAR ORBIT TRANSFERS IN LEVI-CIVITA COORDINATES Sonia Hernandez, Maruthi R. Akella, and Cesar A. Ocampo INTRODUCTION We consider planar orbit

More information

Sinc Functions. Continuous-Time Rectangular Pulse

Sinc Functions. Continuous-Time Rectangular Pulse Sinc Functions The Cooper Union Department of Electrical Engineering ECE114 Digital Signal Processing Lecture Notes: Sinc Functions and Sampling Theory October 7, 2011 A rectangular pulse in time/frequency

More information

Simultaneous Linear, and Non-linear Congruences

Simultaneous Linear, and Non-linear Congruences Simultaneous Linear, and Non-linear Congruences CIS002-2 Computational Alegrba and Number Theory David Goodwin david.goodwin@perisic.com 09:00, Friday 18 th November 2011 Outline 1 Polynomials 2 Linear

More information

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations Course BA1: Hilary Term 007 Section 8: Quaternions and Rotations David R. Wilkins Copyright c David R. Wilkins 005 Contents 8 Quaternions and Rotations 1 8.1 Quaternions............................ 1 8.

More information

Physics H7A, Fall 2011 Homework 4 Solutions

Physics H7A, Fall 2011 Homework 4 Solutions Physics H7A, Fall 20 Homework 4 Solutions. (K&K Problem 2.) A mass m is connected to a vertical revolving axle by two strings of length l, each making an angle of 45 with the axle, as shown. Both the axle

More information

Advanced Newtonian gravity

Advanced Newtonian gravity Foundations of Newtonian gravity Solutions Motion of extended bodies, University of Guelph h treatment of Newtonian gravity, the book develops approximation methods to obtain weak-field solutions es the

More information

Semester University of Sheffield. School of Mathematics and Statistics

Semester University of Sheffield. School of Mathematics and Statistics University of Sheffield School of Mathematics and Statistics MAS140: Mathematics (Chemical) MAS152: Civil Engineering Mathematics MAS152: Essential Mathematical Skills & Techniques MAS156: Mathematics

More information

The distance of the object from the equilibrium position is m.

The distance of the object from the equilibrium position is m. Answers, Even-Numbered Problems, Chapter..4.6.8.0..4.6.8 (a) A = 0.0 m (b).60 s (c) 0.65 Hz Whenever the object is released from rest, its initial displacement equals the amplitude of its SHM. (a) so 0.065

More information

Physics 70007, Fall 2009 Answers to Final Exam

Physics 70007, Fall 2009 Answers to Final Exam Physics 70007, Fall 009 Answers to Final Exam December 17, 009 1. Quantum mechanical pictures a Demonstrate that if the commutation relation [A, B] ic is valid in any of the three Schrodinger, Heisenberg,

More information

L = 1 2 a(q) q2 V (q).

L = 1 2 a(q) q2 V (q). Physics 3550, Fall 2011 Motion near equilibrium - Small Oscillations Relevant Sections in Text: 5.1 5.6 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 4 Relativistic Dynamics The most important example of a relativistic particle moving in a potential is a charged particle, say an electron, moving in an electromagnetic field, which might be that

More information

Solution Set Five. 2 Problem #2: The Pendulum of Doom Equation of Motion Simple Pendulum Limit Visualization...

Solution Set Five. 2 Problem #2: The Pendulum of Doom Equation of Motion Simple Pendulum Limit Visualization... : Solution Set Five Northwestern University, Classical Mechanics Classical Mechanics, Third Ed.- Goldstein November 4, 2015 Contents 1 Problem #1: Coupled Mass Oscillator System. 2 1.1 Normal Modes.......................................

More information

This sample exam is longer than the actual exam will be. Many of the sample exam problems are similar to those of the actual exam. = m a. I xx.

This sample exam is longer than the actual exam will be. Many of the sample exam problems are similar to those of the actual exam. = m a. I xx. Phys 326 Sample Final Exam SOLUTION 8-11 am 18 December 2012 144 Loomis Closed book, no calculators, but you are permitted one two-sided 8 1/2 x 11" set of notes. This sample exam is longer than the actual

More information